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ABSTRACT Vehicle Classification (VC) is a key element of Intelligent Transportation Systems (ITS).
Diverse ranges of ITS applications like security systems, surveillance frameworks, fleet monitoring,
traffic safety, and automated parking are using VC. Basically, in the current VC methods, vehicles are
classified locally as a vehicle passes through a monitoring area, by fixed sensors or using a compound
method. This paper presents a pervasive study on the state of the art of VC methods. We introduce
a detailed VC taxonomy and explore the different kinds of traffic information that can be extracted
via each method. Subsequently, traditional and cutting edge VC systems are investigated from different
aspects. Specifically, strengths and shortcomings of the existing VC methods are discussed and real-time
alternatives like Vehicular Ad-hoc Networks (VANETs) are investigated to convey physical as well as
kinematic characteristics of the vehicles. Finally, we review a broad range of soft computing solutions
involved in VC in the context of machine learning, neural networks, miscellaneous features, models and
other methods.

INDEX TERMS Intelligent transportation system (ITS), vehicle classification (VC), vehicular ad-hoc
networks (VANETs), soft computing.

I. INTRODUCTION

THE term of VC is the collection of methods used to
extract the vehicle’s parameters and classify the vehicle

into different classes. There exist distinct definitions for VC
in the publications. Reference [1] defines VC as a tool for
an accurate counting of the axles number and spacing of the
distinct vehicles traveling in a lane. Reference [2] considers
VC as a pattern recognition (PR) issue where vehicles are
grouped into various classes, namely off-road, sedan, two
wheeler, bus, and pick up truck. Reference [3] deems VC as
a vital part of ITS that collects precious information for dif-
ferent applications such as system planning and surveillance.
References [4] and [5] describe VC in such a way that vehi-
cles are detected and categorized with respect to their types
and certain sub-classes respectively. Reference [6] specifies
VC by assigning the vehicles into various groups. In [7], [8],
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VC is defined as a process of splitting up the vehicles based
on different predetermined classes. Reference [9] denotes VC
as one of the vehicle identification methods. Reference [10]
defines the VC as a means to provide information about
the types of the vehicles that traverse a monitoring zone by
categorizing them into classes. Reference [11] performs the
VC by evaluating the shape or size of a crossing vehicle.
Vehicle classification is one of the main components

of traffic monitoring systems. It plays a crucial role in
transportation planning and traffic engineering. For exam-
ple, safety organizations are very interested in identifying
capacity and geometric design of the freeways and pave-
ment maintenance according to the vehicle types, numbers
and so forth. In ITS, different applications like automated
parking systems [12], [13], structural health monitoring
[14], [15], [16], [17], [18], security enforcement [19] and
monitoring of traffic flow [20], [21] widely avail of VC.
For vehicles detection, various methods such as transit-
ing monitoring areas [22], [23], crossing in front of fixed
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sensors [10], [24], global coverage [25], [26] or hybrid meth-
ods [24], [27] are used. Data gathered by sensors and
detectors encompasses a broad range of information includ-
ing speed [28], [29], acceleration/deceleration [30], number
plate [31], [32], make and model [33], [34], [35], axle weight
and spacing [36], [37], and vehicle count and shape, i.e.,
height, width and length [23], [38].
Recently, several VC systems have been introduced due

to the tremendous advancements in soft computing, wireless
communication and sensing technologies. These methods
have different requirements and specifications in terms of
hardware and configuration settings, deployment environ-
ment, cost, sensor types etc. This makes it challenging for
industry and scientists to apt for a justifiable solution for
their VC applications.
The simplest method of VC is the manual count, nonethe-

less it is prone to errors, laborious and also time consuming.
Vision-based methods as the most commonly used and
studied approach for VC detect and track the vehicles by
withdrawing visual features like textural patterns, colors and
lines of the video [39]. Vision-based methods undertake some
phases including image segmentation, PR, feature extraction,
and training.
In 1920, pneumatic tube detectors were introduced for VC

and today they collect the vehicular data for a short period of
time [40]. However, this method is not feasible for highly
congested and high-speed roadways, but it can recognize
axle spacing and axles number in a moving vehicle.
Magnetic loop detector is a technology that detects the

vehicle length and has been used in the recent decades for
VC [41], [42]. Dual loop detectors can measure the speed
of a target vehicle [43], [44]. Similar to the pneumatic
tube detectors, they do not perform well in high volume
roads although they are fairly cheap and perform automatic
classification [30].
Axle configuration and weight of the vehicle are detectable

by piezoelectric sensors [28], [45]. This kind of sensors
is sensitive to the pavement temperature and speed of the
vehicle and can be used individually or along with weigh-
in-motion (WIM) systems.
Radar sensors are customary tools that are capable of

classifying vehicles according to their dimensions like length,
size, height etc., [46], [47]. Despite their deficiency for the
dense traffic and compared to the other VC methods, they
are more resistant to the environmental variations [30].
Infrared sensors use the reflection light of a vehi-

cle in order to seek the equivalent match in the
database [48], [49], [50]. Environment changes have a neg-
ative impact on the infrared sensors.
Acoustic sensors utilize acoustic signatures that are speed

independent to determine the vehicle classes [51].
A VC system based on the Global Positioning System

(GPS) is shown to be the most dependable way to extract
the global movement parameters of the vehicle whereas it
lacks the information about the vehicle’s physical proper-
ties. Furthermore, portable GPS and GPS mobile devices,

or smartphones that can provide kinematic characteristics of
the vehicles are not a reliable information source to classify
the vehicles a in real-time state.
A fusion of the methods based on the fixed location

sensors with other methods seem to be able to provide
detailed information [52], [53]. For example, information
regarding the make and brand of a vehicle obtained via
vision-based methods can help to gain other data such
as weight and axle specifications [54], [55]. Moreover,
the camera can also retrieve mobility parameters like
speed, acceleration/deceleration, direction within the cov-
erage range [52], [56].
Except for GPS-based methods, current VC approaches

have generally local essence as mentioned earlier. As two
principal requirements for a reliable classification of vehi-
cles, the real-time collection of traffic information together
with having global access to the sensor data are necessary.
In the VC methods, mobility and physical parameters are to
be taken into account. This paper investigates the state of
the art including real-time methods like VANETs that can
classify the vehicles in a global mode. VANETs comprise
vehicles that are interconnected wirelessly and exchange real
time traffic information.
This paper is organized as follows. In Section II, VC tax-

onomy spanned over five fundamental methods is presented
whereby each method can acquire a wide spectrum of
information. Methods are broken down into subsections
based on the operational environment, sensor types, VC
mechanisms and sensors methodologies. Section III offers
a comprehensive overview on the state of the art, smart
technologies and novel breeds of VC methods like VANETs,
Wireless-Fidelity (Wi-Fi), Long Term Evolution (LTE), wire-
less sensor networks (WSNs) and radio frequency (RF)
including analysis, challenges, issues, comparison, descrip-
tion and relevant algorithms. Here, VANETs are discussed
as a superior and plausible approach that can dependably
classify the vehicles by meeting the corresponding VC req-
uisites. Finally, the last section summarizes the findings of
this work.

II. VEHICLE CLASSIFICATION TAXONOMY
This section describes the vehicle classification taxonomy.
VC methods are organized into five main categories depend-
ing on the required physical changes on the roadways as well
as the deployment conditions of the equipment as follows:
intrusive, non-intrusive, off-road, manual or a combination of
aforementioned items called hybrid methods. Each method
is unique in terms of the extracted traffic information. They
vary from local to global, physical to kinematic and manual
to automatic.
Intrusive sensors are located under the road surface in

holes or attached to the road surface [57]. They are in contact
with the vehicles and contain diverse kinds of sensors such as
loop detectors [42], magnetometers [58], [59], piezoelectric
sensors [60] and vibration sensors [61]. Hence, they operate
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TABLE 1. Taxonomy of vehicle classification methods and related extracted traffic information.

accurately in retrieving miscellaneous data like the vehicle’s
physical information along with the motion signature.
Non-intrusive sensors are located above or next to the road

and their monitoring data are less influenced by pavement
quality compared to the intrusive sensors and have simpler
installation and maintenance [62]. These roadside sensor-
based systems span a broad range of varieties including laser
light detection and ranging (LiDAR) [13], [63], accelerom-
eters [64], infrared sensors [2], acoustic sensors [65],
magnetometers [66], [67] and Wi-Fi transceivers [68]. On the
downside, theses sensors highly require appropriate place-
ment and direction adjustment [2]. Moreover, classification
of overlapping vehicles is very troublesome for this sort of
systems. Additionally, data calibration algorithms are needed
to reduce the noise impact on classification. Besides, both
intrusive and non-intrusive sensor-based VC systems can be
characterized by costly implementation and maintenance and
they are highly sensitive to the ambient status [69].
Mobile sensors embedded and deployed by satellite, air-

plane, or in vehicle GPS-enabled receivers are called off-road
sensors [70]. Sensors in satellites and unmanned aerial vehi-
cles (UAVs) are aerial systems that cover multiple lanes from
above roadways or even a road segment [71], [72]. Vision
sensors are the dominant technology [73], [74] in this cate-
gory. Despite their little construction and maintenance cost,
these systems are not accurate and are sensitive to lighting
and severe weather conditions.

Hybrid methods such as WIM, VANETs and also WSNs
consolidate multiple approaches for VC. The next section
extensively describes the VC methods. Taxonomy of VC
along with the information extracted via each method are
summarized in Table 1.

III. VEHICLE CLASSIFICATION METHODS
There exist a few surveys about VC systems whilst most sur-
veys focus on the vision-based VC systems ignoring other
VC approaches [75], [76], [77], [78], [79], [80]. Others only
address particular types of VC systems. For instance, [81]
reviewed only road sensors such as inductive loop detec-
tors, piezoelectric, magnetic sensors, and also pneumatic
tubes while [82], [83] reviewed unmanned aerial vehicles
UAVs. Bouckerche et al. [35] presented a survey that just
focused on vision-based methods and categorized the vehicle
classification based on the vehicle type recognition (VTR),
vehicle make recognition (VMR), and also vehicle make
and model recognition (VMMR). In their work, they inves-
tigated the relevant models, methods and techniques. Most
of the papers concentrated on conventional VC methods.
However, some papers explored vehicle related methods for
VC via exploiting mobile devices like smartphones or GPS
receivers in an obscure manner and from confined perspec-
tives. They nearly overlooked the impact of groundbreaking
vehicular communications technologies and sensing tech-
niques in their studies. Jain et al. [80] mainly reviewed
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the traditional VC methods in addition to the vision-based
ones. They analyzed different techniques for traffic monitor-
ing and examined the drawbacks and security weaknesses of
the information. But, they did not address a large spectrum
of VC methods including hybrid, remote sensing and also
GPS-based methods in their paper. In another research work,
Won [21] presented an overview on current VC systems
from various aspects excluding notable methods such as
LTE transceivers, GPS-based methods and also vehicle-to-
everything (V2X) communication. Furthermore, in a recent
review article [84], although researchers introduced VANETs
capabilities for VC, their research lacked some paramount
VC methods encompassing aerial, WSN as well as RF, Wi-Fi
and LTE transceivers.
The findings demonstrate that available VC methods can-

not offer mobility and physical information of vehicles
globally and in a real-time fashion. We definitively believe
that vehicular networks are an effective solution to pro-
vide the VC globally and in a real-time manner. This paper
investigates the traditional, state of the art and also global
methods like VANETs that classify the vehicles in a real-
time mode. In contrast to the all existing surveys and review
papers that are cited in this paper, our review has effectively
complemented the weaknesses of the mentioned papers by
gathering all the related VC methods ranging from con-
ventional to emerging in the miscellaneous journals. It is
worth mentioning that in the presented paper, the length
of the description varies significantly from one VC method
to another. This is due to the fact that some methods like
vision-based are widely favored by scientists while oth-
ers such as pneumatic tubes, piezoelectric sensors, fiber
optic sensors, strain gauge, GPS-based, LiDAR, Wi-Fi/LTE
transceivers and infrared/ultrasonic are rarely attractive for
VC. Moreover, compared to other surveys and reviews, we
have thrived to more deeply study VANETs and propose
them as an alternative tool for VC. To this end, we have con-
ducted a comprehensive inspection to find the current state of
the art VC articles. We originally began with around 500 pub-
lications that consequently resulted in 284 final references
for our work.

A. VISION-BASED METHODS
Most researchers have conducted their VC studies based on
the vision-based methods, which are applied in the most
popular VC systems [73], [74]. This is due to the fact that
cameras can properly feature the visual and geometrical char-
acteristics of a vehicle [161]. Image/video detection from
a fixed location mostly comprises most of the vision-based
VC literature. They are ambient-sensitive and have relatively
low maintenance and operational costs. Besides, video/image
detection methods possess high capital cost, expensive com-
putational burden and also privacy concerns. In contrast to
the in-road-based classification systems, a single camera can
cover several lanes. The relative VC process includes images
capture, feature extraction, and finally the classification of
the vehicle. Data collection use various types of cameras such

as aerial images [162], [163], surveillance video systems,
closed-circuit television (CCTV) [105], [115], normal cam-
eras [114], [124] or omni-directional cameras [121]. Image
processing techniques are the underlying elements of the
detection, tracking and classification of the vehicles in these
methods.
Sotheany and Nuthong [10] used back propagation neural

network (BPNN) and radial basis function neural network
(RBFNN) for VC. Mei and Ling [50] investigated robust
vision-based VC and tracking using sparse approximation
theory. Wang and Cai [144] conducted an extensive review on
the vision-based methods. Many researchers like [23], [73],
[93], [94], [110], [122], [123], [125], [151], and [152] proposed
image segmentation from video footage as one of the most sig-
nificant techniques of imageprocessing to classify the vehicles.
Tripathi et al. [4] and Tamam et al. [19] employed background
subtraction (BGS) as an image segmentation method for VC.
Gaussian mixture model (GMM) [164] is recognized as one
of the principle segmentation techniques in image processing.
As regards to other vision-based VC methods, some papers
like [126], [128], [129], [143], [146] focused on shadow
removal techniques [165] to improve the image and video qual-
ity in imageprocessing.Ontheotherhand,Moutakkietal. [127]
and Velazquez-Pupo et al. [23] used occlusion handling for
tracking and classification of the vehicles in an obstructed
situation. Image detection encompasses the feature extraction
step, in which appropriate features for VC are selected.
Most popular features for VC include speeded-up

robust features (SURF) [130], [133], scale invariant
feature transform (SIFT) and Texture and shape fea-
tures [113], [131], [132], VMMR [34], [139], oriented fast
and rotated brief (ORB) [136] and pose estimation with
convex hull (PE-CH) [138]. Yan et al. [27] proposed
principle components analysis (PCA) and BPNN for VC.
Tripathi et al. [4] made use of Blob detection technique
as a feature extraction technique for VC. Manzoor and
Morgan [33] devised a VMMR-based VC system based on
the random forest (RAF) and used SIFT and histogram of
oriented gradient (HOG) for image processing. Similarly,
Siddiqui et al. [156] proposed VMMR-based VC using SVM,
SURF features and RAF.
Some literature like [24], [32], [91], [92], [95], [96],

[105], [134], [137], [140], [141], [142], [149], [153], [155],
and [11] addressed VC via the application of feature extrac-
tion techniques. Javadi et al. [99] designed a vision-based
system that classifies analogous vehicles based on fuzzy
c-means clustering (FCM) [166] and using dimensions and
speed attributes. Zhao et al. [100] emphasized the relevant
key parts of the vehicle image to improve the accuracy.
Mishra et al. [160] used a non-linear kernel classifier,
while Theagarajan et al. [98] and Kim and Lim [97] ben-
efited from different approaches to address VC using the
largest ever image dataset. Liu et al. [104] also investi-
gated the issue of imbalanced dataset. Zhang and Pan [157]
adopted kernel principal component regression (KPCR) for
VC. Liang et al. [106] investigated the classification of the
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TABLE 2. Summary of literature reviews on vision and sound-based methods.

highway vehicles via regression analysis and image warping.
Chang et al. [101] discussed the matter of vehicle occlusion.
Other researchers such as Ahmed et al. [108], Moussa [102],
and Chandran and Raman [107] concentrated on the vision-
based methods. Hsieh et al. [135] classified the vehicles
based on the color. Peng et al. [158] robustly classified vehi-
cles based on PCA. Hannan et al. [147] and Yu et al. [150]
adopted fast neural network (FNN) and deep learning for VC
respectively. Nam and Nam [120] proposed creative methods
using thermal cameras and visible light images for vehicle
detection and classification. Mussa et al. [159] outperformed
VC by using probabilistic neural network (PNN) to cor-
rectly assign the vehicle’s classes. Silva et al. [154] adopted
multiple classifier algorithms to detect and classify motorcy-
clists. Saeed and Htike [145] benefited from the Viola-Jones
method as well as invariant moments features and multi-layer
feed forward perception (MLP) artificial neural network as
PR techniques in VC. On the other hand, Jo et al. [12]
used the LeNet model from convolutional neural networks
(CNN) along with Haar-like features for image recognition
of VC. Hasnat et al. [103] combined optical sensors with
a camera to classify vehicles with hybrid algorithms like
gradient boosting (GB) [167] and CNN. Gupte et al. [39],
Ha et al. [168], and Matos and Souza [38] also deployed
vision-based methods where the last two papers considered
the edge detection and features for VC.

B. SOUND-BASED METHODS
Acoustic sensors are low cost and simple, but they require
complex data extraction mechanism and they are not appro-
priate for stop-and-go traffic. Ultrasonic sensors are con-
tamination proof, weather-sensitive and relatively less costly
than acoustic sensors. Moreover, they can be easily installed.
Acoustic sensors capture the audio signals generated by
a passing vehicle via microphones. Ambient noise largely
impacts the performance of these sensors thereby making the
feature extraction a challenging problem. Therefore, either
acoustics sensors are generally deployed in group to decrease
the negative influence of environmental noise [89] or they

are integrated with other type of sensors like cameras to
boost the effectivity of those solutions [90].
Borkar and Malik [88] benefited from smart cameras,

robotic sensors, smartphones and also drones to evaluate the
vehicle density, speed, and classification through practice of
acoustic signals. George et al. [65] employed acoustic signals
while Ntalampiras [89] established an innovative wireless
acoustic sensor network (WASN) to overcome the ambi-
ent noise problem. The system was composed of several
wireless microphones. Bischof et al. [90] benefited from an
acoustic sensor to better support the operation and activate
the autonomous training of the vision-based VC system.
Different kinds of algorithms like artificial neural network
(ANN), support vector machine (SVM) and k-nearest neigh-
bor (KNN) were used for classification. Piyush et al. [85]
and Daniel and Mary [86] devised a scheme based on the
combination of video and audio methods. In the proposed
approach, they used the MLF algorithm, and the vehicle
image was extracted from the relevant video frames through
BGS once the vehicle was detected by the acoustic sig-
nal. Table 2 summarizes literature reviews on vision and
sound-based methods.

C. REMOTE SENSING METHODS
The provision of global information by remote sensing meth-
ods introduce them as one of the quickest trends for VC. A
wide range of methods can be named in this group including
infrared sensor, laser scanner, LiDAR, radar, RF, Wi-Fi, and
LTE transceivers. Table 3 summarizes the literature reviews
on remote sensing methods.

1) INFRARED/ULTRASONIC

Infrared sensors are expensive, sensitive to ambient condi-
tions and advisable for night vision and rainy weather. They
have low image quality and are typically used for battlefield
VC. Odat et al. [2] proposed a collaborative system including
ultrasonic and infrared sensors for VC. Otto [6] utilized two
mobile infrared sensors and denoised the data mainly using
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TABLE 3. Summary of literature reviews on remote sensing methods.

wavelet for VC. Mei and Ling [50] used infrared sensors
for classification and robust tracking of the vehicles.

2) LASER SCANNER

Laser scanner is another technology for VC that is sen-
sitive to weather conditions. Besides, it has more instal-
lation expenses than cameras. Sandhawalia et al. [172],
Chidlovskii et al. [170], and Xiang et al. [171] performed
different VC approaches via laser scanners. Chidlovskii used
dynamic time wrapping (DTW) [185] and global alignment
kernel (GA) [186] as classifiers. Xiao et al. [169] designed a
street park monitoring system where vehicles were classified
using mobile laser scanners.

3) LIDAR

In LiDAR-based systems, light detection and ranging sen-
sors record the reflections of the laser beams to recognize
the shape and size of the passing vehicle for VC. LiDAR
has easier usage but worse performance than Radar in snow
and rain. Additionally, they are less expensive than Radar
in terms of production. LiDAR VC systems have high accu-
racy in vehicle detection though they mainly suffer from
the vehicle occlusion issue. This technology appeared after
RADAR in the industry and uses laser light pulses instead
of radio waves. Shorter wavelength of LiDAR than RADAR
allows the detection of small objects. Besides, every second
the LiDAR system receives information from a large num-
ber of laser pulses due to its high speed. This implies that
data is updated with higher frequency, thereby more accu-
rate information is received by the device. A LiDAR system
can create a precise 3D image of a vehicle or other objects
by storing each reflection point of a laser beam. Moreover,
as one of the applicable features in the automotive industry,
the LiDAR receiver is capable of measuring the distance
to the detected object where the reflection time and laser
speed are used. As a result, autonomous vehicles with on-
board LiDAR sensors can scan the environment and avoid
collisions.
Researchers in [63] and [174] adopted LiDAR beams for

VC while Asborno et al. [173] concentrated on the truck

body classification by establishing two LiDAR units on the
roadside. Extracted features are fed to the several classifiers
such as SVM, decision tree (DT), naive bayes (NB) and
ANN. Lee and Coifman [63], [174] launched LiDAR systems
in which the driver side of a car which is parked on the
roadside is equipped with two LiDAR sensors to vertically
scan the body of the passing car and extract the required
features for a highly precise VC.

4) RADAR

Radar systems use radio waves and perform the clas-
sification depending on the reflected radio signals from
the body of the vehicles. They are relatively cheap and
unlike LiDAR sensors, radar sensors are more resistant to
the inclement light and weather conditions. On the down-
side, they are not generally designed for stop-and-go traffic
and represent a less accurate vehicle body than LiDAR.
Raja et al. [182] exploited the KNN as classifier and ana-
lyzed the VC using forward scattering radar (FSR). Hyun
and Jin [55] proposed a scheme for classification of mobile
humans and moving vehicles based on the Doppler spectrum
feature. Urazghildiiev et al. [47] proposed a VC solution
based on the vehicle physical profiles in terms of height
and length using a microwave radar sensor. In a simi-
lar approach, Meng et al. [3] benefited from the Bayesian
network and GMM to classify the vehicles using video and
microwave radar sensors for height measurement. Aziz and
Thani [180], Lee et al. [181], Abdullah et al. [46] com-
bined Z-score feature extraction method with NN for VC
using forward scattering radar. Chen and Lin et al. [178]
and Saville et al. [179] also employed radar as a commonly
used method in VC and traffic monitoring.

5) RF TRANSCEIVERS

When a vehicle crosses the line of sight between an RF
receiver and transmitter installed on opposite road sides,
the propagation of the RF signals is disturbed leading to
attenuation and reflection. As a result, the receiver cap-
tures the RF signals that carry distinctive patterns according
to the size and shape of the passing vehicle. Consequently,
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TABLE 4. Summary of literature reviews on contact-based methods.

the vehicle classification is performed based on these
patterns. Haferkamp et al. [177] utilized the received sig-
nal strength indicator (RSSI) of the attenuated signal as
the key input for the classifier algorithms like SVM and
KNN for a very accurate VC. Silwa et al. [176] used the
low-rate wireless personal area networks (LR-WPANs) with
the Institute of Electrical and Electronics Engineers (IEEE)
802.15.4 standard to classify the passing vehicles in response
to their particular radio fingerprints. It is comparable to
the previous work in terms of RSSI application, but more
accurate in a sense that it adopts three transceivers on the
roadsides. CNN [187], RAF [188] and SVM [189] were
the applied classifiers. In their following research [20], they
exploited a novel approach where signal attenuation patterns
were considered as radio fingerprints for VC. They applied
four machine learning algorithms such as RAF, proximity
forest (PF), SVM and deep Boltzmann tree (DBT) in their
work. Bernas et al. [175] developed a roadside-based system,
in which RSSI analysis from Bluetooth Low Energy (BLE)
beacons was performed using ML algorithms to detect and
determine the vehicles classes.

6) WI-FI-LTE TRANSCEIVERS

Traffic monitoring systems recently aim to utilize Wi-Fi
transceivers to cover a large area as they are scalable and
low cost. VC is performed by using unique patterns of
channel state information (CSI) including spatio-temporal
correlations of amplitude and phase induced by the target
vehicle [190]. In a similar work, Sardar et al. [183] availed
of PCA and NB algorithms to classify the vehicles using
LTE and CSI analysis. Won et al. developed a Wi-Fi-based
system [68] and an advanced version of it [184] with sound
classification accuracy.

D. CONTACT-BASED METHODS
Contact-based methods span a wide spectrum of sensors
including loop detectors, magnetic, seismic and vibration,

FIGURE 1. Inductive loops.

pneumatic tube, piezoelectric, fiber optic and strain gauge.
Table 4 summarizes the literature reviews on contact-based
VC methods.

1) MAGNETIC FIELD: LOOP DETECTORS

Inductive magnetic loop detectors as shown in Fig. 1 are
considered as one of the most prevalent and popular traf-
fic monitoring systems for VC [191], [192]. They have a
long installation process. Researchers have conducted numer-
ous works that discuss about the loop detectors for VC
which is a wire coil under the road pavement. When a
vehicle passes over it, a peculiar signal called magnetic
profile [193] is produced depending on the type of the
vehicle to perform classification. Inductive loops make use
of a magnetic signature as a feature to detect and classify
the vehicles [41], [192], [194]. Mocholí-Salcedo et al. [41]
studied the inductive loops in the form of asymmetrically
shaped, e.g., rectangular loops for the VC. Loop detectors are
divided into single and dual loop detectors. Sun et al. [7], [8]
also took advantage of inductive loop detectors and heuristic
algorithms in his study on VC.

1) Single loop detectors: Single loop detectors are low-cost.
Liu and Sun [195], Lamas-Seco et al. [29], [192], Coifman
and Kim [196], Gajda et al. [44], and Meta et al. [42]
researched the use of single loop detectors as the VC method.
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FIGURE 2. Magnetic sensor.

Tok and Ritchie [197] combined the passing vehicle’s
magnetic signature with the axle configuration method to
classify vehicles with the similar axle structure using multi-
layer feed forward (MLF) artificial neural network [198].
Jeng et al. [199] availed of akin VC system based on the eval-
uation of vehicle’s body signature. Lao et al. [200] developed
an approach to classify vehicles using GMM.
2) Dual loop detectors: Dual loop detectors as opposed
to the single loop detectors have higher cost. Additionally,
they can measure information like length, average speed,
flow and occupancy yielding to better classification.
Cheevarunothai et al. [201] adopted the vehicle length for
the VC which is known as the main feature for VC. Wu and
Coifman [43], [53], Wei et al. [202], and Li [203] employed
dual loop detectors for the VC.

2) MAGNETIC FIELD: MAGNETIC SENSORS

Magnetic sensors as shown in Fig. 2 are less sensitive
to noise, Doppler effects and weather conditions, but they
require calibration.
1) In-road magnetic sensors: A vehicle that passes the mag-
netic sensors induces distortion to the Earth’s magnetic
field [207], [212]. Different vehicles cause distinctive alter-
ation in the magnetic field that are captured by magnetic
sensors. Contrary to the loop detectors, energy efficiency,
cost, size and weight are some of the strengths of the
magnetic sensors.
Balid et al. [70] used the vehicle length metric for VC.

Bottero et al. [58] and Li and Lv [219] devised a WSN
of two magnetic sensors and then performed the VC-based
on the vehicle length and additionally magnetic waveform
respectively [58]. Li et al. [217] used a single magnetic sen-
sor and applied a minimum number of split-sample (MNS)
and classification and regression tree (CART) models [229]
for VC. Ma et al. [64] proposed a hybrid system con-
sisting of accelerometers and a wireless magnetic sensor
network to enhance the VC functionality. Xu et al. [59]
addressed the imbalanced data-sets effect of the magnetic
sensors for VC. They used various machine learning (ML)
algorithms such as KNN [230], SVM [231], CNN [232], and
BPNN [233] to classify vehicles. Dong et al. [213] demon-
strated that only one magnetic sensor is capable of a robust
VC. Their work was based on XGBoost classifier [234].

Yang and Nin [206] and Xu et al. [211] proposed a vehi-
cle classification and detection based on magnetoresistive
sensors using the BPNN algorithm. Tong and Li [205] stud-
ied the use of micro ferromagnetic induction coil sensor
via RBFNN. Kerekes et al. [87] evaluated a VC using an
ensemble of methods including magnetic, acoustic, and RF
sensors. They made use of KPCR and radio fingerprints for
a better classification.

2) Roadside magnetic sensors: Magnetic sensors are fre-
quently used in VC systems in the road or on the roadside.
Both solutions share the same mechanism based on the
vehicle’s magnetic profile. However, the latter classifica-
tion system is designed to mitigate the high installation and
maintenance cost of the in-road-based systems.
Lan et al. [214] used roadside magnetic sensors for VC.

Taghvaeeyan and Rajamani [208] focused on a challeng-
ing theme and developed a magnetic-sensor-based system
to classify vehicles with identical body sizes. Another chal-
lenging issue in VC based on this method arouses especially
when traffic is congested and vehicles are driving slowly
and closely to each other. The vehicle proximity distorts
the magnetic signals enormously. Yang and Lei [67] and
Kaewkamnerd et al. [209] investigated this problem from
different aspects. Magnetic sensors can also be combined
with other VC methods. Reference [66] proposed a hetero-
geneous energy efficient system in which a camera is turned
on in case of a vehicle detection by a magnetic sensor.
Several researchers like Mosa et al. [210], He et al. [216],
Sarcevic [215], Li et al. [218], Yang and Lei [67], and
Taghvaeeyan and Rajamani [208] have conducted their
research on magnetic sensors instead of magnetic loops
because they are cheaper and less complex.

3) FIBER OPTIC SENSORS

Many traffic applications recently tend to use fiber optic
sensors since they are light, small and fairly immune to
electromagnetic interference [235]. Furthermore, they have
a large bandwidth. The weakness is the limited angles range
that Fiber Optic system can sense. Al-Tarawneh et al. [204]
employed fiber bragg grating (FBG) sensors for VC. These
sensors capture the strain signals induced by a passing
vehicle from the road surface.

4) PIEZOELECTRIC SENSORS

Piezoelectric sensors are embedded under the road surface
across the lanes and are capable of collecting information
regarding traffic counting, speed and axle of the vehicles.
Following the mechanical impacts or vibrations, piezoelectric
sensors convert pressure to the electrical charges. They can
also operate inside a WIM system. Moreover, they are sensi-
tive to temperature variations and also to surface conditions
due to voltage changes. Piezoelectric sensors are speed and
time independent. Furthermore, they are sensitive to temper-
ature drifts. Rajab et al. [28], Rajab et al. [60], and Santoso
and Nurriyah [220] used piezoelectric sensors to classify
vehicles.
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FIGURE 3. Pneumatic tube.

5) PNEUMATIC TUBES

Pneumatic tubes are portable and installed on the road sur-
face across the lanes as shown in Fig. 3. They are primarily
used for temporary traffic counting and can be extended
to collect data concerning speed and axle of the vehicle.
Pneumatic tubes suffer from low profile and easy deforma-
tion. Moreover, they are moderately suited for VC. Currently,
bike classification and counting avail these tubes in the mar-
ket. Nordback et al. [227] worked on pneumatic tubes to
categorize vehicles.

6) STRAIN GAUGE

Strain gauge sensors measure the various strain response of
the pavement for the vehicles via PR for VC. They face
challenges concerning sensors adhesion and also compen-
sation for temperature variations. Al-Tarawneh et al. [204]
explored these sensors as the VC method.

7) SEISMIC AND VIBRATION

Vibration sensors catch the unique seismic wave-forms
caused by a passing vehicle. Vibration-based sensor systems
perform VC using two underlying features; axle count and
spacing characteristics [221] and seismic signals induced
by a passing vehicle that includes unique characteris-
tics [61], [223]. These sensors have good detection range
but they require careful calibration.
Bajwa et al. [221] utilized magnetic sensors for vehi-

cle detection purpose incorporated with vibration sensors
used for axle count and spacing as the key feature for VC
method. Zhao et al. [226] proposed the same technique for
VC as [221], but with further properties to achieve more
efficient classification. Stocker et al. [61] using MLP [236]
and Jin et al. [223] analyzed the specific seismic wave
forms of the passing vehicles for VC. Du et al. [225] and
Zhou et al. [224] applied seismic sensors for the localiza-
tion and identification of the vehicle classes. Ye et al. [222]
deployed vibration sensors in the pavement and classified
the vehicles using ANN and K-means clustering (KMC).

E. OFF-ROAD-BASED METHODS
Off-road methods cope with the classification techniques that
occur off the roads such as using different aerial platforms
or via GPS receivers. Literature discussing off-road-based
methods are cited in Table 5.

1) AERIAL PLATFORMS

Although aerial images from UAVs and satellites cover large
road segments and have simpler data acquisition, they can
hardly detect a vehicle due to a wide range of objects.
Furthermore, they can not provide high resolution images for
VC. Cao et al. [72] worked on vehicle detection and classifi-
cation of low altitude airborne videos. Audebert et al. [162]
employed aerial images for VC using different CNN models
such as LeNet [240], AlexNet [232] and VGG-16 [241] and
image segmentation techniques. Li et al. [163] also inves-
tigated the application of aerial images for VC. Liu and
Mattyus [237] employed HOG features [242] and investi-
gated an aerial platform to classify a few types of the vehicles
that are simply distinguishable. In addition, Tan et al. [238]
exploited an aircraft to collect images for VC using the
inception model [243]. Kanistras et al. [83], Puri [82]
and Tang et al. [71] used airborne imagery for classifi-
cation. Moreover, Ma et al. [244] introduced a vehicle
detection mechanism for aerial images based on rotation-
invariant descriptors and cascade forest. They could reach
accurate, robust results for VC. Aerial images are preva-
lent information source due to their extensive coverage.
Vision-based methods are the dominant technology for aerial
platforms.

2) GPS-BASED METHODS

GPS on board of the vehicle has challenging technical, pri-
vacy, security and institutional issues while Smartphones
equipped with different sensors are not reliable sources as
the provided direction in relation to the vehicle’s direction
is variable all the time. Basyoni and Talaat [239] focused
on VC based on data from cellular phones using genetic
fuzzy (GF) algorithms. Simoncini et al. [26] adopted GPS
to recognize and categorize vehicles on the road by apply-
ing a recurrent neural network (RNN). Sun and Ban [30]
proposed a low cost procedure to extract GPS data from
mobile sensors in an urban traffic for the VC.

F. HYBRID METHODS
Hybrid methods include WIM, WSN and VANETs that ben-
efit from various technologies for VC. Table 6 summarizes
the literature addressed hybrid VC Methods.
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TABLE 6. Summary of literature reviews on hybrid methods.

FIGURE 4. Weight-in-Motion (WIM) system.

1) WIM

Weight-In-Motion (WIM) systems play an important role in
traffic engineering in terms of data aggregation and VC.
Modeling and estimation are the components of the WIM
architecture. A WIM system consists of multiple sensors,
computers and digital cameras that are planted on a bridge
structure and measures the dynamic axle load of the vehi-
cle to compute its weight data [228] as shown in Fig. 4.
WIM employs several techniques to classify vehicles accu-
rately [245], [246]. They are safe and efficiently collect data.
WIM limitation is that the measurement is based on the fixed
location sensors. Besides, it has low weight accuracy estima-
tion and also it is expensive which is not suitable for local
roads. Hernandez et al. [247] consolidated loop detectors
with weight-in-motion sensors using various neural network
(NN) algorithms such as NB, SVM, DT, MLF [248], and
also PNN [249] and multiple classifier systems (MCS) [250]
for VC. Won [21] and Shokravi et al. [84] included
WIM in their survey. Peters [228], Roh et al. [245] and
Romanoschi et al. [246] also developed their systems based
on this method.

2) WSN

VC methods based on wireless sensor networks (WSN) are
basically integrated with other methods and to a great extent
with magnetic and vibration sensors like magnetometer and
accelerometer as cited in [58], [64], [89], [209], [219], [221].
Sometimes, they are incorporated with sound sensors as
referred in [89]. Won et al. [21] implicitly addressed WSN
in their review for VC.

3) VANETS-BASED METHODS

Vehicular ad-hoc networks (VANETs) promise to be one
the most revolutionary technologies in the last decade, so
that a large number of use cases in transportation and traf-
fic domain can profit from them [256]. A VANET-based

FIGURE 5. Communication in VANETs.

system consists of roadside units (RSUs) and vehicles with
mounted onboard units (OBUs), antennas, GPS and other
sensors [257]. An OBU is a telematics computing device
installed in a vehicle and it is a combination of various
communication interface modules [258]. Vehicular connec-
tivity is provided by the infrastructure along the roads
called RSUs [259]. Vehicles can use dedicated short-range
communication (DSRC) to periodically exchange traffic
information [260]. VANETs have two variants as depicted
in Fig. 5: vehicle-to-vehicle (V2V) that concerns communi-
cation between vehicles, and vehicle-to-infrastructure (V2I)
that deals with communication between the vehicles and an
RSU.
In the recent years, VANETs have drawn intensive atten-

tion. They can collect a wide range of information in terms
of mobility and physical features such as speed, traveling
lane, acceleration, deceleration, position, direction as well
as height, type, length, and width respectively. Within the
scope of VANETs, most of the papers concern using mobil-
ity and physical information of the vehicles for a particular
application. Among them, few papers have focused on VC
area. For example, Shokravi et al. [84] included VANETs in
their survey as an emerging VC method. Researchers have
addressed VANET-based VC methods from the kinematic
and physical information perspective as follows.
1) Mobility parameters of vehicles–general use cases:
VANETs benefit from the GPS receivers to localize and
gain mobility parameters of vehicles containing traveling
lane and position [261] as well as deceleration, acceleration
and speed [30], [262], [263]. Shao et al. [264] exploited a
cooperative vehicular system in highway scenarios, in which
variousmobility information such as acceleration, deceleration
in addition to other parameters were used in order to achieve an
accurate localization in a cluster. Padron et al. [265] deployed
a cooperative system based on VANETs to broadcast the
mobility information including direction, position and speed.
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It integrated a wireless communication interface, GPS receiver
and a real time clock. Nayak et al. [266] introduced a VANET
algorithm that observed vehicle lane changes using directional
indicators plus speed limit in each traveling lane so that
speed violations were detected rapidly. In this position-based
system, vehicular communication was performed in a secure
manner. Kerekes et al. [87] and Siddiqui et al. [156] employed
mobility information like speed, direction and position for
density estimation through beacon broadcasting.
2) Physical parameters of vehicles–VC use cases: In the
literature, many VC methods based on diverse kinds of
sensors deal with the detection of the physical param-
eters of the vehicles. However, these sensors encounter
some constraints including short coverage area with limited
information accuracy or devoted for proprietary routes [253].
Vision-based VC methods are also prone to occlusions
caused by trees, vehicles, inclement weather conditions
like precipitation, snow or light changes. Therefore, the
VC might be not so reliable due to the poor image
quality [120].
A vehicle identification number (VIN) is a particular iden-

tifier that determines some vehicle’s features such as the type,
brand and model [267]. It serves as the vehicle’s fingerprint
and comprises 17 characters distributed in three sections
namely vehicle identifier section (VIS), vehicle descriptor
section (VDS), and world manufacturer identifier (WMI).
Based on this method, in [253], Mitra and Mondal used
VANETs to track, identify and classify vehicles via vehi-
cle identification number. Alhammad et al. [254] proposed
an intelligent street parking lot system where drivers sent
their reservation requests comprising various vehicle’s phys-
ical data such as type, size, registration number as well
as drivers information using VANETs. On the other hand,
Jalooli et al. [255] benefited from VANETs to devise a high-
way speed limit advisory system based on some road safety
measures such as weather and traffic conditions as well
as vehicle’s size and type. Finally, Sengkey et al. [251],
Sengkey [252] utilized VANETs-based vehicle classification
to assess traffic density. In their proposed model, packets
disseminated vehicle types and ids to the neighboring vehi-
cles. Therefore, each vehicle received packets from different
classes of vehicles in the vicinity and could estimate the den-
sity on the road. Besides, they could figure out the traffic
congestion based on the density and also the road capacity
threshold.
3) Advantages: VC using VANETs has some fascinating
advantages over existing methods as mentioned below.
Firstly, as discussed before, VANETs can provide all

the real-time and global kinematic and physical vehicu-
lar information in a dependable way. Secondly, VANETs
can take advantage of heterogeneous classes of vehicles
incurring an added value and better classification in con-
trast to most of the traditional VC methods that adopt
only a limited number of vehicle classes. Furthermore, the
classification in VANETs is performed without the need
for generic time and resource demanding soft computing

techniques including ML, NN or other available features and
models. Every vehicle broadcasts its mobility and physical
information (especially its vehicle class) to the surround-
ing vehicles and infrastructure for further processing. This
ability results in a very accurate VC through VANETs with
less computational overhead compared to the conventional
methods that suffer from different range of classification
errors. Classification of vehicles via VANETs bears also
other benefits. For example, some authors have proposed to
use VC so that it can serve other purposes. For instance, they
can calculate vehicular density based on different classes
of vehicles which is very useful for traffic management.
In addition, vehicles on the road have distinctive behav-
iors such as speed, braking distance, stopping distance, etc.
which needs to be taken into account when identifying a
hazardous situation. Hence, a sustainable VC with respect
to the different vehicles characteristics is very beneficial for
traffic safety. Last but not least, as opposed to the traditional
methods, VC is more resilient to some negative influences
like vehicle occlusion, obstacles, weather conditions, and
the number of lanes that can significantly impact the VC
accuracy.
4) Challenges: Recently, the emerging V2X technology
appears to be able to easily classify vehicles by sending
traffic information including the vehicle’s class via broadcast
safety messages to the classification system. This dramati-
cally increases the classification accuracy. However, to reach
a concrete result, we confront some issues as mentioned
below.
GPS receivers of vehicles in a VANET do not per-

form well for the localization purpose due to their limited
accuracy which is around 20 to 30 meters and also low
functionality in high speed and urban areas with conges-
tion and no direct links to satellites. For the sake of a
more accurate localization, there is the demand to couple
other techniques like image/video localization [268], dead
reckoning [269], [270] and cellular localization [271], [272]
with GPS information. Data fusion methods can help
merge all these information [273], [274], [275], [276].
Wisitpongphan et al. [277] proposed an algorithm to improve
the precision of the vehicle’s localization in a VANET, while
Boeira et al. [278] used 5G technology for positioning of the
nodes. Time synchronization among all V2X nodes is also
required for safety for the road users [222]. Basically, this is
carried out by GPS receivers. Nonetheless, other alternatives
should undertake this responsibility in case of unavailable
or poor GPS signal [222].
Reliable data transmission requires a reliable communica-

tion protocol. Communication efficiency is another challenge
which is greatly affected by high speed and congestion.
High speed can lead to fast obsolescence of the position
information while traffic congestion results in a broadcast
storm [279] and in losing seamless connectivity. In broadcast
storms, a redundant number of broadcast beacons causes col-
lisions in the data link layer. The broadcast storm problem
in VANETs was analyzed by Wisitpongphan et al. [277]
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considering packet loss and delay. He suggested a mecha-
nism to achieve a trade-off between delay and packet loss.
Alwan et al. [280] evaluated the beaconing frequency vari-
ation based on real-time vehicles positioning and proposed
a scheme to increase the performance of the position-based
routing in VANETs. In addition, authors in [281] evaluated
the communication performance of cooperative awareness
messages (CAM) standardized by European telecommu-
nication standard institute (ETSI) using traffic jams and
platooning mobility scenarios. The results showed a decline
in CAM functionality that required to be improved. In
a similar approach, in [282] researchers examined the
ETSI CAM at curvy roads and realized that dissemination
performance decreased. Other challenges are range adaption
and interference, that must be taken into consideration.
Both communication between vehicles and infrastructure

(V2I) and directly between vehicles (V2V) have pitfalls and
advantages. In the centralized approach, a road side unit
(RSU) is the single point of failure that can jeopardize
the reliability. Moreover, it is less scalable than the dis-
tributed approach [222]. On the other hand, the deployment
of RSUs can centralize the information for the classifica-
tion system, reduce excessive computation overhead, and
guarantee seamless connectivity even in non-line-of-sight
(NLOS) situations. Furthermore, although V2V commu-
nication incurs trivial cost, V2I communication requires
maintenance and installation cost for deploying RSUs. The
integration of vehicle to infrastructure (V2I) and vehicle
to vehicle (V2V) communications bear some exceptional
advantages as follows: [283]

• Sound information dissemination and fast packet deliv-
ery for VANETs using powerful antennas,

• Plausible deployment cost,
• Short and long range communications coverage,
• Topology partitioning prevention due to high mobility,
• Resolving broadcast storms problems in dense
areas [284].

Furthermore, it provides interoperability with heteroge-
neous solutions like Wi-Fi, cellular networks, WiMAX, and
visible light communication (VLC). The notion of ubiquitous
approaches have some strengths such as reducing packet loss
due to line of sight (LOS) and broadcast storms and also
provision of reliability, higher data rate and illumination.

IV. SOFT COMPUTING TECHNIQUES
Soft computing plays a significant role in VC. Wide range
of algorithms in terms of ML and NN contribute to VC
systems. Besides, VC benefits from numerous features,
models and other classifiers that significantly increase the
classification accuracy. We have classified all the software-
based VC techniques in a systematic way in three tables
based on NN, ML and other solutions. Each technique
serves various purposes based on the application area for
VC. They comprise classification, training, segmentation,
image/PR and feature extraction. Furthermore, correspond-
ing literature using these soft computing methods have been

distributed in the tables accordingly. Bayesian networks
(BNs) [3], [148], [150], [203] as a widespread method for
the data fusion are used when multiple sensors are involved
for the detection and classification of the vehicles. The three
tables list the most frequently used soft computing techniques
in VC.
In addition to the typical and also aforementioned NN

algorithms, VC take advantage of many other NN-based clas-
sifiers, such as random neural networks (RANN), soft radial
basis cellular neural network (SRBCNN), deep convolutional
neural network (DCNN), and deep neural network (DNN).
Table 7 shows the divers range of NN techniques used in
VC along with the related literature and application areas.
The application areas of NN techniques are divided into two
groups namely Feature Extraction and Classification, PR and
Training. Totally, 16 types of NN algorithms were used for
VC such that only three of them dealt with feature extrac-
tion application. In total, 47 publications employed different
NN algorithms to classify vehicles such that 17 publications
availed feature extraction. The table shows that CNN was
the leader of NN algorithm from the usage perspective in
VC systems. 15 articles utilized CNN for feature extrac-
tion. Moreover, the sum of MLP, MLF and ANN algorithms
proved to become the second most popular NN algorithms
by 9 related publications for classification, PR or train-
ing. Additionally, 7 papers exploited BPNN for the same
application areas as the three mentioned techniques.
Features, models and other methods including bag-of-

visual words (BOVWs), discrete Fourier transform (DFT),
recursive segmentation and convex hull (RSCH), etc. also
hugely contribute to VC. Table 8 demonstrates the literature
that used various types of features, models and other tech-
niques in VC in different application domains. The results
describe that segmentation, image/PR, feature extraction and
classification contributed to the application types of VC. 61
articles were mentioned in this category that benefited from
33 distinctive features, models and other methods. Among 23
publications that addressed segmentation as their VC appli-
cation, GMM and PCA methods each with 5 and BGS with
4 publications were the most interesting techniques. With
respect to the segmentation part, 10 types of features and
models were involved. With regard to image and PR, the
HOG model with 5 and VMMR with 3 out of 14 publi-
cations showed to be more prevalent for this sort of VC
application. Besides, 9 kinds of features and models were
discussed in this application area. In terms of feature extrac-
tion application, 12 types of models and features participated
in this section. SIFT was the most commonly used feature
extraction method holding 5 out of 22 corresponding publi-
cations. Further, SURF with 3 related articles possessed the
second favorite soft computing technique. Lastly, classifica-
tion had the smallest share of the applications by only two
articles that worked on two different features/models.
Akin to ML algorithms, specifically, apart from preva-

lent ML algorithms, VC benefits from many other ML-
based classifiers such as histogram intersection-based kernel
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TABLE 8. Features, models and other methods for vehicle classification.

(HIBK) or genetic algorithm-extreme learning machine (GA-
ELM). Table 9 lists the literature that availed ML techniques
for VC in different application fields. Comparably, this divi-
sion with 70 papers held the highest number of papers in soft
computing techniques. Additionally, 17 different ML algo-
rithms were introduced here. ML application domains were
congruent with NN ones. The table shows that nearly all the
ML algorithms targeted classification, PR or training appli-
cations by 58 articles where algorithms for feature extraction
formed a smaller part of the literature with presenting two
types of algorithms that were discussed in 12 papers. In
addition, it indicates that the majority of researchers, 27
papers were inclined to use SVM for VC while KNN with
11 publication appeared to be the second most favorite ML

algorithm. VC took advantage of SVM for classification, PR
or training whereas KNN was applied to feature extraction.
Overall, it is concluded that researchers tend to prefer ML

algorithms over other techniques. SVM for classification,
PR and training followed by CNN and KNN for feature
extraction were recognized to be the most used techniques
in the investigated literature.

V. DISCUSSION
VC has been improved significantly in the recent years in
terms of accuracy and cost due to advancements in sensing,
soft computing techniques and various types of communi-
cation technologies. However, some issues are still open for
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TABLE 9. Machine learning algorithms for vehicle classification.

discussion and more research that we aim to address in this
section.
Firstly, in order to evaluate the performance of VC systems

in a fair and more effective manner, it is imperative to have
a common, universal and standard data set containing the
certain vehicle types. As a result, this enables the transport
sector, users or developers to opt for the most suitable VC
system. Nowadays, VC systems are benefiting from distinct
vehicle types that makes it extremely difficult to have an
unbiased comparison between them. besides, it has been
investigated that the more vehicle types there are, the lower
VC accuracy is derived.
Performance metrics is another significant challenge that

VC systems need to comply to. The majority of VC systems
concentrate only on the evaluation of accuracy and over-
look other important metrics including resistance to inclement
weather conditions, overlapping vehicular positions, noise vul-
nerability, installation or maintenance costs, and operational
sustainability. For instance, many intrusive VC systems pro-
vide high accuracy since they are in contact with the vehicles
though they are so expensive with respect to installation as
well as maintenance. Likewise, vision-based systems undergo
privacy concerns despite having high classification precision.
Additionally, to analyze the performance and compare VC

systems rightfully, it is required to take into consideration the
empirical conditions as a significant factor in VC. Weather
conditions, lane numbers or obstacles are some examples
of the environmental issues that can affect the classification
results. Weather conditions highly influence specific sensors
such as Wi-Fi, LiDAR, camera, RF. Moreover, infrared sen-
sors and acoustic sensors are affected by the number of
lanes causing overlapping vehicles and environmental noise
respectively. Therefore, there is a necessity to develop a
global standard for the experimental setup in order to address
such a problem.
A large number of VC systems rely on ML methods.

A tremendous amount of information is required to be
gathered for training and building an efficient classification

model which results in high accuracy VC. Besides, this is a
very time-consuming process which demands huge efforts to
achieve reliable data. In the future, it is suggested to develop
self-learning VC systems so that classification models can
be trained and enhanced automatically and constantly.
Vehicle occlusion is known to be one of the serious chal-

lenges for VC specifically for non-intrusive roadside sensors
such as LiDAR, Wi-Fi, magnetic sensors, Radar, and RF
by causing disruption in their operation and incurring inac-
curacies in classifying the overlapping vehicles. A feasible
solution is to employ non-intrusive sensors which are located
above the road leading to a more effective VC system.
Sensors like LiDAR can be installed in various heights above
each lane of the road to resolve the interruptions due to the
occlusion dilemma.
It is proved that we can obtain a high accuracy in classifi-

cation. But gaining the perfect VC with 100 percent accuracy
is yet a challenge to the researchers particularly when we are
dealing with numerous types of vehicles. One of the underly-
ing reasons for such a failure is that most of the approaches
depend on a specific kind of sensor for VC. On the other
hand, there exist scant multi-methodical methods that exploit
hybrid and collaborative solutions with even various deploy-
ment strategies to consolidate the strength of various kinds
of sensors, rectify their drawbacks and increase the VC accu-
racy. The combination of heterogeneous roadside and in-road
sensors, WIM, VANETs and WSN lie in this category. For
example, for the sake of energy efficiency, a surveillance
camera can be activated once the vehicle is detected by a
low-energy sensor. Similarly, a camera can start monitoring
when the light is adequate while infrared sensors can func-
tion at night. Hence, integration of different VC systems
seems to be very useful for an optimal classification.
The emergence of VANETs has revolutionized VC

systems. In the near future, all road users including vehi-
cles will be equipped with this technology enabling them
to forward the vehicle class data using vehicular communi-
cation to the VC system. This property makes agencies to
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perform VC easier with higher accuracy. More importantly,
users can utilize VANETs-based VC as they are capable of
providing all physical and mobility information of the vehi-
cles globally and in a real-time manner as opposed to other
VC methods. Our current literature review depicts that more
efforts are desired to leverage the application of VANETs
in the market. VANETs can produce near 100 percent VC
accuracy compared to the traditional methods. Nonetheless,
as previously mentioned, an important challenge is to guar-
antee solid communication between vehicles and also with
the infrastructure so that messages can be transmitted in a
secure and dependable way. Other factors that matter for
seamless connectivity are interference decline, range adap-
tation, and usage of heterogeneous technologies like cellular,
Wi-Fi, etc.
Our review covers a broad range of mature technologies

for VC such as seismic or magnetic sensors that are already
commercialized. On the other hand, some methods including
WSN, VANETs or LTE transceivers are still developing and
require more studies to reach a full readiness level. Table 10
summarizes the technology roadmap of different kinds of
VC technologies. Pros and cons of all methods were priorly
mentioned in the related parts.

VI. CONCLUSION
Over the past decade, we have beheld the development of
VC systems due to the tremendous advancements in soft
computing methods, wireless communications and sensing
technologies. In this paper, we presented a pervasive taxon-
omy of VC technologies in five major categories of intrusive,
non-intrusive, off-road, hybrid and manual approaches. It was
realized that conventional methods such as remote sensing,
vision, sound and contact-based form the biggest part of VC
systems. Comparatively, other approaches like aerial, GPS-
based and multi-methodological have drawn less attention.
Among all VC methods, video images are the most favorite
and widespread solution for researchers.
We investigated the diverse mobility and physical param-

eters that can be retrieved using each method. As opposed
to the other methods, it was indicated that VANETs are
the most ubiquitous approach by providing all the physical
and mobility vehicular information. Furthermore, VANETs

demonstrated that they can provide reliable VC due to their
real-time data compilation and also global traffic information
access. However, in some VANETs circumstances, we might
encounter some issues such as communication deficiency
that can degrade VC performance and should be taken into
account. Subsequent to VANETs, WSN and WIM as hybrid
methods and pneumatic tubes in the class of contact-based
methods manifested to be able to extract the most kinematic
and physical information for VC.
This paper tried to review the most commonly used VC

systems in a systematic way. Strengths, pitfalls and method-
ologies of the VC methods were discussed. Finally, we
conducted a comprehensive study on various soft computing
techniques in the literature for VC. These methods contain-
ing ML and NN algorithms as well as features and models
can enormously alleviate the performance of VC. We dis-
tinguished them into distinct groups based on the specific
application domain to better comprehend the correct usage
of the technique in classifying vehicles. ML and NN algo-
rithms incorporated the highest number of articles in VC
respectively. SVM exhibited to be by far the most customary
algorithm among all soft computing technique for VC.
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