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ABSTRACT Intelligent vehicles and Advanced Driver Assistance Systems (ADAS) are being developed
rapidly over the past few years. Many applications such as vehicle localization, environment perception, and
path planning have shown promising potentialities. While there is great interest in migrating from complete
human-controlled vehicles towards fully autonomous vehicles, it is natural that researchers spending more
effort trying to understand the interaction between vehicles with various levels of automation in large-
scale traffic scenarios. Next-generation vehicles are expected to have the capacity of evaluating driver
conditions, vehicle capabilities, surrounding traffic contexts, and take advantage of such knowledge to
ensure safe and efficient driving. Three general research questions are raised to achieve this goal, which
are (i) how can we acquire sufficient data, (ii) how to evaluate and understand driving behavior, and (iii)
how to deliver information effectively to drivers. In this article, we present a review of previous studies
from the UTDrive project attempts to answer above questions.

INDEX TERMS Driver behavior modeling, driving performance assessment, mobile platform advancement,

naturalistic driving, intelligent vehicle.

I. INTRODUCTION
RIVING is a complex multi-task process that involves
extensive human-machine interaction such as moni-
toring the environment and surrounding vehicle conditions,
predicting other driver’s movement and potential risks, deter-
mining the best action of their vehicle, and executing the
maneuver by controlling the gas/brake pedals and steering
wheels to ensure safety. This results in an increased high
standard for drivers to operate a vehicle safely on the road.
With the goal of improving road safety and establishing an
efficient intelligent transportation system, significant efforts
have been made across different research focuses and fields.
Therefore, a number of autonomous applications have shown
promising potentialities such as ego-vehicle localization, tra-
jectory prediction, object detection, end-to-end learning, and
connected mobility systems.
According to a National Highway Traffic Safety
Administration (NHTSA) report, human errors are the
most common factor in road accidents [1]. Modeling and
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understanding driver conditions through their driving behavior
are, therefore, key elements to ensure safe driving. Especially
in this transition era, vehicles have gradually been equipped
with various levels of automation systems. In the near future,
intelligent vehicles with different automation levels and driver
engagements will likely be mixed to form large-scale diverse
traffic environments. Greater research and understanding are
needed regarding the vehicle and driver monitoring in these
mixed assistive driving scenarios to improve driving safety. By
using the vehicle’s onboard sensors or combine information
through vehicle communication, next-generation intelligent
vehicles should have the ability to evaluate and understand
the driver’s status, performance, and driving behavior. As
a result, such systems could warn of protentional risks, pro-
vide guidance when necessary (e.g., lane level guidance), and
make essential adjustments or actions when critical.

To achieve this, three general research questions could be
raised. Which are (i) how can we acquire sufficient data,
(i) how to evaluate and understand driving behavior, and
(iii) how to deliver information effectively to drivers without
introducing added distraction. The purpose of this article is
not to provide a comprehensive presentation of all significant
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progress on the topic of driver behavior analysis. Instead,
we present a review of studies from the UTDrive project
that attempts to answer above questions.

The rest of the paper is organized as follows: Section II
briefly introduces efforts in the naturalistic driving data col-
lection. Section III reviews several researches from the
UTDrive project aiming to evaluate and understand driv-
ing behavior, while a study of providing visual guidance to
the driver is presented in Section IV. Section V summaries
the paper with future study directions.

Il. DATASETS FOR DRIVER BEHAVIOR LEARNING
Naturalistic driving data are important and indispensable
resources for driver behavior learning and understand-
ing. Unlike other autonomous driving tasks (e.g., object
detection, vehicle tracking, trajectory prediction, etc.) that
have many well-annotated open-source datasets such as
KITTI [3], nuScenes [4], Argoverse [5], Waymo [6], Lyft
L5 [7] and BDD100K [8]. The number of datasets specif-
ically designed for driver behavior learning/understanding
is limited. To the best of the authors’ knowledge, there
is no clear definition of naturalistic driving data. A strict
definition of naturalistic driving data is that data should
be collected using participants’ familiar vehicles with sev-
eral cameras and sensors installed, which capture vehicle
maneuvers and driver behaviors in an unobtrusive style.
However, such data collection will be costly and time-
consuming to practice, as well as complex to coordinate.
Therefore, only a few datasets fit this definition such as
Strategic Highway Research Program 2 (SHRP 2) data [9],
100-car study data [10], and Candrive study data [11]. More
datasets will be in line with naturalistic driving data if we
define it in a more general way, in which the participants
were performing naturalistic driving and data were collected
using instrument vehicles. For example, the Brain4Cars [12]
dataset consists of natural driving videos with both inside
and outside views of the car, its speed, and the Global
Position System (GPS) coordinates collected by 10 drivers,
the Berkeley DeepDrive Video dataset (BDDV) [13] com-
prised of real driving videos and GPS/Inertial Measurement
Unit (IMU) data, the Honda Research Institute Driving
Dataset (HDD) [14] includes 104 hours of real human
driving in the San Francisco Bay Area collected using
an instrumented vehicle equipped with different sensors,
and the Drive&Act [15] dataset focused on driver behavior
recognition.

Collected by the Center for Robust Speech
Systems (CRSS) - UTDrive lab since 2006, The UTDrive
naturalistic driving dataset is under an international
collaboration to build a large-scale driving data corpus
that can be used for a wide range of research activities
related to driving behavior [2]. In total, more than
500 drivers have been collected in three different coun-
tries, using very similar data collection vehicles, sensors,
routes, and secondary tasks, which for the first time
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FIGURE 1. A generalized system framework for driving behavior classification.

would allow cross-continent-based comparisons of driver
distraction/behavior research advancements.

Studies of the UTDrive naturalistic driving dataset have
resulted in a large number of researches focused on driving
behavior learning and evaluation. Examples of such studies
from the UTDrive project will be reviewed in the following
section.

lll. UNDERSTANDING DRIVER BEHAVIOR AND
EVALUATE DRIVING PERFORMANCE FROM VEHICLE
DYNAMIC SIGNALS

Driving maneuvers are not only important components in
understanding driver behavior but also basic units of a com-
pleted driving session. Therefore, maneuver analysis is
essential when processing large amounts of naturalistic driv-
ing data. Understanding how and why these maneuvers are
performed can provide knowledge about how well the driver
controls the vehicle, how driving performance varies over
time, or the driver’s mental workload and status.

From the vehicle control’s perspective, a driver’s primary
physical contacts in the vehicle are the steering wheel and
gas/brake pedals. Any factors that may influence their driving
performance (e.g., distraction, driving experience, environ-
mental context, etc.) has a direct impact on body movements
which will then affect the control of the vehicle. Hence, one
typical approach for the development of ADAS is to identify
risky driving maneuvers by analyzing abrupt variations in
vehicle dynamic signals. Fig. 1 demonstrates a generalized
framework of the driving classification system. For every
driving session, maneuvers are first detected and identified.
Next, variations against normal patterns (i.e., neutral driving)
for each maneuver are calculated. These variations can be
utilized to classify the driver behavior (e.g., normal driving
vs distracted driving) or evaluate the driving performance.
Naturalistic driving data is preferred because it is impor-
tant to analyze driver’s driving maneuvers and reactions in
real-world traffic scenarios.

In the remaining of this section, five studies from the
UTDirive project will be introduced. Two of them are focused
on lane-change activity, the third one is exploring driving
event recognition using data collected from the smartphone,
followed by a driving performance analysis study based on
different levels of driving experience, vehicle familiarity, and
route familiarity. In the end, we present the latest effort on
improving our Mobile-UTDrive App functionality to support
real-time driver/driving behavior measurement and visualiza-
tion. Please note that only highlighted aspects of our studies
are introduced, we encourage readers to refer to our previous
paper [16], [17], [19], [41] for more detailed explanations.
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TABLE 1. Results of lane-change detection.

Predicted
Ground Truth Lcr LK LCR
Left Lane-Change (LCL) 80.36% 8.04% 11.61%
Lane Keeping (LK) 1.41% 91.90% 6.69%
Right Lane-Change (LCR) 6.04% 10.74% 83.22%

A. LANE-CHANGE DETECTION FROM STEERING
SIGNAL

Lane changing is an essential driving action that is exe-
cuted enormous times every day and has been one of the
most common reasons for accidents. The objective of this
study is to detect lane-change maneuvers using vehicle
dynamic signals (i.e., CAN-Bus) [16]. For studies related to
lane-change, most early efforts either focused on computer
vision algorithms to detect and track lane markings on the
road [20], [21], or employed LiDAR and map information
for sensor fusion. Curve estimation models [22] and lane
type classification [23] have been explored by utilizing
LiDAR signals along with images, which provide a better
contextual understanding of the road. Digital map data is
also be used to render virtual images and achieve lane-
level vehicle localization [24]. With the development of deep
learning models, many autonomous driving tasks have shown
great progress. Reference [25] reviewed recent lane-change
detection methods and reporting new results based on deep
learning.

The lane-change detection framework introduced in this
study is constructed by three stages: (1) data pre-processing
for noise reduction and subtraction of turning events,
(2) driving maneuver segmentation to divide a long driving
data into a sequence of time-variant events, and (3) lane-
change maneuver detection using a double-layered HMM
architecture.

The purpose of the pre-processing stage is to reduce the
effect of noise and to exclude turning events. Next, a time-
frequency spectral analysis approach (filterbank analysis) is
employed to segment driving maneuvers. The intuition is that
variations observed in the frequency domain of CAN-Bus
signals can help determine maneuver boundaries [26].

The overall lane-change detection framework is designed
as a double-layered HMM [27] architecture. The upper layer
will take the complete driving route and consecutive maneu-
vers into consideration, while the lower layer is focused
on the vehicle’s dynamical movements inside the individual
driving event. Two Gaussian HMMs, one for lane-change
detection and the other for lane-keeping detection respec-
tively, will be trained. During testing, the result with higher
possibilities will be treated as the detection result of each
incoming test segment at the lower layer. The upper layer
will then view this result as a hidden state to yield the state
sequence in a Discrete HMM as shown in Fig. 2.

Lane-change detection results using this proposed frame-
work are summarized in Table 1. Even with unbalanced
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FIGURE 3. Examples of various lane-change related events appeared in naturalistic
driving scenarios. (a) a typical lane-change event, (b) a swerve shift which is to avoid
obstacles on road, (c) a lane-drift event followed by a correction, (d) a lane-change
event on a curve road.

distributions in our data set, an 80.36% detection accu-
racy for left lane-change (LCL) and 83.22% for right
lane-change (LCR) was achieved. Most of the detection
failures happen when the vehicle speed is low and near
intersections, the reasonable explanation is that dynamic
characteristics extracted from CAN-Bus signal are not obvi-
ous in those scenarios, with additional feature sources (e.g.,
road information), the detect accuracy under such scenarios
are expected to be improved.

Although contextual information could be obtained and
fused from various sensors, the accurate detection of lane-
change maneuvers remains a challenging research problem.
Difficulties that limit the performance of lane-change detec-
tion in realistic driving scenarios could be the presence of
road curve, vehicle judder due to the road condition, or
fluctuation in drivers. As illustrated in Fig. 3, case (a) repre-
sents an example of a typical left lane-change (LCL) event.
In case (b) (i.e., avoidance lane-keeping), although appears
to be a lane-change event from vehicle dynamic data, the
vehicle is actually making a move to avoid obstacles on the
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FIGURE 4. Classifying short Lane Change (LC) video clips with transferred
segmentation masks as risky or safe. The average duration of these clips is ~ 10
seconds. 0.937 AUC score was achieved with the proposed method [17].

road. Case (c) usually happens when the driver is fatigued
or distracted, the vehicle will drift towards another lane fol-
lowed by a correction maneuver. In case (d), the driver may
perform a lane change while driving on a curve road, the
steering angle will hardly change in this case, making it
almost impossible to detect if using CAN-Bus signal alone.
Therefore, sensor fusion and multimodality detection under
such cases will be a valuable future research direction.

B. RISKY ACTION RECOGNITION IN LANE CHANGE
VIDEO CLIPS

In this work, we designed a deep spatiotemporal classi-
fication network that uses pre-trained state-of-the-art seg-
mentation network Mask R-CNN [28] as its spatial feature
extractor for classifying dangerous lane change behavior in
short video clips captured by a monocular camera [17]. The
results demonstrate the adaptive capabilities of deep learn-
ing, reinforce the claim that with the increasing availability
of pre-trained high-performance deep learning models, new
problems can be addressed without collecting extensive
dedicated datasets for them.

We proposed a novel framework for binary video classi-
fication in this work. First, masked images obtained by the
Mask R-CNN network were passed through convolutional
layers to extract abstract features from the contrasted com-
positions created by the masks. These high-level features
were then fed into Long Short-Term Memory (LSTM) cells
to depict temporal relationships. The intuition of using such
overlaid image as input is that a temporal composition with
highly contrasting elements can be more helpful to recog-
nize distinct elements. As shown in Fig. 4, the masked image
sequence relays a more striking version of the lane change
action than the raw sequence. Therefore, features extracted
from such images are expected to contain more information
to help detect risky lane-change maneuvers.

To evaluate the performance of our proposed framework,
a subset of the NUDrive [2] dataset consists of 860 lane
change video clips was used in the experiment. Ten anno-
tators were asked to watch the video clips and give a risk
level rate of each instance subjectively. Risk ratings were first
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normalized for each annotator, then, the normalized scores
were averaged to obtain a single score per lane change.
The riskiest 5% of the lane change instance was labeled as
risky while the rest was assumed to be safe. The final dis-
tribution is 43 to 817 for the positive and negative classes
respectively. More details of the experiments and different
frameworks tested can be found in [17].

The best evaluation result (0.937 AUC score) was obtained
with our proposed framework which used a Mask R-CNN
semantic mask extractor. We believe this result was because
of the masked-contrasted temporal compositions’ aptitude
for relaying semantic information. Our experiments also
demonstrate the adaptive capabilities of deep learning. With
the increasing availability of high-performance deep learn-
ing models, new problems can be tackled without collecting
huge datasets for them.

C. DRIVING EVENT RECOGNITION USING
FREE-POSITIONED PORTABLE DEVICE

There is a great influence on the automotive industry with the
rapid development of portable device applications. Various
sensors such as cameras, microphones, IMU (e.g., accelerom-
eter, gyroscope, etc.), and GPS are integrated into smart-
phones. Therefore, data collected and processed by such
sensors could be utilized to deliver a comprehensive descrip-
tion of driving scenarios. A lot of efforts have been made
to transfer portable devices to an alternative platform capa-
ble of naturalistic driving data collection [29], distraction
and drowsy alert [30], driver behavior analyzing [31], [32],
aggressive/dangerous driving detection [33], [34] or to pro-
vide auxiliary driving guidance [35]. Moreover, researchers
also employ such a device’s ability to connect to the
network, providing services like traffic notification [36],
remote diagnostics [37], [38], vehicle-to-vehicle (V2V)
communication [39], and other applications in intelligent
transportation system field [40].

In the past few years, the Mobile-UTDrive App designed
as a multi-modal data collection platform has been developed
by our lab, which is aiming to collect driver, vehicle, and
environmental context that describing the comprehensive
driving scenario. To demonstrate the potential mobile plat-
form advancements, a driving event recognition experiment
with our previous proposed data pre-processing framework,
which allows for a free-positioned device for onboard sensing
will be introduced [18], [41].

One challenge for in-vehicle sensing platform develop-
ment is the relative movements and orientation difference
when the smartphone is located inside the vehicle. Our
previous study [41] proposed a framework to overcome this
challenge. The first step is a geometry coordinate transfor-
mation step taking raw smartphone data as input. This step
will rotate/re-orientate the smartphone-referenced accelera-
tion data to the vehicle-referenced coordinate system. Since
the smartphone pose is unknown, it is difficult to determine
which axis is corresponded with the vehicle’s longitudinal,
lateral, or vertical movement. Therefore, an additional axis
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FIGURE 5. Inspired by the sequence-tagging problem in the NLP field, we adopted
the Bi-LSTM network for driving event reconnection. A sequence of vehicle dynamic
data from the mobile platform will repl the word embedding vector as the input,
and their word contextual representation output will correspond with our driving event
labels.

alignment step is performed by comparing the normalized
acceleration values and GPS speed and bearing derivatives,
with the assumption that vehicle vertical acceleration should
be close to the gravity (i.e., g = 9.8m/s). Next, we map the
interrelation of IMU and GPS data by a regression model.
An adaptively filtering process in the last step is adopted
to decouple the smartphone’s relative movement while in
the vehicle. For future applications, this framework could
be employed as a pre-processing module and provides the
starting point of succeeding data processing.

The pre-processed data are then used to divide and clas-
sify driving sequences into five groups: Lane-Keeping (LK),
Left Lane-Chang (LCL), Right Lane-Change (LCR), Left-
Turn (TNL), and Right-Turn (TNR). We treat our driving
event recognition task as to assign labels to each entity within
a sequence, which is similar to the sequence-tagging problem
in Natural Language Processing (NLP) field. Therefore, we
adopted a Bidirectional LSTM network [42], [43] illustrated
in Fig. 5. A sequence of vehicle dynamic data from the
mobile platform will replace the word embedding vector as
the input, and their word contextual representation output
will correspond with our driving event labels.

The long sequence driving data will first be segmented by
sliding through a fixed time window (e.g., 0.1 seconds). Next,
vehicle dynamic signals were concatenated to form the input
vector. Output labels were assigned to each frame for the
individual event. A total of 102 driving sequences were col-
lected for this experiment. Comparable recognition results
from Table 2 and Table 3 demonstrated the effectiveness
of this framework. Real-time processing and communica-
tion capability are under development for better sensing and
understanding of driver behavior.

D. DRIVING PERFORMANCE ANALYSIS AND
ASSESSMENT

Driving often involves four key steps: surrounding monitor-
ing, predicting, decision making and maneuver executing.
Many factors could affect these steps and influencing
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TABLE 2. Driving event recognition results using raw vehicle sensor data.

Crom d’ e‘f“ed LCL LK LCR TNL TNR
LK 4939%  2653%  1633%  122%  6.53%
LCL 5.12%  88.46%  641% 0 0
LCR 893%  893%  82.14% 0 0
TNL 2.77% 0 0 94.44%  2.78%
TNR 0 0 0 333%  96.67%

TABLE 3. Driving event recognition results using processed smartphone data.

o d’”‘f"’ed LCL LK LCR TNL TNR
LK 49.40%  32.93%  1124%  3.61%  281%
LCL 1046%  81.40%  6.98% 0 1.16%
LCR 179%  26.79%  71.43% 0 0
TNL 0 0 0 97.30%  2.70%
TNR 0 0 0 3.85%  96.15%

a driver’s driving performance and safety. Take the driv-
ing experience as an example, experienced drivers will have
a better capability in situation assessment or hazard percep-
tion, so that they could earn them enough reaction time by
predicting dangerous movements from surrounding environ-
ments in advance. Safety hazards could also be introduced
by not familiar with the vehicle. Drivers may have trou-
ble executing maneuvers in time-critical scenarios because
the throttle response is not as sensitive as the driver’s own
vehicle. Or the driver may have difficulty in some instrumen-
tation controls because the design and layout are different,
which could cause distracted driving.

In this study [19], to analyze how the driver experience
impacts their driving performance, a group of 20 subjects
participated in our experiment by drove the UTDrive instru-
mented vehicle. We divided our participants into two groups:
the novice driver group which has less than one year’s driv-
ing experience, and the experienced driver group possesses
an average of four years of driving experience.!

When trying to evaluate a driver’s driving performance, it
is very subjective because individuals have their own crite-
ria. Therefore, one typical approach is to identify the driving
event and then quantify if there is any deviation from the
expected or “neutral” behavior. We employed a clustering-
outlier detection grading method using the Support Vector
Machine (SVM) model with the assumption that an expe-
rienced driver should express a stable vehicle dynamical
data with low variance during normal driving sessions. In this
method, driving events sharing the most common character-
istics and classified in the innermost layer will be considered
as normal/safe events and labeled with grade “A”. Similarly,
risky driving events will be outliers and labeled with a poor
grade. We then calculate the “Grade Point Average (GPA)”
score to provide a performance overview of the driving

1. IRB 06-19 approved by the Office of Research Integrity and Outreach,
The University of Texas at Dallas.
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TABLE 4. Quantitative analysis results of driving performance.

Driver Forward  Turning Acceleration  Deceleration

Groups (FWD)  (TURN) (GAS) (BRK) Overall
GPA
Novice 3.432 3.413 3.033 2.943 3.247
Experienced 3.431 3.4256 3.115 3.001 3.280
Average Discrepancy Score
Novice 26.332 25.615 24.458 24.652 25.264
Experienced ~ 22.921 22.122 21.147 21.737 21.982

session. Additionally, feature vectors extracted from two
selected drivers’ data were utilized as a “good driver” base-
line to calculate the Euclidean distance between them and
every other driver as discrepancy scores. A small discrep-
ancy score implies that the subject behaves close to the
experienced driver baseline, thus reflect a better driving
performance.

Quantitative grading results are summarized in Table 4.
A 10.16% GPA score gap between the two driver groups
was observed. Both overall GPA score and discrepancy score
suggested that the experienced driver group performs better
when environmental conditions and vehicle familiarity are
close. More experiments details and results were discussed
in the original paper [19]. In this study, the ability to ana-
lyze and assess driving performance using vehicle dynamic
data was demonstrated. For the next step, it would be worth-
while to refine baselines with a large amount of naturalistic
driving data collected in different scenarios and test this in
field operations to improve performance for future intelligent
vehicle advancements.

E. ENHANCING MOBILE-UTDRIVE APP CAPACITY FOR
ONBOARD DRIVER ASSESSMENT

One limitation of our previously developed Mobile-UTDrive
App is the lack of real-time driving behavior analysis
and visualization functions. Therefore, it can only serve as
a mobile multi-modal data collection platform. Collected
data have to be examined offline to provide driving behavior
information.

The goal of this work is to expand the Mobile-UTDrive
App’s functionality to support real-time driver/driving behav-
ior measurement and visualization. Parameters used to
describe driving behavior in the current stage are speed,
acceleration and deceleration obtained from smartphone sen-
sors. We define the neutral state as drivers drive in a relatively
conservative manner where no abnormal driving behavior is
detected. Warning/moderate state is a transition state, which
means drivers still drive under the limits, however, it should
get some attention to monitor if the driving behavior will
break through the limits. An aggressive state means aggres-
sive or risky driving behavior is detected. The nearby traffic
and pedestrians should be noticed. Based on our previous
experiences, we set the evaluation interval as 1 second
and acceleration/deceleration thresholds as 1 m/s?, 2 m/s?
and 4 m/s*, which are corresponding to abovementioned
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FIGURE 6. Driving sessions are categorized into neutral, warning/moderate, and
aggressive states based on pre-defined acceleration thresholds.
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FIGURE 7. Screenshot of the driving behavior visualization from one field test.
Green segments indicate neutral driving state, yellow and red correspond to
warning/moderate and aggressive/risky driving states.

driving states. The driving performance score is also cal-
culated using our previous algorithm. After each driving
session, users could easily access the results in their devices.
Fig. 6 and Fig. 7 illustrate the categorized driving states and
visualization from one field test.

We believe this can provide users a straightforward under-
standing of their instantaneous state of driving behavior in
detail. Typically, a neutral driving state can occur more than
80% of a driving session, while the remaining portions may
result in crash or near-crash events. Therefore, the future
direction of this study is to explore more accurate (e.g.,
deep learning-based, personalized) driver behavior prediction
models, and implement them in our Mobile-UTDrive App to
act as a virtual co-pilot to help reduce near-crash and crash
events.

IV. ESTABLISHING DRIVER VISUAL GUIDANCE FOR
IMPROVED SAFETY AND EFFICIENCY

After the intelligent vehicle or the cloud system predicted
future risky maneuvers (e.g., aggressive/distracted driving) of
neighboring vehicles or the ego-vehicle itself from learned
driver behavior models, it is important to deliver warning
or guidance information to drivers for safe and efficient
driving. To achieve this goal, Augmented Reality (AR) with
Head-Up Displays (HUDs) has attracted attention in the field
of automotive research. Such AR-HUD systems have been
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FIGURE 8. Multi-lane highway simulation environment built in Unity, where the
furthest red vehicle is our ego-vehicle.

studied to supporting driver visual guidance or providing
lane-level guidance services [44], [45], [46], [47]. One of
our previous efforts trying to fusion vision and cloud data to
display surrounding vehicles’ lane-change probability will be
briefly introduced in this section.

In this study [48], we assume that every vehicle in
the driving scene has access to the Internet. The cloud
system will run a lane-change prediction model based on
data received from connected vehicles and the ego-vehicle
is equipped with both RGB and depth camera. However,
a key research issue is how to correctly overlay the cloud
information received through the vehicle-to-cloud (V2C)
communication onto the correct target vehicle. From a sec-
ondary viewpoint, one would also need to consider the ego
vehicle’s perspective, which motivates a second question on
how to identify the target vehicle whose information has
been shared [49].

Four key modules are included in our proposed architec-
ture. The coordinate transformation module and the object
detection module will output the target vehicle anchor point
and bounding boxes information regarding target vehicles.
The depth evaluation module will provide additional dis-
tance knowledge when necessary. This knowledge will assist
the distance matching module to identify the correct target
vehicle. Finally, predicted information from the cloud will
be visualized to provide driver guidance. Details of each
module are presented in [48].

We adopted the Unity game engine [50] to conduct
modeling and evaluation of the proposed data fusion system,
given its strengths in visualization, graphics design, as well
as external joystick (i.e., driving simulator) integration. In
the simulation, a multi-lane highway environment is built in
Unity, illustrated in Fig. 8. An accident scene is designed in
this environment, where two stopped trucks occupy the two
right lanes (along their forward direction). When vehicles
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are approaching this accident zone, some of them might
make left lane change actions to avoid a potential colli-
sion, and in turn create conflicts to the motion trajectory of
the ego-vehicle (the furthest red vehicle). The lane change
prediction model running on the cloud is therefore supposed
to provide prediction information to the ego-vehicle’s driver.
An Augmented Reality (AR)-based information visualization
approach is implemented in Unity to display the predicted
lane change probability to the driver as a head-up display
of the ego-vehicle.

We compared both scenarios (with and without the use of
the proposed system) in terms of driving safety and comfort
in the Human-in-the-Loop (HITL) simulation experiment.
Three different measurement factors are compared in both
scenarios: 1) average time-to-collision (TTC) between the
ego-vehicle and the lane-change vehicle, 2) average absolute
acceleration of the ego-vehicle, and 3) maximum jerk of the
ego-vehicle during the trip. We observed a notable increase in
average TTC value after implementing the proposed model.
The increase of 30.31% means the driver of the ego-vehicle
tended to keep further away from the lane-change vehicle
when the visual guidance was provided. It is suggested that
a larger TTC value can induce safer driving performance, and
prevent potential rear-end collisions in such emergencies.

We also noticed that the average absolute acceleration
decreases from 2.57 m/s? to 2.07 m/s” after the proposed
vision-cloud data fusion model is implemented/deployed, as
well as a decrease of 10.54% in the maximum jerk value.

Indicating that the proposed model can introduce a more
comfortable and smooth driving/riding experience for the
driver/passengers.

V. DISCUSSION AND CONCLUSION
The CRSS-UTDrive Lab has focused our researches on nat-
uralistic driving studies with the motivation of contributing
to improved intelligent driver-vehicle systems and the goal
of driver behavior understanding from multiple modalities.
In this article, we have reviewed several previous studies
from the UTDrive project trying to address aforementioned
research questions. Which are (i) how can we acquire suf-
ficient data, (ii) how to evaluate and understand driving
behavior, and (iii) how to deliver information effectively
to drivers without introducing added distraction. We believe
these studies, along with the fast-growing smartphone appli-
cations and cloud-connected services, would not only be
able to help with the understanding of the driving sce-
nario, driving performance variance, and drivers’ mental
conditions, but also help to establish a safe and efficient intel-
ligent transportation system by utilizing information shared
via vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communications.

There are great progressives of vehicle technologies with
a substantial amount and scope of research/development car-
ried by researchers and manufacturers. Vehicle technologies
and vehicle driving autonomy will keep developing as we
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move forward into the next generation of intelligent vehicles
and intelligent transportation systems. Next-generation intel-
ligent vehicles will play a more significant role in a collab-
orative driver-vehicle engagement environment. Therefore,
modeling and understanding of driver behavior, vehicle
interaction, and the influence of environmental context from
a large amount of naturalistic driving data reaming a key
element to ensure safe driving.
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