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ABSTRACT Professional drivers are required to safely transport passengers and/or properties of customers
to their destinations, so they must keep being mentally and physically healthy. Health problems will largely
affect driving performance and sometimes cause loss of consciousness, which results in injury, death,
and heavy compensation. Conventional systems can detect the loss of consciousness or urgently stop the
vehicle to prevent accidents, but detection of symptoms of diseases and providing support before the
driver loses consciousness is more reasonable. It is challenging to earlier detect symptoms with high
confidence. Toward solving these problems, we propose a new method with a multi-sensor based driver
monitoring system to detect cues of symptoms quickly and a verbal interaction system to confirm the
internal state of the driver based on the monitoring results to reduce false positives. There is almost no
data that records abnormal conditions while driving and tests with unhealthy participants are dangerous and
ethically unacceptable, so we developed a system with pseudo-symptom data and did outlier detection only
with normal driving data. From data collection experiments, we defined the confidence level derived from
cue signs. The results of evaluation experiments showed that the proposed system worked well in pseudo
headache and drowsiness detection scenarios. We found that signs of drowsiness varied with individual
drivers, so the multi-sensor based driver monitoring system was proved to be effective. Moreover, we
found that there were individual differences in how the cue signs appeared, so we can propose an online
re-training method to make the system adapt to individual drivers.

INDEX TERMS Symptom detection system, health-related accident prevention, human factors, multi-
sensor systems, road safety.

I. INTRODUCTION

DRIVER’S health problems can drastically decrease driv-
ing performance and increase accident risk. On Oct. 20,

2020, in the United States, a school bus driver suffered a stroke
while driving and caused a crush, resulting in two children

The review of this article was arranged by Associate Editor
Emmanouil Chaniotakis.

were injured. On Jan. 4, 2021, in Japan, a taxi driver suffered
a stroke while driving and plunged into a pedestrian crossing,
then one died and five were seriously injured. Professional
drivers, who engage to drive buses, trucks, and taxis, play an
important role in safely transporting passengers and properties
of customers to their destinations, so health is important for
the drivers to keep driving safely. The ministry of land, infras-
tructure, transport, and tourism (MLIT) of Japan [1] reports
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that hundreds of health-related accidents occur in transport
industry every year in Japan and that number is increasing year
by year. Obstructive Sleep Apnea Syndrome (OSAS), which
is deeply influenced by lifestyle-related diseases, recently
became a fatal public health problem. Previous studies have
indicated that patients with OSAS are at an increased risk
of vehicle accident since OSAS degrades the overall sleep
quality, which causes daytime sleepiness [2]. Moreover, cere-
brovascular and cardiovascular diseases occupied more than
60% of the diseases that caused the death of the drivers in
the past ten years in Japan [1]. Also, in other countries, many
cases of cerebrovascular and cardiovascular caused traffic
accidents were reported [3]–[5].
Toward prevention of health-related accidents, companies

in the transport industry and MLIT are seeking effective
ways to achieve the following possible solutions [6].
1) Encourage drivers to keep a healthy condition outside

working hours to reduce the risk of infection.
2) Conduct regular medical examinations to manage

drivers’ health and employment.
3) Check drivers’ health and confirm if the driver is ready

to work in the roll call before driving.
4) Handle problems when the driver suffers from some

health problem while driving.
For solution (a), work environment and drivers’ lifestyle

greatly affects drivers’ health condition, so company admin-
istrators make effort to improve the work environment such
as reducing overwork and provide advice and support for the
drivers’ health management, including diet, sleep, and exer-
cise. For solution (b), screening test and medical opinions
can effectively reduce the risk of health-related accidents.
Company administrators manage drivers’ working time based
on the result of the health examination. For solution (c),
company administrators check drivers’ health state by their
voice and complexion and so on during the roll call just
before starting to drive. Here, solution (d) can be an impor-
tant one to deal with the onset of diseases while driving,
which is basically difficult to predict and prevent. However,
there are still no effective methods for the solution (d).
Several systems are currently adopted to detect driver’s
‘loss of consciousness’ while driving. DriverKarte [7] mon-
itors driver’s face and gaze direction while driving to
estimate if the driver has lost consciousness and fell. In
addition, recent vehicles are equipped with autonomous
brake systems to avoid vehicle collisions. These support-
ive systems would be useful to avoid or reduce the damage
of accidents, but its detection time when the driver becomes
incapable of driving is ‘too late’ to satisfactorily prevent the
accidents.
In most cases, some ‘symptoms’ of diseases would appear

before drivers lose consciousness. Table 1 lists the symptoms,
which are medically recognized, of cerebrovascular diseases,
cardiovascular diseases, and OSAS. As stated above, fatal
accidents are mostly caused by the cerebrovascular and car-
diovascular diseases and OSAS had increased accident risks,
so we focus on the above three diseases in this study. The

TABLE 1. Symptoms of diseases.

FIGURE 1. Confidence level and proposed system.

America Stroke Association (ASA) lists five main categories
of stroke symptoms [8]: (i) sudden numbness or weakness
of face, arm, or leg, especially on one side of the body, (ii)
sudden confusion, trouble speaking or understanding speech,
(iii) sudden trouble seeing in one or both eyes, (iv) sudden
trouble walking, dizziness, loss of balance or coordination,
(v) sudden severe headache with no known cause. In [9],
key symptoms of heart attack were revealed as chest pain or
discomfort. Furthermore, symptoms of OSAS include exces-
sive daytime sleepiness, fatigue, impaired cognition and so
on [10]. Basically, it is desirable that drivers recognize symp-
toms and understand problems in their health condition, then
stop driving by themselves. However, symptoms are apt
to appear suddenly and disappear immediately, so drivers
do not recognize them or regard them as nothing serious.
Moreover, the mission of transportation may make some
professional drivers ignore the symptoms and/or endure the
ache. Therefore, a symptom detection system can help drivers
to recognize their health problem and provide support before
the health condition gets worse.
Note that, as shown in Fig. 1, the relationship between

‘estimation timing,’ a timing when the system tries to detect
symptoms, and ‘confidence level,’ accuracy of the symp-
toms which the system detected, is a trade-off. It is not
difficult to judge if a driver has lost consciousness. We
might predict the onset of disease from detected symptoms
before loss of consciousness, but its accuracy is not guar-
anteed because such symptoms have large variations with
individuals. Toward the above problems, the purpose of
this study is to develop a system that detects symptoms
before loss of consciousness with a high confidence level.
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The proposed symptom detection system has two practi-
cal subsystems; the multi-sensor based driver monitoring
system and verbal interaction system. Conventional mon-
itoring systems focus on monitoring driver’s drowsiness,
cognitive burden, and situational awareness [11]–[13]. On
the other hand, the proposed system focuses on evaluating
driver’s health state. The multi-sensor based driver monitor-
ing system could detect symptoms quickly by monitoring the
driver’s face, body posture, physiological data, and driving
maneuver. The verbal interaction system could reduce false
positives by asking drivers whether or not they have any
symptoms?
The original contribution of this paper is as follows. We

present a multi-sensor based monitoring system to quickly
detect symptoms and a verbal interaction system to reduce
false positives. We develop such a system using only pseudo-
symptom data and normal driving data due to the lack of
abnormal data. We also define cue signs by referring to
symptoms of cerebrovascular disease, cardiovascular disease,
and SAS, which are the major diseases causing health-related
accidents. We then define the confidence level by using
detected cue signs to determine how to interact with the
driver. We finally confirm from the evaluation experiments
that the monitoring and verbal interaction system worked
effectively. Extending [14], we improve the accuracy of the
posture and eyes-state classification systems by selecting
optimal pre-trained models and increasing the amount of
data. Moreover, we analyze the effectiveness of the multi-
sensor system over a single-sensor system and evaluate
drivers’ mental demand to discuss if the verbal interaction
system interferes with driving tasks or not. From the results,
we found that different drivers showed different cue signs
of drowsiness, so the multi-sensor based driver monitoring
system is effective, and that the verbal interaction system
could increase drivers mental demand when the driver is at
an abnormal state, but the increased mental demand would
offer a positive effect such as making the drivers to be aware
of their abnormality. Finally, we provide insight of online
re-training method to further improve the confidence level
in symptom detection.
The rest of this paper organized as follows; Section II

provides the related works. The proposed system is described
in Section III. Sections IV and V show the experiments and
results. Section VI provides further analysis of proposed
system. Finally, conclusions are provided in Section VII.

II. RELATED WORKS
In this section, we analyze conventional studies on health-
related vehicle accident prevention systems.

A. MONITORING
Generally, a screening test is useful to detect potential health
disorders or diseases for peoples who do not have any
symptoms yet, including several detailed and invasive exam-
inations such as a blood test and X-ray examination, which

are difficult to be installed inside vehicles. Recent develop-
ment of in-cabin sensor technologies has enabled to measure
the driving environment and driver behavior on a large
scale. For example, ‘100-Car Naturalistic Driving Study’
uses cameras and many vehicle state and kinematic sen-
sors to collect large-scale and naturalistic driving data [15].
Previous studies have revealed that a system with multiple
sensors has several advantages including improving signal to
noise ratio, reducing ambiguity and uncertainty, and increas-
ing confidence and robustness against interference [16].
In [17], a multi-sensor system consisting of camera, depth
sensor, and radar was developed for driver’s hand-gesture
recognition. In [18], multiple on-board sensors, including
ocular sensor, performance sensor, and clock, were developed
for driver drowsiness detection. As for health monitoring,
multiple sensors were used together for measuring physi-
ological information [16], [19]. The physiological data is
useful for monitoring driver’s health condition. However,
the symptoms of diseases do not always appear in physio-
logical data. For example, symptoms of stroke often appear
even in a normal blood pressure states [20]. On the other
hand, most of the symptoms listed in Table 1 are accompa-
nied by pain, paralysis, and others, which will cause physical
movement of body. For example, drivers may massage their
head and lean their body forward when they have headache.
Thus, body movement could be an important information for
the detection. Moreover, bad health conditions would affect
driving performance [21] and cause depression of driver’s
physical and cognitive functions and unstable maneuvers or
none of maneuvers. Thus, driving maneuvers also could be
important for detecting symptoms. To reduce the omission
of detection, a multi-sensor based monitoring system, which
could monitor not only physiological information but also
body movement and driving maneuvers, is required.

B. INTERACTION
The advantage of the monitoring system is to observe the
driver non-invasively, so there is no burden on the driver.
Moreover, it can monitor continuously for a long time, so it
can quickly detect symptoms at any time. On the other hand,
a bi-direction interaction will help to increase the confidence
level. There are two kinds of interaction, which are physi-
cal and verbal interaction. One famous example of physical
interaction is FAST, i.e., face drooping, arm weakness,
speech, and time to call 9-1-1 [22]. If a driver could not per-
form the FAST successfully, it is high probability that he/she
has stroke. However, it is dangerous to perform non-driving
related tasks while driving. As stated in the previous section,
driving performance is affected by health condition, so we
here assume the driving maneuvers as physical interaction.
As for verbal interaction, medical doctors often use interview
as the primary way of obtaining comprehensive information
about a patient [23]. In addition, a communication robot esti-
mates user’s health condition from body temperature, blood
pressure, weight, and interview responses, to support the
users [24]. As for driving situation, as the solution (b) stated
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TABLE 2. Symptoms and cue signs.

in Section I, before driving, managers can measure driver’s
physiological information and ask some questions about the
driver’s health state based on the physiological information.
Moreover, as a kind of hand-free interface, verbal-based
human-machine interfaces are introduced to modern intel-
ligent vehicles. In [25], voice alert systems were designed
as the most effective form of alert in conveying information
to the driver while driving. In [26], a navigation dialogue
system was proposed so that drivers could tell the system
the destination while driving. In addition to the monitoring
system, we propose a verbal interaction system to improve
the system confidence by reducing false positives of the
monitoring system.

III. SYMPTOM DETECTION SYSTEM
A. REQUIRED WORKS
As stated in the previous section, when a driver feels
a headache, which is a symptom of stroke, the driver may
massage his/her head. Then the headache may fasten heart-
beat (tachycardia) and raise blood pressure, and the driver
could become unable to drive the vehicle as usual. These
phenomena can be cue signs of headache (symptom). Table 2
lists these and other considerable cue signs. For example,
a driver may hold his/her chest when he/she has heart pain,
or the driver hangs one hand when he/she has hemiple-
gia. Sleepiness state will make a driver close his/her eyes
for a long time, increase the blink period, and slow heart
rate (bradycardia) [27], so ‘eyes closed’ and ‘bradycardia’
can be cue signs of sleepiness. These cue signs could be
an indicator to estimate symptoms, so a monitoring system
is required to detect these cue signs. Moreover, a verbal
interaction that comprehends drivers’ state could improve
the system confidence by reducing the false positives of
the monitoring system. Here, the timing and context of the
interaction is important. If the system just repeats the verbal
interaction at a certain time interval, without regard for the
driver’s state, drivers will find it annoying and ignore it.
Thus, the verbal interaction system should adequately inter-
act with drivers based on the results of monitoring. From
the above analyses, as Fig. 2 shows, the proposed symp-
tom detection system is required to have the following two
functions.

FIGURE 2. Symptom detection system.

FIGURE 3. Driving simulator with monitoring and verbal interaction system.

• Multi-sensor based driver monitoring system. It mon-
itors not only the driver’s physiological data but also
posture, facial data, and driving maneuver data.

• Verbal interaction system. To obtain internal state of
drivers with higher confidence level, it communicates
by speech with the drivers based on the result of
monitoring.

B. OVERVIEW OF METHODOLOGY
In this paper, we develop and evaluate a fundamental frame-
work with multi-sensor based driver monitoring and verbal
interaction systems, but the framework does not cover all
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FIGURE 4. Feature values extracted from driver’s posture.

considerable symptoms such as blood pressure and unsta-
ble maneuver due to a very preliminary study on symptom
detection. The multi-sensor based monitoring system cap-
tures drivers’ body and face, and measures the heart pulse
and steering angle as system inputs. If cue signs are detected,
the system will calculate the confidence level, and verbal
interaction will be triggered based on it.

C. DATA SAMPLE
Anomaly detection systems generally need an enormous
quantity of data in both normal and abnormal behaviors
to define a boundary to classify them. However, collecting
abnormal data in this study is very challenging. There is
almost no data that records health-related accidents. Not all
vehicles are equipped with devices to monitor the driver’s
condition, so only little health-related accidents are recorded.
In recent years, personal data is strictly protected, so it is dif-
ficult to access the recorded data of health-related accidents.
Thus, we propose to create pseudo-symptom database for
developing and evaluating a cue sign detection system and
conducted outlier detection only with normal data. To make
the pseudo-symptom database, in exps-1 and 3 (explained
later), we asked healthy persons to feign symptoms (e.g.,
headache). In connection with this, we used a driving simu-
lator to observe driver’s behavior and tested the effectiveness
of developed systems. Toward future experiments with pro-
fessional drivers in a real environment, in this study, we
performed fundamental experiments with general drivers
in a simulated environment. The simulator was developed
using Unity (details are described in [28]). The simulator
included four screens to display the virtual driving environ-
ment, a rearview mirror, a steering wheel, pedals, a real
driver seat, two red-green-blue (RGB) cameras for driver
monitoring, and a microphone for driver’s speech input, as
shown in Fig. 3. One RGB camera for capturing body pos-
ture was attached on the upper right of the middle screen
and the other RGB sensor for capturing face was attached
in front of the driver seat.

D. CUE SIGN DETECTION
We focused on seven cue signs in this study: (a) massage
head, (b) hold chest, (c) one-hand hang, (d) eyes closed,
(e) tachycardia, (f) bradycardia, and (g) non maneuver.

FIGURE 5. Algorithm of k-NN, the test data will be classified to Normal when k = 3,
and Cue sign B when k = 6.

1) Body posture: We developed a posture classification
system to estimate driver’s upper body posture. A RGB sen-
sor was attached on the upper right of the middle screen,
as shown in Fig. 3, to capture the driver’s upper body. We
adopted OpenPose [29], which is a software library for real
time detecting the key-points of the human body, hand, face,
and foot from a single image. There are several pre-trained
models in OpenPose. Compared with our previous study, we
have changed the ‘mobilenet_thin model’ to the ‘cmu model’
which has a better benchmark in accuracy [30]. The system
detects seven skeletons (eight key-points) of driver’s upper
body and classifies body postures according to closest train-
ing examples in the feature space by using k-nearest neighbor
(k-NN), which is an easy-to-implement supervised machine
learning method. The system calculates the product of the
length and angle of each skeleton as feature points, as shown
in Fig. 4. The system measures the distance between the test
data and each training data based on Euclidean distance d,
which was given by

d =
√
√
√
√

7
∑

i=1

(

Lt,iθt,i − Ls,iθs,i
)2

, (1)

where Lt,i and θt,i are the i th joint’s length and angle
of test data and Ls,i and θs,i are the ones of training
data, as shown in Fig. 5. There are four classes of posture,
including normal, massage head, hold chest, and one-hand
hang. We conducted an experiment to collect training data.
We asked participants to provide the four kinds of posture
by imagining when they have the symptoms. The details
of data collection and system evaluation are described in
Sections IV and V.
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FIGURE 6. Architecture of eyes state classification system.

2) Eyes state: We developed an eyes-state classification
system to estimate if driver’s eyes are open or closed. The
system structure is shown in Fig. 6. A RGB sensor was
attached in the front of the driver seat, as shown in Fig. 3, to
capture the driver’s face. We adopted a convolutional neural
network (CNN) to estimate each eye state. A transfer learn-
ing method was introduced because it could achieve high
accuracy with a bit of learning. The eyes-state classification
task is simple (only two classes) but required real-time pro-
cessing, so a pre-trained network with fast processing speed
is required. Thus, we chose AlexNet [31] which has less
layers so that it could run fast. Furthermore, the input is
drivers’ eyes region which is extracted by Dlib library [32]
and reshaped with pixel size of 227×227. The last three
fully connected layer’s unit was set as 4096, 4096, and 2,
respectively. The two classes of output are open and closed.
Here, a dropout layer was implemented in the fully con-
nected layer to prevent the system from overfitting. We
performed experiments to obtain training data in the same
process as developing the posture classification system. The
details of data collection and system evaluation are described
in Sections IV and V.

3) Heart rate: The system measures driver’s heart pulse
by using an ear-mounted pulse sensor, as shown in the right
side of Fig. 3. Heart rate variability are often quantified by
using R–R interval, which is the time elapsed between two
successive heartbeats on the electrocardiogram. The heart
rate HR (beats/min) can be derived by dividing 60 s into
R–R interval. According to [33], HR always varies ±10%
from the mean value even in a resting state. Thus, the system
classifies the HR into three classes (normal, tachycardia, and
bradycardia) with a margin, and which is given as

⎧

⎨

⎩

Normal, if HRmean × 0.9 ≤ HR(t) ≤ HRmean × 1.1
Tachycardia, if HR(t) > HRmean × 1.1
Bradycardia, if HR(t) < HRmean × 0.9

,(2)

where HRmean means the mean heart rate when a driver
is relaxing and HR(t) means the driver’s heart rate of
at time t.

4) Vehicle maneuver: The system detects if drivers maneu-
ver the vehicle or not. ‘Non-maneuver’ can be easily detected
from the angle of steering wheel. If there is no input of
steering, the system identifies the state as non-maneuver,
and otherwise, the state as maneuver.

FIGURE 7. Gaussian distribution and confidence level (CL).

E. CONFIDENCE LEVEL (CL) CALCULATION
Drivers sometimes express cue signs about body posture
even when they are in a normal state. For example, they rub
their head when their head is itchy. Distinguishing itchy head
from headache is a challenging task. Headache, hemiplegia,
and other symptoms often continue for tens of minutes, so
we adopted the duration time for distinguishing them. We
thus proposed a confidence level (CL) that is calculated from
cue sign data including the type, duration time, and period.
In general, there are three types of anomaly detection

methods: ‘supervised anomaly detection,’ ‘semi-supervised
anomaly detection,’ and ‘unsupervised anomaly detection.’
The ‘supervised one’ and ‘semi-supervised one’ require
a labeled data set which includes both normal and abnormal
data. On the other hand, many studies [34], [35] rely on the
‘unsupervised one’ because it works with unlabeled data set.
When most of the instances in the data set are normal, it can
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FIGURE 8. Flowchart of monitoring and verbal interaction systems.

detect anomalies by just checking how much a data devi-
ates from the normal region. As stated in Section III, due
to the difficulty of collecting symptom data, we chose the
‘unsupervised one.’ There are several types in unsupervised
anomaly detection: (a) one for data following a normal dis-
tribution, e.g., Hotelling’s T2 statistic [36] and Mahalanobis
Taguchi system, and (b) the other for data not follow-
ing a normal distribution, e.g., k-means clustering, local
outlier factor, and isolation forests. The (b) needs to man-
ually define a threshold, so we chose the (a) to achieve
a more objective system. The Hotelling’s T2 statistic is
used for univariate data and the Mahalanobis-Taguchi system
is for multivariate data. To perform verbal interaction, the
system needs to understand which features are abnormal,
so a univariate analysis is required to explore each feature
in the data set, separately. From the above, we designed
the CL calculation formulas based on the Hotelling’s T2
statistic.
We first conducted experiments to investigate how the

cue signs appear while normal driving. We then made
a Gaussian distribution of the duration time and period of
each detected cue sign, on the basis of the probability density
function f .

f (x, μ, σ ) = 1√
2πσ

e
− (x−μ)2

2σ2 , (3)

μ = (

match
∑

x
)

/n, σ=
√

∑

(x− μ)2/(n− 1), (4)

where
∑

x means the sum of duration time T or period P,
n means the number of detection of each cue sign, and μ

and σ means the mean and standard deviation of T or P,
respectively. Examples of distribution is shown in Fig. 7.
A mean of the ±2σ region (95.45%) was set as a normal
region. CL is set to 0 when a value is just the same as the
mean and is set to 50 when a value is just +2σ or −2σ ,
as shown in Fig. 7 (a). When −2σ is smaller than zero, the
normal region is set to from 0 to 2σ , as shown in Fig. 7 (b).
As state above, headache, hemiplegia, and other symptoms

often continue for tens of minutes, so we assume that the cue
signs will appear at a longer time and higher frequency than
those when the driver is in a normal state. Thus, when T
comes to be longer or P comes to be shorter than the normal
range, CL will increase more than 50 and the system judges
that the driver has a symptom.
By using T , P, and the mean duration time Tmean and

period Pmean at the distribution, CL from duration time CLt
and period CLp are given by

{

CLt,i = kt,i × (Ti − Tmean,i), if Ti > Tmean,i
CLp,i = kp,i × (Pmean,i − Pi), if Pi < Pmean,i

, (5)

where kt and kp are the coefficient and i is the type of cue
sign. Each k can be calculated by substituting CL = 50 and
T=T2σ or P=P2σ in (5), and is given by

{

ki,t = 50/(T2σ,i − Tmean,i)
ki,p = 50/(Pmean,i − P−2σ,i)

, (6)

where T2σ and P−2σ mean the duration time and period at
the +2σ and −2σ point. Finally, the system should intervene
if one of the CL s exceeds 50, so the system derives the
maximum value as the final confidence level CL as

CL = max
(

CLi,t ∪ CLi,p
)

. (7)

Note that the CL calculation method for ‘eyes closed’
differs from the above method. Compared with our previous
study, we reconsidered the special characteristics of ‘eyes
closed’ and redesigned its CL calculation method. As defined
above, if the period of a cue sign is shorter than the normal
region, it will be estimated as a symptom. But in the case
of ‘eyes closed,’ humans sometime blink twice rapidly at
less than 1 second, even when they are in a normal state.
On the other hand, humans will repeat blink rapidly more
than three times in 1–2 seconds, called blink burst, when
they are drowsy [37]. In this study, a rapid twice blink
will be estimated as normal, but a repeated rapid blink, i.e.,
more than three time, will be estimated as a symptom, e.g.,
sleepiness.

F. VERBAL INTERACTION SYSTEM
When the system detects a fallen state or long-time eyes
closed state, it can definitely recognize that the situa-
tion is dangerous, so the system must immediately make
CL higher and intervene vehicle control, e.g., performing
emergency braking, to prevent accident. However, when
CL is a medium level (lower than dangerous but higher
than normal), the system should ask the driver to respond
his/her conditions by performing verbal interaction, to
judge if CL should be higher or lower. The system’s
speech was prepared in advance as WAV files. The speech
recognition part was developed by using Google Speech
Recognition API [38], Fig. 8 shows the flowchart of mon-
itoring and verbal interaction with three states according to
CL score.
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1) Normal state: When CL is low (CL < 50), the system
defines the state as normal and continues monitoring the
driver.
2) Cautious state: When CL is reasonably high (50 ≤ CL

< 100), the system defines the state as cautious and performs
verbal interaction. For example, when the system detected
‘massage head,’ it would ask the driver ‘Are you OK? Do
you feel headache?’ If the driver responds ‘No,’ the system
finishes verbal interaction and continues monitoring. If the
driver responds ‘Yes,’ the system induces the driver to stop
driving while navigating the vehicle the nearest parkable
area. If there was no response from the driver within a certain
time, the system beeps for confirmation. We set the time as
3.7 s by taking into consideration that the driver might not
have heard the system’s voice. If there was even no response
within a different certain time (0.8 s), the system judges that
the driver is in an extremely dangerous state and performs
emergency braking. We chose 3.7 and 0.8 s by reference to
necessary time for responding to information and warning
reported by MLIT [39].
3) Dangerous state: When CL is sufficiently high (CL

≥ 100), the system defines the state as dangerous, which
means that it can definitively recognize the driver as in immi-
nent danger. Therefore, the system immediately performs
emergency braking to avoid vehicle collisions.

IV. EXPERIMENT
We describe about three experiments including the scenarios
of experiments, data acquisition, participants, and experi-
mental procedures. Compared with our previous study, we
have increased the number of participants and evaluated the
system by detecting pseudo-symptoms.

A. SCENARIOS
1) Experiment 1: The aim was to obtain training data for
developing body posture and eyes-state classification
systems. Participants were asked to drive in a straight high-
way and perform three kinds of body posture including
massage head, hold chest, and one-hand hang once with
each hand. While the experiment, their eyes movement were
also recorded.
2) Experiment 2: The aim was to observe how cue signs

appear while normal driving and calculate the distribution
of the duration time and period of each kind of cue sign.
Participants were asked to drive in a straight highway while
obeying traffic rules. Driving time was one hour. To obtain
data only during normal driving, we manually removed
data that participants looks sleepy or had dangerous maneu-
vers. The system monitors participants’ body movement,
eyes movement, heart pulse, and steering angle to detect
cue signs.
3) Experiment 3: The aim was to test the proposed symp-

toms detection system. Again, it is very challenging to
evaluate the system which targets unhealthy people. For
a drowsiness detection system, it is possible to ask par-
ticipants to drive with the driving simulator for a long time

in very morning to make the participants sleepy [40]. For
an alcohol detection system, it is possible to ask participants
to drink alcohol and then drive on an empty road [41].
However, it is ethically unacceptable to make participants’
health abnormal like headache and hemiplegia since these
symptoms are life-threatening or will leave after-effects with
a high probability. In this study, instead of evaluation of
real symptoms detection, we only tested whether the system
works as designed by detecting pseudo-symptoms. Here, we
targeted the sudden headache, which is a symptom of stroke.
To evaluate the system, we only asked participants to feign
a sudden headache but did not tell them how to feign it.
Participants were asked to drive for more than five minutes
at first, and then feign a headache at any time.

B. EXPERIMENTAL SETUP AND CONDITIONS
1) Data acquirement: Driver’s face and body were captured
in Full HD (1080p), and all the data were sampled at 15 Hz.
2) Participants and procedure: The same twenty partici-

pants (7 females and 13 males, age 21–30 yrs.) participated
the exps-1 and 2. Other five participants (5 males, age
21–30 yrs.) participated the exp-3. Since it is hard to exper-
iment with a large group of people, we controlled the
population by taking the sample from the age group of
21–30. All the experiments conducted in this study have
been approved by the Ethical Review Committee of the
Waseda University. Before the experiments, all participants
have been informed of the experimental purpose and proce-
dures, then signed a written consent form. At the first of each
experiment, participants were well trained how to control the
vehicle in the driving simulator. After that, they were asked
to drive for five minutes, to measure each participants’ stan-
dard mean heart rate for normal driving. For the experiment
which will be described in Section VI, participants were
asked to answer a questionnaire after the first five minutes
of driving and each time after verbal interaction. The ques-
tionnaire asked how much they felt mental demand for the
tasks on a 0–20 scale. After experiments, participants were
provided with monetary compensation for their contribution.

V. RESULTS AND ANALYSIS
In this section, we describe and analyze the results of
experiments, and discuss the implications in detail.

A. RESULT OF EXPERIMENT 1
We extracted images from the recorded videos at
a regular frame interval, and manually labeled
the images. Totally, 1600 images of body posture
(20 participants×4 classes×20 images) and 2800 images of
eyes (20 participants×2 classes×70 images) were obtained.
70% of the collected images were used for training and the
other 30% for test. In other words, the system was tested
with unknown data to evaluate its ability to generalize.
By trial and error approach, we finally set k to 30 for
the k-NN and the training runs for the CNN was set to
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FIGURE 9. Output of posture classification system. The percentage shows the
number of the closet training data out of k (k=30).

FIGURE 10. Output of eyes state classification system. The percentage shows
probability of estimation.

500 epochs using back-propagation. Tables 3 and 4 list
the confusion matrix which summarizes the results of each
classification system. The accuracy of posture classification
system resulted in 91–100%, and eyes state classification
system resulted in 99–100%. Moreover, Figs. 9 and 10 show
examples of detection result. We found from the results
that the proposed system could adequately detect cue signs.
In general, the detection accuracy is expected to be close
to 100%, so in future, we will increase training data and
optimize the model for improving the accuracy.

B. RESULT OF EXPERIMENT 2
We could find from the results that all the cue signs appeared
while normal driving. Fig. 11 shows examples that cue signs
detected in normal driving. A reason the system detected
‘massage head,’ ‘hold chest,’ and ‘one-hand hang’ was that
participants felt itchy of their head, felt itchy of their neck,
and felt tired with their hand, respectively. Here, the neck
and chest are close together, so massaging neck was detected
as ‘hold chest.’ The system detected that some participants
had ‘tachycardia’ when they swerved out of their lane by
mistaking maneuvers. Then, they felt rushed and tried to
return to the lane. Moreover, the system detected that some
participants had ‘bradycardia’ because they became calmer
so that the heart rate became lower as the experiment pro-
gressed. Table 5 lists the mean and deviation of each cue

FIGURE 11. Cue signs detected in normal driving.

TABLE 3. Results of evaluation of posture classification system.

TABLE 4. Results of evaluation of eyes-state classification system.

TABLE 5. Distribution of detected cue signs.

TABLE 6. Coefficients.

sign. By following the method described in Section III-C,
we calculated 2σ region and coefficients k of each cue sign,
as listed in Table 6. Then, CL can be calculated by the coef-
ficient k. As stated above, if the duration time or period of
detected cue signs are not in the normal region, CL will be
higher than 50 and the system will start verbal interaction.

C. RESULT OF EXPERIMENT 3
We detected driver’s pseudo headache state to test if the
proposed system could work as designed. As a result, all
the five participants feigned a headache by massaging their
head, and all these five pseudo headaches were detected.
The system also detected cue signs when the participants
did not feign a pseudo headache due to itchy head, but the
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FIGURE 12. Examples of system behavior on pseudo headache detection.

system could judge that they were not headache as expected.
Fig. 12 shows examples of how the system behaves on
pseudo headache detection, including cue signs detection,
CL calculation, and verbal interaction. The system monitored
drivers’ posture for cue sign detection, then individually cal-
culated CL based on the detection results of each cue sign
and derived the final CL by taking the maximum of each CL.
Finally, the system started verbal interaction based on the
final CL. Fig. 13 shows the detected scenes which related to
Fig. 12. As for Figs. 12 (a) and 13 (a), ‘massage head’ was
detected once but the duration time (2.5 s) was within the
range of 2σ region (0.8–3.3s), so CL remained below 50,
and system regarded it as normal behavior (e.g., ‘the drive
felt head itchy’). As for Figs. 12 (a) and 13 (b), ‘massage
head’ was detected and the duration time (3.5 s) exceeded
the range of 2σ region, so CL became higher than 50, and
the system estimated that the driver felt ‘headache.’ Then the
system started verbal interaction. In this example, the driver
responded ‘Yes,’ meaning that the driver has headache, so
the system started navigating the vehicle to the nearest park-
able area. From the above results, we found that the system

FIGURE 13. Example scenes of ‘massage head’ detection.

could work as expected to detect driver’s pseudo headache
states.

VI. DISCUSSION
In this section, we conducted a drowsiness detection exper-
iment to deeply analyze the proposed system.

A. DROWSINESS DETECTION
In the Experiment 3, we tested pseudo headache state.
However, the system only monitored the body posture of
the driver. To deeply understand and evaluate the effec-
tiveness of the multi-sensor based monitoring system and
verbal interaction system, we conducted a drowsiness detec-
tion experiment. We asked participants to drive for one hour
in a straight highway, and they were expected to fall fatigue
with a monotonous drive. The room temperature was set
to 25◦C. The system monitored their eyes, heart rate, and
maneuver then calculated CL based on the distribution listed
in Tables 5 and 6. Once CL was higher than 50, the system
performs verbal interaction and asks participants ‘Do you
feel sleepy?’ Like the flowchart in Fig. 8, if they answered
‘No,’ we continue the experiment. If they answered ‘Yes,’
the system induces them to stop driving or autonomously
stops the vehicle. Five participants (4 males, 1 female, age
21–26 yrs.) participated in this experiment. The procedures
described at Section IV-B2) were all adopted to this exper-
iment. At the end of experiment, participants were asked to
respond questionnaire of ‘mental demand,’ which was scaled
to 0–20 by reference to NASA task load index [34].
As a result, the system detected drowsy more than two

times for some participants, and the total detection number
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FIGURE 14. Examples of system behavior on drowsiness detection.

of times was nine. Among them, five cases of detection were
based on long duration of the ‘eyes closed’ state, three cases
were based on the ‘bradycardia,’ and remaining one case was

FIGURE 15. Example scenes of ‘drowsiness’ detection.

based on the ‘non-maneuver.’ Responses to verbal interaction
in each detection were listed in Table 7. From the table, we
found that all the defined cue signs were important since
different drivers showed different cue signs of drowsiness.
Different persons and different diseases would cause different
symptoms, so the proposed multi-sensor based monitoring
system that monitors drivers from different aspects would be
more effective than a single-sensor based monitoring system.
Fig. 14 shows examples of how the system behaves on

drowsiness detection, including cue sign detection, CL calcu-
lation, and verbal interaction. The system monitored drivers’
eyes state, heart rate, and steering angle for cue signs detec-
tion then individually calculated CL based on the detection
results of each cue sign and derived the final CL by tak-
ing the maximum of each CL. Finally, the system started
verbal interaction based on the final CL. Fig. 15 shows the
detected scenes which related to Fig. 14. As for Figs. 14
(a) and 15 (a), all the eyes state, heart rate, and maneuver
varied within the normal range, so CL stayed below 50. As
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TABLE 7. Results of drowsiness detection.

FIGURE 16. Result of mental demand questionnaire.

FIGURE 17. Individual differences in number of times when ‘massage head’ is
detected.

for Figs. 14 (b) and 15 (b), the duration time of ‘eyes closed’
(0.53 s) exceeded the range of 2σ region (0.1–0.5 s), so CL
became higher than 50, and the system estimated that the
driver felt sleepy, and then started verbal interaction. As for
Figs. 14 (c) and 15 (c), the duration time of ‘bradycardia’
(4.87 s) exceeded the range of 2σ region (0–4.8 s), so CL
became higher than 50, and the system estimated that the
driver feels sleepy then started verbal interaction. At both
situations of Figs. 14 (b) and (c), the drivers responded ‘Yes,’
meaning that the drivers felt sleepy, so the system started
navigating the vehicle to the nearest parkable area.
Compared to the monitoring system, the verbal interaction

system could confirm driver’s internal state, but it might
increase driver’s mental demand. To clarify it, we evalu-
ated the mental demand by using a questionnaire. The result
is summarized at Fig. 16. There are two results of verbal
interaction, which are the driver response ‘Yes’ or ‘No.’ We
compared these mental demand scores by using the anal-
ysis of variance (ANOVA) test and we found that there
was no significant difference among each mental demand
score (p > 0.05). The result indicates that the system did

not increase driver’s mental demand. However, the men-
tal demand score of ‘Yes’ was apparently higher than the
other two. The proposed system may increase driver’s mental
demand if the driver was at an abnormal state, i.e., drowsi-
ness, but the increased mental demand is not always bad for
driving. This is because it can give a sense of tension to driver
and make drivers aware that they are at an abnormal state.

B. INDIVIDUAL DIFFERENCE IN CUE SIGNS
In this study, we made the distribution of each cue sign using
all the 20 participants’ data and we developed a fundamental
symptom detection system. However, different participants
may have different habits, so this leads to different distribu-
tion of each cue sign. Fig. 17 shows the number of ‘massage
head’ detected in one-hour driving. We found that the number
significantly differs among individuals. Someone performed
‘massage head’ more than once every three minutes, while
someone did not perform it. Because of such individual
variability, individual-based models, which can deal with
individual driver’s behavior, would be more powerful for
symptom detection. However, it is difficult to collect all
drivers’ data, so we can propose an online re-training method.
The online re-training method is to initialize the system with
existing data and automatically update the system depend-
ing on the result of verbal interactions. For example, if
the system detected that a driver has a symptom of dis-
ease, but the driver responded ‘No’ in verbal interaction, the
system could modify the internal definition of the symptom
by adjusting the normal region.

VII. CONCLUSION AND FUTURE WORKS
Toward prevention of health-related accidents, we proposed
a new symptom detection system that could detect symptoms
earlier with a higher confidence level by multi-sensor based
monitoring and verbal interaction. We analyzed the symp-
toms of cerebrovascular disease, cardiovascular disease, and
SAS, and defined cue signs accordingly. The monitoring
system could detect cue signs by monitoring driver’s face,
body, physiological information, and maneuver, then calcu-
late the confidence level depending on the type, duration
time, and period of cue signs. On the other hand, the ver-
bal interaction system could directly communicate with the
driver based on the result of monitoring to clarify the driver’s
health state in detail. From data collection experiments, we
could define the confidence level by using detected cue
signs to determine how to interact with the driver. Using the
defined confidence level, the system could effectively detect
pseudo headache and drowsiness. From the results of eval-
uation experiments, we found that multi-sensor system had
advantages over single-sensor system in dealing with indi-
vidual variability and that the verbal interaction system could
help drivers to be aware of their abnormal state. Furthermore,
we proposed an online re-training method to improve the
confidence level.
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In future works, we will improve the multi-sensor system
by introducing different types of sensors (e.g., a blood-
pressure sensor and gaze tracking system) and analyzing
which sensors are effective for symptom detection, and we
will introduce a voice diagnosis system that exams driver’s
health by analyzing tongue and rhythm of the driver’s voice.
As for the eyes-state classification system, we will introduce
faster computation machines to evaluate pre-trained models
that have higher accuracy. Moreover, we will introduce the
proposed system to a real vehicle system, to evaluate the
system with professional drivers in a real environment and
realize the online re-training system.
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