
Received 19 November 2020; revised 15 March 2021 and 18 May 2021; accepted 20 May 2021. Date of publication 24 May 2021;
date of current version 1 June 2021.

Digital Object Identifier 10.1109/OJITS.2021.3083201

A Reinforcement Learning Framework for Video
Frame-Based Autonomous Car-Following

MEHDI MASMOUDI, HAMDI FRIJI , HAKIM GHAZZAI (Senior Member, IEEE),
AND YEHIA MASSOUD (Fellow, IEEE)

School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ 07030, USA

CORRESPONDING AUTHOR: H. GHAZZAI (e-mail: hghazzai@stevens.edu)

A part of this work has been published in IEEE International Conference on Vehicular Electronics and Safety (ICVES 2019),

Cairo, Egypt, Sep. 2019 [1].

ABSTRACT Car-following theory has received considerable attention as a core component of Intelligent
Transportation Systems. However, its application to the emerging autonomous vehicles (AVs) remains an
unexplored research area. AVs are designed to provide convenient and safe driving by avoiding accidents
caused by human errors. They require advanced levels of recognition of other drivers’ driving-style. With
car-following models, AVs can use their built-in technology to understand the environment surrounding
them and make real-time decisions to follow other vehicles. In this paper, we design an end-to-end
car-following framework for AVs using automated object detection and navigation decision modules.
The objective is to allow an AV to follow another vehicle based on Red Green Blue Depth (RGB-D)
frames. We propose to employ a joint solution involving the You Look Once version 3 (YOLOv3) object
detector to identify the leader vehicle and other obstacles and a reinforcement learning (RL) algorithm
to navigate the self-driving vehicle. Two RL algorithms, namely Q-learning and Deep Q-learning have
been investigated. Simulation results show the convergence of the developed models and investigate their
efficiency in following the leader. It is shown that, with video frames only, promising results are achieved
and that AVs can adopt a reasonable car-following behavior.

INDEX TERMS Autonomous vehicle, deep learning, reinforcement learning, video frames processing,
car-following.

I. INTRODUCTION

OVER the last few years, car-following models have
attracted a lot of attention in both research and indus-

trial domains and have witnessed a perpetual evolution since
then [2]. Many innovative projects are being undertaken to
improve and design new models and approaches of car-
following in order to deliver operational and safe technology
that will change the pattern of transportation [3], [4]. With
the rise of intelligent transportation and autonomous intelli-
gent control systems, different approaches of car-following
have been proposed by traffic engineers and transport pro-
fessionals to simulate and analyze the stability of traffic flow

The review of this article was arranged by Associate Editor
Xianfeng Yang.

and deal with dynamic and operational traffic problems and
traffic security [5], [6].
To date, car-following behaviors have become one of the

main research contents on the autonomous vehicle (AV)
decision-making. Many automated vehicles, such as Google
car, adopt car-following models to control their movements
and allow for smoother manipulation [7]. AVs are empow-
ered with sophisticated technology allowing them sensing
their surrounding environment and autonomously navigat-
ing according to the collected data. This is mainly enabled
through diverse types of sensors having vision/non-vision
capabilities such as Inertial Measurement Units (IMU), cam-
eras, LiDAR, and RADAR [8]. Based on these inputs, AVs
need to accelerate/decelerate, manoeuvre in the environ-
ment, and avoid static and moving obstacles. At present
and as it will be discussed in details in the next section,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 2, 2021 111

HTTPS://ORCID.ORG/0000-0001-7381-6164
HTTPS://ORCID.ORG/0000-0002-8636-4264
HTTPS://ORCID.ORG/0000-0002-6701-0639

MASMOUDI et al.: REINFORCEMENT LEARNING FRAMEWORK FOR VIDEO FRAME-BASED AUTONOMOUS CAR-FOLLOWING

several algorithms have been developed to investigate the car-
following behavior of AVs. Most of these studies are based
on typical mathematical and control modeling algorithms
to ensure smooth car-following such that an autonomous
vehicle, defined as the follower, keeps following another
vehicle, defined as the leader, while maintaining safety dis-
tances [9]–[11]. Recently, few studies have promoted the
use of Artificial Intelligence in designing car-following mod-
els [12], [13]. Most of them resorted to use Reinforcement
Learning (RL) methods to determine navigation decisions for
the follower vehicle and hence, design their car-following
models based on numerical inputs of the vehicle dynam-
ics, e.g., the lateral position, the speed, and the yaw angle.
However, to the best of the authors’ knowledge, there is no
previous work that proposed RL based car-following frame-
work while making navigation decisions based on video
frames processing only.
In this paper, we propose two artificial intelligence

algorithms to address the car-following problem for AVs,
specifically, RL-based algorithms. We develop an end-to-end
car-following framework based on video frames processing.
We promote the use of video frames processing for its possi-
bility to extract real-time information with high accuracy and
speed. Therefore, we propose to exploit this continuously
available data to allow an AV to follow another vehicle.
Throughout the rest of the paper, we identify the AV as “the
follower”, and the leading vehicle as “the leader”.
The proposed framework is essentially based on the two

following phases:
• A computer vision phase: the follower automatically
detects objects in the environment then uses the char-
acteristics of depth images to recognize the leader
vehicle and compute the distance and the deviation
angle between the leader and the follower by exploit-
ing the information extracted with the real-time object
detector: the YOu Look Once version 3 (YOLOv3)
algorithm [14].

• An RL phase: an RL algorithm is trained and employed
to exploit the extracted features to make real-time nav-
igation decisions that ensure a safe distance with the
leader without losing its detection or crashing with other
objects.

Two RL algorithms are investigated and tested in the
RL phase: the finite-state Q-Learning (QL) algorithm and
an improved version of the Deep Q-Network (DQN). We
start first by modeling the QL algorithm and adapt to the
car-following problem [15]. The QL is a fast-training RL
algorithm that we use to enable real-time driving decision
making. Afterwards, we investigate the DQN model that we
implement with improvements to extract the most signifi-
cant information from image sensory inputs and combine
them with other environmental features. Indeed, unlike the
QL algorithm, DQN is capable in handling high-dimensional
scenarios and hence, may improve the driving capabilities of
the AV in some special cases where the precision of driving is
a crucial feature for a safe driving (e.g., narrow roads, dense

roads/highways, high density urban area’s roads). Our objec-
tive is to analyze the autonomous car-following framework
using both RL models to ensure the following of a leader-
vehicle using only image-based features collected from the
front camera of the follower. This is performed while avoid-
ing collision with the leader vehicle and any other actor in
the environment without losing the detection of the leader.
We consider a common scenario of one leading vehicle and
one follower in a straight road such as highway. Afterwards,
we extend our study to the case where another vehicle exists
and acts as a moving obstacle. In the rest of the paper, we
identify the latter vehicle as “the obstacle”.
The proposed framework is simulated on the CARLA

simulator and trained to navigate in a way to follow a leader-
vehicle in several predefined scenarios using seven different
maps and four weather conditions, then tested on three differ-
ent maps. Our experiments and simulation results investigate
the object detection technique performance and the behavior
of the AV and the decisions taken to follow the leader. For the
detection phase, the YOLOv3 model performs well by reach-
ing higher accuracy with a notable ability to detect objects
in real-time. For the RL phase, the results show that the
models converge after a certain number of training episodes
and effectively performs navigation for low speed driving.
The purpose of this paper is to show that only with images,
the follower is able to efficiently but not at 100% make
decisions to follow the leader. The results of the model are
very promising for the autonomous car-following approach.
It supports our vision to further investigate the problem by
involving other environmental actors and different sensors
inputs, such as LIDAR and RADAR.
The contributions of the paper can be briefly summarized

as follows:

• We investigate the car-following problem by develop-
ing an end-to-end AI-driven framework based on video
frames processing for obstacle-free and obstacle-aware
scenarios.

• We model the car-following algorithm as a two-phased
procedure.

– In the first phase, a computer vision algorithm is
executed to allow the follower to automatically
identify its position with respect to the leader using
RGB-D features.

– The second phase implements an RL algorithm to
autonomously follow the leader.

• We implement the framework on the CARLA simu-
lator and investigate the performance of the proposed
approach for different scenarios and versus other com-
puter vision and RL algorithms.

The remainder of the paper is organized as follows.
Section II provides a literature review related to the car-
following problem. Section III presents the proposed car-
following approach methodology. Section IV delves into
the computer vision part. Section V presents the used RL

112 VOLUME 2, 2021

algorithms. Simulation results are discussed in Section VI
and finally, we conclude the paper in Section VII.

II. LITERATURE REVIEW
Researchers and scientists tackled the problem of car-
following to enhance the efficiency of the autonomous
driving. Indeed, In 1953, Pipes first presented a car-
following technique which only considered the relative
velocity between vehicles [16]. The presented technique
in [16] investigate the acceleration behavior of the driver as
a function of the inter-vehicle separation and relative speed,
and it could be improved by considering other features.
In [17], Forbes studied the car-following behavior by consid-
ering the reaction time needed for the follower to decelerate
and apply the brakes. In [18], Ou and Tang developed a car-
following model considering Inter-Vehicle Communication
(IVC) to examine each of the vehicle movement and to
better identify and hence, adjust the driving behavior in a
two-lane traffic system when an incident occurs on a lane.
In [11], the authors developed a path-following algorithm
for AVs. The model is based on road geometry data as well
as vehicle dynamics. These analytical models are usually
based on deterministic approaches requiring as inputs math-
ematical parameters reflecting the vehicle dynamics. The
models usually require a perfect knowledge about the activ-
ity of the leader vehicle, which is practical for real-time
decision making as vehicles need to continuously exchange
data and this might be subject to connectivity issues and
latency effect [19].
In the last few years, the research fields were invaded

by Artificial Intelligence (AI) models, and hence some
researchers investigated the car-following problem using AI
algorithms to increase the performance of car-following
based autonomous driving. In [20], the authors proposed
a driving style recognition method based on vehicle tra-
jectory data to avoid rear-end collision crash and hence,
design useful driver assistance and vehicle control systems.
In [21], Wang et al. proposed a deep neural network-based
car-following model that takes the relative velocities and
positions between the two observed vehicles in the last few
time intervals as inputs.
In [22], Zhu et al. presented a framework for human-

like autonomous car-following planning. This method is
based on deep Reinforcement Learning (deep RL). The
model maps in a human-like way from speed, relative
speed between vehicles, and inter-vehicle spacing to accel-
eration. In [23], Abbas et al. aimed at modeling normal
and safety-critical driving behavior in traffic under natural-
istic driving data using agent based modeling techniques.
In [24], Zhou et al. proposed an RL-based car-following
model for the Connected and Automated Vehicles (CAV) in
order to obtain an appropriate driving behavior to improve
travel efficiency, fuel consumption and, safety at signalized
intersections in real-time. The result shows that by speci-
fying an effective reward function, the automated car can
efficiently navigate under different traffic scenarios as well

as traffic light cycles with different duration. This study
reveals a potential of emerging RL technologies in transport
research and applications. In [25], Gao et al. established the
reward function of each driver data based on the Inverse
RL algorithm and analyzed the driving characteristics and
the following strategies. These methods have empowered
AVs with extra intelligence in understanding the behavior
of the leader vehicle by predicting its activity and mak-
ing in-situ decision making but still with different degree
of data exchange. In this study, we propose to making car-
following decision making based on local inputs provided
by the follower AV’s sensors only. We base our study on
the video-frames collected by the front camera of the AVs
so as to make real-time decisions based on what is seen
only. Ideally, other data streams provided by different data
sources can be aggregated and combined together for better
decision making. However, in this study, we aim to analyze
the ability of a two-phase AI framework involving a com-
puter vision module followed by a reinforcement learning
module in performing accurate car-following decisions.

III. PROPOSED CAR-FOLLOWING FRAMEWORK
In this section, we present the adopted methodology to model
the RGB-D image-based car-following problem for AVs.
In traffic flow theory, car-following is a method for deter-

mining how vehicles follow one another on a roadway. The
idea with this time-continuous model is that a vehicle will
maintain a minimum space and time gap between itself and
the vehicle that precedes it. In this paper, we adopt the one-
leader one-follower car-following problem. To do so, we
need to detect a vehicle using an object-detector algorithm
and to follow it in an autonomous way using an RL approach
as shown in Fig. 1.
For the object detection phase, we use the pre-trained

object-detector YOLOv3 since it effectively performs in real-
time applications [14]. To feed this algorithm with images,
we need to get, in a continuous way, video frames collected
by the front camera of the follower. Then, YOLOv3 tries
to detect cars and objects and returns the bounding box of
each detected object. Next, we determine the distance and
the angle between the leader and the follower.
On the other hand, the RL phase is responsible for the

real-time navigation and decision making processes of the
follower, in which the trained proposed algorithms use all
the knowledge that they acquired during the training phase to
autonomously follow the leader using only features extracted
from the RGB-D frames. The first employed algorithm is the
QL, which is characterized by its rapidity that is an important
key in the autonomous driving field. The other algorithm is
a modified version of the DQN model, that combine image
sensory inputs with other environmental features to enhance
the driving capabilities of the AV.

IV. OBJECT DETECTION AND FEATURES EXTRACTION
In this section, we start by presenting the main object detec-
tion learning techniques for autonomous application. Then,

VOLUME 2, 2021 113

MASMOUDI et al.: REINFORCEMENT LEARNING FRAMEWORK FOR VIDEO FRAME-BASED AUTONOMOUS CAR-FOLLOWING

FIGURE 1. Overview of the proposed car-following framework.

we present the architecture of YOLOv3 object detector.
Finally, we introduce the YOLOv3 custom object detection
and its different steps.

A. OBJECT DETECTION LEARNING TECHNIQUES
In this section, we overview the main object detection learn-
ing techniques using image processing for AV applications.
The purpose is to briefly investigate the performance of
machine learning models such as the Support Vector Machine
(SVM) model as well as deep learning algorithms like the
You Only Look Once (YOLO) algorithm and the Single
Shot Detector (SSD) in terms of accuracy and the timing-
process [15]. SVM is a supervised learning model that
analyzes data for both regression and classification. YOLO
is a fully CNN (FCN). It contains only convolutional layers
and is invariant to the size of the input image. YOLO takes
a different approach to object detection since it “looks” at
each image once as indicates its name. The SSD is one of the
first methods using a single convolutional network’s pyra-
midal feature hierarchy for different size object detection.
The pyramidal hierarchy consists of several convolutional
layers of decreasing sizes. Simulation results, presented in
Section VI-A, show that SVM poorly performs and its
speed cannot assure real-time response. Therefore, machine
learning solutions, in general, are not suitable for real-time
object detection. Deep learning solutions such as YOLO and
SSD provide effective vehicle detection results and can be
implemented to complement other technologies in detection
vehicles and obstacles. YOLO is very fast due to the fact
that it looks at the image once. The SSD still suffers from
a lower speed in treating frames. Depending on the applica-
tion’s objectives, YOLO should be employed for extremely
real-time processing due to its rapidity in treating the frame
while SSD can be employed for its high accuracy in detect-
ing small objects. To this end, we choose to pursue this
study with the fastest algorithm, the YOLO model, as the
main object detector for the car-following approach.

B. YOLOV3 OBJECT DETECTION TECHNIQUE
In this section, we introduce the multi-object detection algo-
rithm YOLOv3 and the different steps to be followed to
segment the environment into different states. With the 3rd
version of YOLO [14], YOLOv3 has incremental improve-
ments compared to YOLOv2 letting the algorithm capable
of detecting small objects in a much accurate way than the
Single Shot Multi-Box Detector (SSD) [27].
Composed of a total of 106 layers with 75 convolu-

tional layers and 31 other layers such as shortcut, upsample,
yolo, and route layers, YOLOv3 is a feature-learning based
network and can deal with images with any sizes due to
the use of no fully-connected layer, which makes the algo-
rithm very suitable for real-time object detection without
affecting its precision. YOLOv3 performs detection at lay-
ers 82, 94, and 106. During the training phase, YOLOv3
network is fed with input images to predict 3D tensors cor-
responding to the last feature map which refers to three
different scales. These scales are implemented to detect
small, medium, and big objects. Hence, it can detect dis-
tant and close vehicles. As the network goes deeper, its
feature map gets smaller. As in SSD, object detection is car-
ried out on different feature map in order to catch various
scales. YOLOv3 is improved by adopting a Feature Pyramid
Network (FPN)-like structure [28].
As shown in Fig. 2, the FPN is similar to the pyra-

midal feature hierarchy but more features are utilized by
up-sampling the feature map and merging it with the cur-
rent feature map. This leads to detect the features in further
layers to improve the prediction accuracy and capture both
low and high level object’s information.
For class prediction and multi-label classification,

YOLOv3 uses binary cross-entropy loss for each label and
also replaces the softmax function of YOLOv1, which con-
verts scores into probabilities, with independent logistic
classifiers to calculate the likeliness of the input belonging
to a specific label.

114 VOLUME 2, 2021

FIGURE 2. Feature Pyramid Network (FPN) structure.

FIGURE 3. Illustration of the attributes of the YOLOv3 bounding box.

For anchor boxes and cost function calculation, YOLOv3
uses in total nine anchor boxes with three for each scale
and can predict bounding boxes per image ten times more
than YOLOv2. As shown in Fig. 3, YOLOv3 uses refined
parameters tx and ty related to bx and by: the (x, y) bounding
box center coordinates, which are given as follows:

bx = σ(tx)+ cx and by = σ(ty)+ cy, (1)

bw = pwe
tw and bh = phe

tw , (2)

where bw and bh are the width and the height of the
prediction respectively, tx, ty, tw, and th are the detector
outputs, and σ is the sigmoid function. The parameters cx
and cy are the top-left coordinates of the grid, pw and ph
are the anchor box dimensions, p0 is the confidence of the
detected object while pc denotes the ith class probability.
In Fig. 13, we show the output of YOLOv3 applied to

the input image where two objects are detected as shown by
the two bounding boxes. For each bounding box, YOLOv3
shows the class of the object detected and the score which
represents the level of confidence of the object detected.

C. YOLOV3 CUSTOM OBJECT DETECTION
In this section, we present the YOLOv3 custom object detec-
tion technique to detect obstacles and noises in the road
environment, in other words, identify vehicles other than the
leader. Custom object detection, is a transfer learning tech-
nique where a model developed for a task is reused as the
starting point for a model in a second task. It is the situation
where what has been learned in one setting, is exploited to
improve generalization in another setting.
Dataset Collection and Annotation: As with any deep

learning task, the first and the most important step is to
collect and prepare the dataset. To this end, we collect a set
of 2000 images with a size of 608×608 with different poses
and scales to provide a reasonable accuracy.
The next step is to annotate the dataset using an open-

source software written in python to define the location
(Bounding box) of the object in each collected image.
Training Process: As with any deep learning training pro-

cedure, we need to split the data into training and test sets.

FIGURE 4. Illustration of (a) the deviation angle and (b) the AFoV.

We select randomly, 1800 images of the data for training
and 200 images for testing the model.
To train the model, we choose Darknet, an open source

deep neural network framework [29]. Darknet comes with
multiple configuration for training on different architectures
by just using pre-trained models which contain convolutional
weights trained on ImageNet.

D. DISTANCE AND DEVIATION ANGLE CALCULATION
The distance and deviation angle are calculated using the
RGB-D frames provided by simulated depth sensory inputs
(e.g., the Orbbec 3D camera) attached to the follower vehicle.
Using the bounding box center point provided by YOLOv3
as a reference of the object location on the image, it is
possible to accurately estimate the distance and the deviation
angle. This method is much better than using the bounding
box coordinates or the 3D object detection [30] due to its
complexity or limited accuracy. To this end, we need to
express the angular size of each pixel horizontally, denoted
by �x, as follows:

�x = AFoV

ImW
, (3)

VOLUME 2, 2021 115

MASMOUDI et al.: REINFORCEMENT LEARNING FRAMEWORK FOR VIDEO FRAME-BASED AUTONOMOUS CAR-FOLLOWING

FIGURE 5. Reinforcement learning illustration.

where ImW is the image width and AFoV is the horizontal
Angular Field of View (AFoV). The latter is a constant
specific for every camera. In practice, AFoV is a measure of
the vantage point from the lens distance as shown in Fig. 4.
For the Orbbec 3D sensor, AFoV = 60◦. The camera is
positioned at (ImW2 , 0, 0) in the Cartesian coordinate system
and the central pixel of the bounding box is positioned at
(i, j) without taking into consideration the third dimension.
As a start, we proceed by calculating the angle of deviation,
denoted by θ , using the following expression:

θ = �x ×
(
i− ImW

2

)
, (4)

where (i − ImW
2) denotes the number of pixels from center

to the representative pixel.
Consecutively, we compute the distance D separating the

follower and the leader as D = Z
cos(θ)

, where Z is the distance
between the sensor plane and the object, which is directly
extracted from the depth features of the sensor. Each depth
sensor has a depth scale value that translates pixels to meters.
Accordingly, we define the distances Dmin and Dmax, respec-
tively, as the maximum distance to ensure the detection of
the leader-vehicle and a danger distance that refers to the
minimum distance separating the leader and the follower at
which the probability of crashing is significant.

V. REINFORCEMENT LEARNING FOR AUTONOMOUS
CAR-FOLLOWING
In this section, we present two different RL algorithms
to enable autonomous car-following. For each algorithm,
we describe the mathematical methodology behind it and
we define the space of states and actions that identify
the possible navigation decisions during the navigation
decision-making process. But first, we briefly overview RL
and developed the reward function employed for the RL
car-following phase.

A. REINFORCEMENT LEARNING
Considered as the best paradigms in the realm of Artificial
Intelligence (AI), the RL can be applied to teach machines
how to accomplish the optimal behavior within a given con-
text and how to map circumstances to behaviors. RL is a
type of AI technique that allows an agent to learn from their
own actions and experiences, either positive or negative.
An RL setup usually consists of two parts, the agent and

the environment as shown in Fig. 5 here an agent needs to

autonomously learn the actions to take given the state of its
environment in order to maximize a certain reward.
In the context of the car-following problem, the environ-

ment is what the camera can observe, while the agent is the
following vehicle which uses the RL algorithm to navigate
and follow its leader. To decide what action at should be
taken in response to a current state st i, the agent starts to
capture images through its front camera and processes them
to extract the features needed by the algorithm, as described
in Section IV. After executing the action at, a reward Rt
is then computed and the agent will move to a next state
st+1. This process will be repeated during the training phase
of the RL algorithm. At training iteration, the model will
update its parameters based on its own behavior. The model
convergence is reached if the accuracy of the model does
not improve for a fixed number of consecutive iterations.

B. REWARD FUNCTION: COLLISION WITH THE LEADER
VS. DETECTION LOSS
The reward function, in the context of the investigated
car-following problem, should consider the distance D that
separates the leader and the follower, the deviation angle θ ,
and the collision risk with the leader-vehicle. Consequently,
the AV will be forced to follow the leader. Therefore, we
suggest a piecewise function that considers the maximum
distance, Dmax, to successfully detect the leader vehicle and
a danger distance, Dmin, that refers to the minimum distance
separating the leader and the follower at which the probabil-
ity of crashing is significant. The reward function of the RL
algorithm for the proposed car-following approach, denoted
by Rt(D, θ), can be expressed as follows:

Rt(D, θ) =
{

ζ − α
(
(β × D− δ)2 + θ2

)
if Dmin ≤ D ≤ Dmax,

−∞ D < Dmin,

(5)

where α is the coefficient of proportionality between the
reward and the variables (i.e., Distance D and angle θ), δ

β
is

the ideal distance between the leader and the follower, and
ζ is the maximum reward. To decrease the probability of
crashing with the leader, the model considers any case with
distance D less than Dmin as a potential crashing situation.
Distances higher than Dmax may lead to non-detection cases.
In Fig. 6, we plot the reward function, expressed in (5),

versus the most parameters affecting the navigation of the
follower, namely the distance D and the angle θ . We notice
that the reward function is maximized if θ is around 0◦
and the distance is equal to Dmax

2 which means that the
autonomous agent is attempting to maintain an angle to stay
right behind the leader within a safe distance to keep its
smooth detection and avoid any risk of crash.

C. AUTONOMOUS CAR-FOLLOWING DRIVING WITH
FINITE STATE SPACE: QL ALGORITHM
In this section, we use a rapid and simple-structured RL
method: the QL, where Q stands for quality which reflects
how efficient is a given action in maximizing coverage on

116 VOLUME 2, 2021

FIGURE 6. Plot of an example of the reward function for Dmin < D < Dmax where
α = 0.005, β = 7, δ = 190, and ζ = 40.

highest priority events [31]. QL is called a tabular method
where the spaces for the state and the behavior in such prob-
lems are small enough and their approximate value functions
can not be represented as arrays and tables. In addition,
QL is a model-free RL method which allow the achieve-
ment of car-following solutions with reduced complexity,
i.e., less run-time compared to other RL techniques. Before
starting the learning phase, the Q-table is initialized with
zero-elements. Then, the agent chooses an action at, gets a
reward Rt, moves to a new state st+1, and then updates its
Q-table according to the Bellman function [32]:
Qπ : S×A→ R represents the expected return of a state-

action pair given by the policy π and updated as follows:

Q(st, at) = (1− α)Q(st, at)+ α
(
Rt + γ max

a
Q(st+1, a)

)
,

(6)

where Q(st, at) is the estimate for the action-value function
of the pair state-action, α ∈ [0, 1] is the learning rate that
reflects how the new information will override the old one
and (Rt + γ maxa Q(st+1, a) is the learned value, which is
composed of the immediate reward Rt and the estimate of
the future γ maxa Q(st+1, a) where γ ∈ [0, 1] is the discount
factor which reflects the effect of the previous actions for the
evaluation of the current state. The sets S and A denote the
state and action spaces of the car-following problem. In this
section, we denote by De the distance D previously defined
in Section IV-D. During the training phase of an QL model,
we put the leader in different states and let the follower takes
random actions to follow it until it learns how to navigate.
In case of non-detection or loosing the simulation will be
interrupted and a new episode is started. For the testing phase
of the proposed approach, the follower tries to follow the
leader by choosing the action to ensure the highest reward
from the Q-table corresponding to the state of the leader.

To summarize the solution, the pseudo code in Algorithm 1
describes the training method of the QL algorithm to
enable autonomous car-following. Since the leader vehi-
cle can be located at any position with respect to
the follower, we represent the set of states, denoted

Algorithm 1 QL Algorithm for Car-Following Training
1: Require:
2: States S = {s0, · · · , sI},
3: Actions A = {a0, · · · , aT },
4: Reward function R = S× A→ {R},
5: Learning rate α ∈ [0, 1],
6: Discount factor γ ∈ [0, 1],
7: procedure ObjectDetection()
8: Image ← get a frame,
9: Bounding boxes ← YOLOv3 (Image),

10: for each bounding box do
11: Calculate the distance Dbox,
12: Estimate the distance De,
13: Calculate the angle θ ,
14: Identify the state ŝ ∈ S given De and θ ,
15: end for
16: return ŝ,De
17: procedure Q-learning()
18: Set Q to zero,
19: while Training do
20: (ŝ,De) ← ObjectDetection(),
21: Start in state ŝ,
22: while Leader is detected (ŝ �= s0) do
23: Select the strategy π according to ε (exploration or

exploitation),
24: a ← π(s) using (9),
25: (ŝ′,D′e) ← ObjectDetection(),
26: R ← R(ŝ′,D′e),
27: Q(ŝ, a)← (1− α)Q(ŝ, a)+ α(R+ γmaxaQ(ŝ′, a)),
28: Update ε using (10),
29: ŝ← ŝ′
30: end while
31: end while
32: return Q

by S, as follows: S = {s0, s1, . . . , sI} where I is the
number of regions obtained from the first phase and s0
is the state where the follower fails in detecting the
leader.

1) OBSTACLE-FREE CAR-FOLLOWING SCENARIO

In the case of an obstacle-free car-following, the AV is
driving in a situation where there is no detected objects
other than the leader, and even if there is another vehicle, it
will be ignored by the computer vision phase. In fact, this
scenario is useful in some cases such as highways and no
overtaking roads. In this section, we define the states and
actions space for the obstacle-free car-following scenario as
follows:

• The environment is what the front camera of the
follower vehicle can see in the simulation environment.

• The agent is an AV trying to follow one leader vehi-
cle: For this scenario, we consider the existence of one
leader and one follower vehicles in a straight road.
Obstacles will be investigated in Section V-C2.

• The actions are all the possible moves. Due to the use of
low number of actions and states, we choose a low speed
leader-follower (no more than 25 km/h). As described
in Table 1, we choose a set of T = 7 actions where

VOLUME 2, 2021 117

MASMOUDI et al.: REINFORCEMENT LEARNING FRAMEWORK FOR VIDEO FRAME-BASED AUTONOMOUS CAR-FOLLOWING

TABLE 1. The set of actions A.

FIGURE 7. Obtained states after image segmentation for the obstacle-free scenario.

TABLE 2. The set of states S .

A = {a0, a1, a2, a3, a4, a5, a6}. In this simulation, two
acceleration rates have been used that we refer to as
“+” and “++”, respectively.

• The states are the regions of the captured image defined
according to the distance De and the angle θ indicating
the relative position of the leader. As shown in Fig. 7,
we choose to divide the image, having as origin its top
left corner, into a set of I = 10 states S = {s0, s1,
s2, s3, s4, s5, s6, s7, s8, s9}. The right-hand and left-
hand side lines in Fig. 7 have the equations Y1(x, y)
and Y2(x, y), respectively. In Table 2, we can determine
the states of the follower by calculating Y1(xp, yp) and
Y2(xp, yp) where xp and yp are the (x, y) coordinates of
the center of the bounding box of the detected vehicles.
Table 2 provides all the possible states given De and θ .
Note that the states are independent of the road lanes;
they are fixed for the input images and are only subject
to the follower vehicle behavior.

• The learning rate α is set to 0.5 and the discount fac-
tor to 0.4. For the exploration-exploitation trade-off
described in Section V-E, we set εmax to 1 and εmin
to 0.01.

FIGURE 8. States segmentation for the obstacle-Aware scenario.

TABLE 3. Example of possible states for the obstacle-aware scenario.

2) OBSTACLE-AWARE CAR-FOLLOWING SCENARIO

In this section, we consider the existence of an obstacle in
the environment in which the AV is navigating. This scenario
is more complex for the AV. Indeed, the follow must take
into consideration other objects in the environment to avoid
any erroneous navigation decision that could lead to a crash.
In this section, we assign and set the different parameters
and components of the QL model as follows:

• The agent is an AV trying to reach one leader car:
The investigated scenario consists in one leader, one
obstacle, and one follower vehicles where the obstacle is
another vehicle that should be avoided and not followed
by the follower.

• The actions are kept the same as presented earlier in
Section V-C1.

• The states are defined in this case using the same
approach as previously. However, the segmentation of
the captured image is established according to the dis-
tance De and the angle α, previously defined, in addition
to the distance DOe and the angle αO indicating the
relative position of the obstacle compared to the fol-
lower. Using the same segmentation methodology as
in Fig. 8, every image frame is segmented, having as
origin its top left corner, into a set of I = 100 states
S = {s00, s01, s02, s03, s04, s05, s06, s07, s08, . . . ,

sij, . . . , s99} where i ∈ [0, 9] refers to the state of
the leader and j ∈ [0, 9] refers to state of the obsta-
cle. To obtain sij, we need to first determine both
the leader and the obstacle states and then, combine
them into one state. Table 3 provides some of the pos-
sible states used in the obstacle-aware car-following
scenario.

118 VOLUME 2, 2021

FIGURE 9. Architecture of the DQN agent.

Algorithm 2 DQN Algorithm for the Car-Following
Training
1: Initialize replay memory B,
2: Initialize number of episodes M,
3: Initialize action-value function Q with two random sets of

weights � and �′,
4: ε = 1,
5: for i = 1, · · · ,M do
6: for t = 1, · · · , T do
7: Choose N ∈ [0..1],

8: Set at =
{

arg maxaQ(st, a;�), if N > ε

random action, otherwise,
9: Execute action at, collect reward Rt+1, and observe next

state st+1 = (Framet+1, Dt+1, θt+1),
10: Store the transition (st, at,Rt+1, st+1) in B,
11: Sample mini-batch of transitions (sj, aj,Rj+1, sj+1) from

B,
12: Set yj =

{
Rj+1, if sj+1 is terminal
Rj+1 + γ maxa′ Q(sj+1, a′;�′), otherwise,

13: Perform a gradient descent step using targets yj with
respect to the online parameters �,

14: Every C steps, set �′ ← �,
15: end for
16: ε = ε + (εmax − εmin)× exp (−k × i),
17: end for

D. AUTONOMOUS CAR-FOLLOWING DRIVING WITH
INFINITE STATE SPACE:DEEP Q-NETWORK ALGORITHM
In this section, we present the RL approach to address the
car-following problem. The architecture of the RL model is
given in Fig. 9.
Indeed, the RL Algorithm, DQN [33], exploits the CNN to

extract the relevant information in the image, with the goal
of approximating the Q-value function, defined later in (8),
that will be used for the decision making process. In our
proposed model, we suggest to change the architecture of the
CNN model inside the DQN algorithm by adding additional
features that help the model avoid crashing with the leader
and ensure a high-level safety driving. The RGB-D frame
alongside the extra features are given as the input and the
maximum Q-values of all possible actions are generated as
the output. At each step t, in Algorithm 2, the agent inspects

the current state St of the environment, decides which action
to be taken from the predefined action-space according to a
policy π and finally, observes a reward signal rt to evaluate
this action. The goal of the agent is to identify the best policy
that maximizes the expected sum of discounted rewards rt
expressed as follows:

rt
.= Rt + γRt+1 + γ 2Rt+2 + · · · + γ TRt+T

.=
T∑
k=0

γ kRt+k,

(7)

where γ ∈ [0, 1] is a discount factor that determines the
importance of future rewards and T is the number of steps.
The Q-function of a given policy π is defined as the expected
return from executing an action a in a state S as follows:

Qπ (s, a) = E[Rt | st = s, at = a, π]. (8)

In the algorithm, we stock last agent experiences
(st, at,Rt, st+1) into a buffer B. Then, we take samples
already stocked to train the deep network. The idea behind
taking samples from the replay buffer is that the data
becomes almost independent and identically distributed
(i.i.d.). Consequently, we obtain a more generalized model.
In particular, DQN uses deep learning into the aim of obtain-
ing an estimate of the Q-function for the current policy which
is close to the optimal Q-function Q∗ defined as the highest
return we can expect to achieve by following any strategy.
Hence, to successfully reach the Q∗, we should find the
optimal model weights, denoted by �. To reach a more
stable input and output, we create two deep networks, the
target network (weighted with �′) and the standard network
(weighted with �). We use the first one to retrieve Q values
while the second one includes all updates in the training.
After C steps, we synchronize �′ with � that fixes Q-value
targets temporarily, in consideration of the fact that the data
is not 100% independent and identically distributed.

• State space: In our model, every state is defined by the
distance D and the deviation angle θ , between the leader
and the follower vehicle, in addition to the high-level
features extracted by the Convolutional Neural Network

VOLUME 2, 2021 119

MASMOUDI et al.: REINFORCEMENT LEARNING FRAMEWORK FOR VIDEO FRAME-BASED AUTONOMOUS CAR-FOLLOWING

TABLE 4. Actions space of the DQN model.

(CNN) from every frame. Hence, the autonomous fol-
lower extracts the previous features from the frames and
concatenates them with the output of the CNN that con-
tains all semantic information about the environment to
identify the state.

• Action space: Our model is trained to choose an action
from an action-space composed of eight possible behav-
iors as shown in Table 4. The possible actions include
deceleration, acceleration, and steering left and right.
To sum up, the training process of the DQN model is
presented in Algorithm 2. The latter algorithm contains
an initialization part, in which the training environ-
ment is prepared and a second repetitive part where
the weights will be updated in each epoch.

E. EXPLORATION AND EXPLOITATION INTERPLAY
In the training phase of both algorithms (QL or DQN),
we consider to balance between two phases: the explo-
ration and exploitation phases. We aim to achieve a balance
between exploring the environment and exploiting the
already acquired knowledge while training the RL algorithms
to maximize their efficiency. The logic behind this technique
is that since the agent needs to get the highest reward, it
can choose between keep trying new actions to bring higher
reward (exploration phase) or just selecting the action that
leads to the highest reward based on current information
(exploitation phase). Depending on the value of a parameter
ε ∈ [0, 1], the decision to explore or exploit is made. It is
thus important to find a balance between these two extremes.
The idea is that we must have a large value of ε at the begin-
ning of the training and then, we gradually decrease it since
the follower becomes more confident at making decisions
(i.e., estimating Q-values). We employ the ε-greedy strategy
as it is efficient and easy to implement. In this context, the
action at is taken as follows:

at =
{

arg maxa Q(st, a) when N ≥ ε

random action a otherwise,
(9)

where N is a random number generated between 0 and 1.
To update the ε and decrease it at each step, we apply

the following rule:

εt+1 = εt + (εmax − εmin)e
(−k×i), (10)

where εmin is the minimum exploration probability, εmax is
the first exploration probability, k is the rate at which our
exploration factor decays, and i refers to the ith step of the

training phase. In regards to the previous equation, we can
notice that, initially, ε will be closer to its maximum, and
hence the model prefer the exploration of the environment.
Afterward, ε is going to decrease until we attend the its
minimum. In other words, at the last episodes the model
will train based on his previous experiences more than doing
exploration decisions. As a result, we build an agent that
learns the dynamics of the stochastic environment.
The proposed framework is based on two models. Each

model has a set of possible actions, denoted by A =
{a0, a1, . . . , aJ}. The cardinality of A is determined as
J = (3 × (AC + DC) + 1) where 3 refers to the num-
ber of possible directions (left, straight, right), AC and DC
are the number of possible acceleration and deceleration
rates, respectively, and 1 refers to the action of braking till
completely stopping.

VI. SIMULATION RESULTS
In this section, we investigate the performance of the object
detection learning models using the proposed algorithms.
Indeed, to train our model and test it, we simulate an envi-
ronment who is on the verge of reality, using the CARLA
simulator. Actually, CARLA is very practical in this case
due to the high cost of testing such a solution in a real-
istic environment. The latter simulator is open-source and
it has been designed to support the development, training,
and validation of autonomous driving systems. In addition to
the open-source code and protocols, CARLA provides open
digital assets (urban layouts, buildings, vehicles) that were
created for this purpose and can be used freely.

A. PERFORMANCE COMPARISON OF THE OBJECT
DETECTION TECHNIQUES
In this simulation, a video of 50 seconds obtained from
a real-world setting and taken from the front camera of a
self-driving car was chosen to compare the SVM, YOLO,
and SSD models. We choose a sub-division of 1250 frames
for this video which means that an image is captured every
40 ms. Then, the set of frames is fed to the learning models
to detect different vehicles.
In Fig. 10, we provide two instantaneous snapshots of the

recorded video showing the detection of the SSD and YOLO
algorithms. The YOLO model, illustrated in Fig. 10(a),
detects the nearby vehicles but struggles with smaller objects
unlike the SSD, which can reach higher accuracy due to the
presence of default boxes and multi-scale features as shown
in Fig. 10(b). The SSD has more portability to detect vehicles
even moving in the opposite direction.
In Fig. 11, we present an investigation of the number of

frames treated by each model: The Frame Per Second (FPS)
was computed to reflect the speed of each learning model
in treating the video-frames. We can notice that SVM is
very slow and its speed cannot exceed 2 FPS because of
its incorporated sliding window approach. Thus, this model
cannot be run for real-time applications. The YOLO model

120 VOLUME 2, 2021

FIGURE 10. Snapshots taken at the same instant showing the detected vehicles
using (a) YOLO, and (b) SSD.

FIGURE 11. FPS versus the video progress for SVM, YOLO, and SSD.

has shown a very fast processing time and can achieve 50-
70 FPS due to the fact that it looks at the image once.
Otherwise, the SSD model can attain on average 40-60 FPS
and can be run for real-time object detection where rapid
driving decisions should be made. Due to the absence of
objects in some frames, SSD presents spikes where it can
generate the output result rapidly.
In Fig. 12, a performance evaluation of the learning models

in performing true detection was made on the input video,
which means a comparison between the number of detected
and existing vehicles during the duration of the input video.
The existing vehicles include all the vehicles moving in both
directions. The SVM, shown in Fig. 12(a) was not able to
detect all the presented vehicles mainly those going in the
opposite direction. Although, the YOLO model, shown in
Fig. 12(b) detects more vehicles than the SVM model, but
still poorly performs where objects are distant from the front
camera, unlike the SSD, where it can detect vehicles going
in both directions and small objects have higher chance to
be detected as illustrated in Fig. 12(c). The Yolo and SSD
have detected at least one vehicle during the test. Sill, it may

FIGURE 12. Number of detected and actual existing vehicles versus time with
(a) SVM, (b) YOLO, and (c) SSD.

FIGURE 13. YOLOv3 custom object detection prediction.

happen that none of the model is able to detect a vehicle.
This may happen when vehicles existing at the far lane of
the opposite direction with respect to the vehicle of interest
are manually labeled but not detected by the model. These
vehicles are barely appearing in the video frame. If they

VOLUME 2, 2021 121

MASMOUDI et al.: REINFORCEMENT LEARNING FRAMEWORK FOR VIDEO FRAME-BASED AUTONOMOUS CAR-FOLLOWING

FIGURE 14. The taken actions during the QL training phase of the obstacle-free car-following scenario for each state: s1 (a), s2 (b), s3 (c), s4 (d), s5 (e), s6 (f), s7 (g), s8 (h),
and s9 (i).

appear, they are very small, which makes it hard for the
object detector to identify them as vehicles.

B. YOLOV3 CUSTOM OBJECT DETECTION TECHNIQUE
CONFIGURATION
The YOLOv3 model needs a configuration of basic training
parameters:
• Batch hyper-parameters: The batch parameter indicates
the batch size used during the training and test phases.
We set the batch size to 16. It means 16 images per
iteration and a subdivision of eight, in other words, we
split the batch into eight fractions.

• Width, height, channels: These parameters indicate the
size of the input images and the number of channels
used. We select 608× 608 RGB images.

• Momentum and decay: The momentum is used to penal-
ize large weight changes between iterations and the
decay to penalize large values for weights to avoid the
overfitting. We set the momentum to 0.9 and the decay
to 0.0005.

• Data augmentation: To maximize the use of the data,
we can rotate the image by ± angle or changing its

colors by changing the saturation. We set the angle to
0 and the saturation to 1.5.

• Number of iterations: For multi-class detection, it is
recommended to run the training process for at least
2000 iterations per class. We set the iteration number
sufficiently high (50000) to guarantee convergence.

Fig. 13 shows an example of the output of the YOLOv3
custom object detector applied to our dataset where it clearly
distinguishes between the leader and the obstacle.
With the YOLOv3 custom object detection technique, we

successfully distinguish between the leader and other units
for any obstacle-aware car-following scenario. This tech-
nique can be extended to detect multiple units for several
purposes.

C. SIMULATION RESULTS FOR THE Q-LEARNING
ALGORITHM
1) OBSTACLE-FREE CAR-FOLLOWING SCENARIO
SIMULATION

Fig. 14 presents the evolution of the actions taken during
the training process when the follower is at a given state si.
To train the QL model, we manually control the leader to

122 VOLUME 2, 2021

FIGURE 15. Performance of the follower during the QL testing phase for the obstacle-free car-following scenario: (a) states of the follower with respect to the leader,
(b) chosen actions by the follower, (c) relative distance between the leader and follower, and (d) non-detection occurrence.

locate it in different states so as to the follower learns how
to follow it by exploring the different states and by choosing
random actions. For each taken action, the follower receives
a reward based on the new state of the leader vehicle and the
Q-table is updated. We repeat this process until the follower
fails to detect the leader and declares the game over. As the
game is over, the value of ε is decreased and the chance
to exploit becomes higher. To this end, the agent becomes
more confident at estimating Q-values and starts to choose
actions that lead to the highest reward. By continuing this
process, for each state, the algorithm converges to the actions
which have the highest cumulative reward. Table 5 shows
the final actions associated to all the states chosen by the
follower. Fig. 14 illustrates the behavior of the follower over
the training phase. The follower AV takes different actions at
the beginning of the process for the same state till it reaches
convergence. The number of iterations at the x-axis indicates
the number of times an action is chosen while the AV is
at a state si and what is the action that is chosen at that
moment. For example, in Fig. 14(a), the first action taken
when the AV is at state s1 is action a3. After several tests for
each action, the QL converges towards a single action for
each state as indicated in Table 5. Notice that the number
of iterations differ from a state to another. This is due to
the random trajectories of the Leader chosen and also, due
to the random action taken by the AV during the training,
which results in different scenarios. As example, the state
s7 occurred more than 400 times during the training while
the state s4 occurred around 140 times.

Fig. 15 shows the performance of the proposed frame-
work during the testing phase. During this phase, we set a
fixed trajectory for the leader vehicle in a straight road and
we investigate the behavior of the AV in different states.
Depending on the value of the distance De between the two

TABLE 5. States and actions taken using the QL model for the obstacle-free
car-following scenario.

FIGURE 16. Obstacle-free trajectory.

vehicles, we define three zones as shown in Fig. 15c: A
zone of crash risk A where De < 1, a safe zone B where
De ∈ [1, 10] and a zone of a risk of loosing the leader vehi-
cle C where De > 10. Testing the model for 125 frames
which represent the number of iterations, the follower vehi-
cle is in zone B for the most of the time and entered in
zone A three times where it is impossible to make decisions
as shown in Fig. 15d. To avoid this risk, more states and
actions should be added. Moreover, integrating the inputs
of other technologies and sensors will significantly help in
complementing the video frames based decision making.
Fig. 16 shows the trajectory of the follower (green vehicle)

and the leader (red vehicle) in an obstacle-free environment.
In the following process, the follower follows its leader in
a general way. However, it fails in reproducing the same

VOLUME 2, 2021 123

MASMOUDI et al.: REINFORCEMENT LEARNING FRAMEWORK FOR VIDEO FRAME-BASED AUTONOMOUS CAR-FOLLOWING

FIGURE 17. Performance of the follower during the testing phase for the obstacle-aware car-following scenario: (a) states of the follower with respect to the leader and the
obstacle, (b) chosen actions by the follower, (c) relative distance between the leader and follower, (d) relative distance between the obstacle and follower, and (e) non-detection
occurrence.

FIGURE 18. Obstacle-aware trajectory.

leader trajectory due to the complexity and the needed time
for the decision making and the image processing.

2) OBSTACLE-AWARE CAR-FOLLOWING SCENARIO
SIMULATION

Fig. 17 shows the performance of the proposed framework
during the testing phase. During this phase, we set a fixed
trajectory for the leader and the obstacle vehicles in a straight
road. The objective is to investigate the behavior of the AV
in different states where an obstacle is presented near the
leader. Testing the model for 280 frames, the follower vehicle
is in zone B for the most of the time and entered in zone A
one time where it is impossible to make decisions as shown
in Fig. 17e. In Fig. 17a and Fig. 17b, when the leader and
the obstacle are in the state 27 (leader in state 2 and obstacle
in state 7), 37, 54, and 64 the follower chooses the action 6
(braking until stopping action) where an accident with the
obstacle may occur in following the leader vehicle.
Fig. 18 shows the trajectory of the follower (green vehi-

cle), the obstacle (blue vehicle), and the leader (red vehicle)
in an obstacle-aware environment. In this trajectory, the

obstacle is not presented all the time and changes its position
in order to test different states. For this reason, we represent
its trajectory in a discontinuous way. The objective is to test
the interception of the leader’s trajectory by the obstacle
vehicle. In the following process, the follower follows its
leader in a general way. However, when the obstacle inter-
cepts the leader’s trajectory (yellow rectangles), the follower
starts braking until stopping to avoid a crash as explained
in Fig. 17. The follower resumes its following process when
the obstacle has exceeded the leader’s trajectory. Due to the
complexity of the process and the needed time to capture
the frame and generate the output result, the follower does
not reproduce the same leader’s trajectory.

D. SIMULATION RESULTS FOR THE DQN ALGORITHM
In this section, we investigate the performance of the DQN
algorithm by showing results of the training phase and statis-
tics of the validation phase. For the training process, we set
Dmin to 10% of Dmax. This value is sufficiently high to avoid
crashes with the leader. The discount factor is set to 0.4 and,
for the exploration-exploitation trade-off, we set εmax to 1
and εmin to 0.01.
In Fig. 19, we plot the training results of the DQN model

based on the RGB-D frames and the Deep Deterministic
Policy Gradient (DDPG) model as described in [15], [22].
We can notice that the cumulative reward function is gen-
erally increasing over episodes until convergence at the
end of the training phase where the model is not learn-
ing new possibilities from its exploration decisions. Hence,
less autonomous driving and car-following errors occur due
to the actions taken by the vehicle. In Fig. 19(c), we plot
the duration of training episodes which reflects the driving

124 VOLUME 2, 2021

FIGURE 19. Training results of the autonomous car-following framework using DQN and DDPG algorithms.

duration of the vehicle. At early episodes, the training time
is short as the vehicle crashes very early by taking wrong
actions. The model makes some random mistakes during the
exploration phase, which explains the fluctuation of the dura-
tion of episodes. However, with the decrease of the training
loss (increase of achieve reward), i.e., the exploitation phase,
the duration of the training episodes increases on average as
fewer crashes occur.
During the training phases, both algorithms converge to

the same range of values. However, the duration of episodes
for the algorithms is significantly different. Indeed, the two
models do not learn autonomous driving and car-following
in the same manner, as we can notice from Fig. 19(a) where
the duration of the DDPG episodes are increasing smoothly.
Hence, the model is learning from its previous experience
without knowing any new navigation decision or possibili-
ties. On the contrary, the duration of the DQN episodes is
wildly changing from an episode to another, and this behav-
ior is explained by the fact that the model is attempting to
explore all available navigation decisions in the environment.
This attitude during the training is the success key of the
algorithm that will increase, considerably, the efficiency of
the model in navigating in any unknown environment.
In order to evaluate the model, we proceed by testing the

capability of the model to avoid crashing with the leader

TABLE 6. DQN and DDPG testing statistics.

vehicle or any other object in the simulated environment.
In every testing episode, the leader will travel from a point
A to another point B and the AV will follow the leader
through the entire trajectory. Every time the follower crashes
into the leader or the surrounding environment, the test is
considered a failure. If the follower can successfully follow
the leader across the whole trajectory without incident, the
test is considered as a success.
The performances of the DQN model we generated were

compared to those of the DDPG RL algorithm. DQN and
DDPG had similar performance. DQN held an advantage,
however, by minimizing crashes with the leader – a key char-
acteristic for safe operation in real-world applications. We
present the results of the comparison between DDPG and
DQN in Table 6. The table provides statistics about the fail-
ing and successful incidents during the testing episodes. It is
shown that the DQN slightly outperforms the DDPG algo-
rithm in following the leader vehicle. In the testing phase,

VOLUME 2, 2021 125

MASMOUDI et al.: REINFORCEMENT LEARNING FRAMEWORK FOR VIDEO FRAME-BASED AUTONOMOUS CAR-FOLLOWING

we utilize three maps, and 1000 runs are split amongst the
three maps for both the DQN and the DDPG approaches.
In each map, the leader vehicle moves from a point A to
a point B. The DQN approach achieves success in follow-
ing the leader vehicle without incidents for 975 of the 1000
runs. Among the 20 failures, the follower loses the detection
of the leader vehicle. In the remaining cases, the follower
crashed into the leader only twice and goes out of the road
in three runs.
On the other hand, the DDPG approach succeeds in 967 of

the runs, but crashes into the leader at a much higher rate of
18 runs, versus the two runs while testing the DQN approach.
This DQN achieves a higher level of safety compared to
DDPG since most of its failed tests correspond to a detection
loss while the DDPG leads to higher crash rate either with
the leader or the sidewalk. We show that the DQN model
rapidly learns that collisions and detection loss are very high-
priority objectives that must be avoided and hence, it delivers
in most of the cases safe navigation. Recall that these tests
are executed for short operations of the vehicles and further
improvement are required to enhance the performance as it
will be discussed in the next section.

VII. CONCLUSION
The experimental results have demonstrated that, with real-
time video frames only, the proposed two-phased AI-driven
approach is enabling the AV to make accurate decisions to
follow a given leader vehicle. Our objective was to show
that with the QL and DQN models implemented back-
to-back to a computer vision module, we were able to
build a car-following framework for AVs with a limited
source of information. In order to improve the efficiency
of the proposed approach, it is potentially possible to switch
between both RL algorithms given the driving situation, the
speed of the AV, and other environmental features. Indeed, it
is shown that the Q-learning is very efficient in making rapid
self-driving decisions with low training time but with lim-
ited accuracy. However, the DQN can provide much accurate
decisions but requires more computational resources.
The main challenge in training these RL algorithms in

real-world is to find an efficient way to train them for
diverse and different environments such that the training
time is significantly accelerated. Novel and rapid transfer
learning techniques can play a significant role in improving
the efficiency and rapidity of the computer vision and RL
algorithms. Moreover, in practice, safety is the most impor-
tant criterion for the AVs. Hence, it is necessary to achieve
high levels of accuracy to guarantee a safe and secure nav-
igation. Therefore, as a future work and based on these
promising results, the car-following problem can be signifi-
cantly enhanced for AVs by integrating other object detection
components such as LiDAR and RADAR and data fuse all
these inputs to make more effective self-driving decisions
not only in straight roads.
The car-following problem is usually addressed for the

case of a single leader followed by a single follower.

However, with the expected proliferation of AVs, it is worth
to revamp the problem by introducing an extra layer of coop-
eration among the AVs and devise multi-agent coordinated
reinforcement learning approaches for better and coop-
erative decision making. Enabling effective car-following
approaches will help improving the navigation and manage-
ment of future AVs circulating in smart city roads. Indeed,
it brings them out from a closed and isolated system where
AVs operate solely to a more cooperative and open system
where AVs share much more information, e.g., about the traf-
fic, their navigation experience, and the environment, which
will help better the assessment of the road situation and
hence, improve the navigation of AVs.

REFERENCES
[1] M. Masmoudi, H. Ghazzai, M. Frikha, and Y. Massoud, “Autonomous

car-following approach based on real-time video frames processing,”
in Proc. IEEE Int. Conf. Veh. Electron. Safety (ICVES), Cairo, Egypt,
Sep. 2019, pp. 1–6.

[2] C. Zhao, S. Jiang, Y. Lei, and C. Wang, “A study on an anthropo-
morphic car-following strategy framework of the autonomous coach
in mixed traffic flow,” IEEE Access, vol. 8, pp. 64653–64665, 2020.

[3] Y. Zhang, P. Ni, M. Li, H. Liu, and B. Yin, “A new
car-following model considering driving characteristics
and preceding vehicle’s acceleration,” J. Adv. Transp.,
vol. 2017, Oct. 2017, Art. no. 2437539. [Online]. Available:
https://www.hindawi.com/journals/jat/2017/2437539/

[4] Y. Guo, Q. Sun, R. Fu, and C. Wang, “Improved car-following strat-
egy based on merging behavior prediction of adjacent vehicle from
naturalistic driving data,” IEEE Access, vol. 7, pp. 44258–44268,
2019.

[5] D. Yang, L. Zhu, Y. Liu, D. Wu, and B. Ran, “A novel car-following
control model combining machine learning and kinematics models for
automated vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 6,
pp. 1991–2000, Jun. 2019.

[6] M. C. Lucic, X. Wan, H. Ghazzai, and Y. Massoud, “Leveraging intel-
ligent transportation systems and smart vehicles using crowdsourcing:
An overview,” Smart Cities, vol. 3, no. 2, pp. 341–361, 2020.

[7] S. Lefevre, A. Carvalho, and F. Borrelli, “Autonomous car following:
A learning-based approach,” in Proc. IEEE Intell. Veh. Symp. (IV),
2015, pp. 920–926.

[8] Z. Z. M. Kassas, M. Maaref, J. J. Morales, J. J. Khalife, and K. Shamei,
“Robust vehicular localization and map matching in urban environ-
ments through IMU, GNSS, and cellular signals,” IEEE Intell. Transp.
Syst. Mag., vol. 12, no. 3, pp. 36–52, 2020.

[9] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review
of motion planning for highway autonomous driving,” IEEE Trans.
Intell. Transp. Syst., vol. 21, no. 5, pp. 1826–1848, May 2020.

[10] L. Wang and B. K. P. Horn, “On the stability analysis of mixed traffic
with vehicles under car-following and bilateral control,” IEEE Trans.
Autom. Control, vol. 65, no. 7, pp. 3076–3083, Jul. 2020.

[11] S. Milani, H. Khayyam, H. Marzbani, W. Melek, N. L. Azad, and
R. N. Jazar, “Smart autodriver algorithm for real-time autonomous
vehicle trajectory control,” IEEE Trans. Intell. Transp. Syst., early
access, Oct. 21, 2020, doi: 10.1109/TITS.2020.3030236.

[12] M. Da Lio, R. Dona, G. P. R. Papini, F. Biral, and
H. Svensson, “A mental simulation approach for learning neural-
network predictive control (in self-driving cars),” IEEE Access, vol. 8,
pp. 192041–192064, 2020.

[13] S. Aradi, “Survey of deep reinforcement learning for motion plan-
ning of autonomous vehicles,” IEEE Trans. Intell. Transp. Syst., early
access, Sep. 30, 2020, doi: 10.1109/TITS.2020.3024655.

[14] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
Apr. 2018. [Online]. Available: arXiv:1804.02767v1.

[15] H. Friji, H. Ghazzai, H. Besbes, and Y. Massoud, “A DQN-based
autonomous car-following framework using RGB-D frames,” in Proc.
IEEE Global Conf. Artif. Intell. Internet Things (GCAIoT), 2020,
pp. 1–6.

126 VOLUME 2, 2021

http://dx.doi.org/10.1109/TITS.2020.3030236
http://dx.doi.org/10.1109/TITS.2020.3024655

[16] L. A. Pipes, “An operational analysis of traffic dynamics,” J. Appl.
Phys., vol. 24, no. 3, pp. 274–281, Mar. 1953.

[17] T. Forbes, Human Factor Considerations in Traffic Flow Theory.
Washington, DC, USA: Highway Res. Rec., Apr. 1956.

[18] H. Ou and T.-Q. Tang, “An extended two-lane car-following model
accounting for inter-vehicle communication,” Physica A Stat. Mech.
Appl., vol. 495, pp. 260–268, Apr. 2018.

[19] H. A. Ameen et al., “A deep review and analysis of data exchange
in vehicle-to-vehicle communications systems: Coherent taxonomy,
challenges, motivations, recommendations, substantial analysis and
future directions,” IEEE Access, vol. 7, pp. 158349–158378, 2019.

[20] Q. Xue, K. Wang, J. J. Lu, and Y. Liu, “Rapid driving style recog-
nition in car-following using machine learning and vehicle trajectory
data,” J. Adv. Transp., vol. 2019, p. 11, Jan. 2019. [Online]. Available:
https://www.hindawi.com/journals/jat/2019/9085238/

[21] X. Wang, R. Jiang, L. Li, Y. Lin, X. Zheng, and F.-Y. Wang, “Capturing
car-following behaviors by deep learning,” IEEE Trans. Intell. Transp.
Syst., vol. 19, no. 3, pp. 910–920, Mar. 2018.

[22] M. Zhu, X. Wang, and Y. Wang, “Human-like autonomous car-
following model with deep reinforcement learning,” Transp. Res. C
Emerg. Technol., vol. 97, pp. 348–368, Dec. 2018.

[23] M. M. Abbas, B. Higgs, L. Chong, and A. Medina, “Combined
car-following and unsafe event trajectory simulation using agent
based modeling techniques,” in Proc. Winter Simulat. Conf. (WSC),
Dec. 2012, pp. 1–10.

[24] M. Zhou, Y. Yu, and X. Qu, “Development of an efficient driving strat-
egy for connected and automated vehicles at signalized intersections:
A reinforcement learning approach,” IEEE Trans. Intell. Transp. Syst.,
vol. 21, no. 1, pp. 433–443, Jan. 2020.

[25] H. Gao, G. Shi, G. Xie, and B. Cheng, “Car-following method based
on inverse reinforcement learning for autonomous vehicle decision-
making,” Int. J. Adv. Robot. Syst., vol. 15, no. 6, pp. 1–11, Oct. 2018.

[26] M. Masmoudi, H. Ghazzai, M. Frikha, and Y. Massoud, “Object detec-
tion learning techniques for autonomous vehicle applications,” in Proc.
IEEE Int. Conf. Veh. Electron. Safety (ICVES), Sep. 2019, pp. 1–5.

[27] W. Liu and D. Anguelov, “SSD: Single shot multibox detector,”
Dec. 2016. [Online]. Available: arXiv.abs/1512.02325.

[28] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 936–944.

[29] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: Unified, real-time object detection,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA,
Jun. 2016, pp. 779–788, doi: 10.1109/CVPR.2016.91.

[30] T. Zhe, L. Huang, Q. Wu, J. Zhang, C. Pei, and L. Li, “Inter-vehicle
distance estimation method based on monocular vision using 3D
detection,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 4907–4919,
Mar. 2020.

[31] R. Munos, T. Stepleton, A. Harutyunyan, and M. G. Bellemare,
“Safe and efficient off-policy reinforcement learning,” 2016. [Online].
Available: arXiv.abs/1606.02647.

[32] R. Bellman, Dynamic Programming (Dover Books on Computer
Science). London, U.K.: Dover, Apr. 2013. [Online]. Available:
https://books.google.com/books?id=CG7CAgAAQBAJ

[33] T. Okuyama, T. Gonsalves, and J. Upadhay, “Autonomous driving
system based on deep Q learnig,” in Proc. Int. Conf. Intell. Auton.
Syst. (ICoIAS), 2018, pp. 1–9.

MEHDI MASMOUDI received the Diplôme
d’Ingénieur degree (Hons.) in telecommunication
engineering from the École Supérieure des
Communications de Tunis, Tunis, Tunisia, in
2019. In 2019, he worked as a Research Assistant
with the Stevens Institute of Technology,
Hoboken, NJ, USA with interest in video
processing, object detection and autonomous
vehicules. He is currently a Technology Services
Consultant with EY with an interest in data
analytics, digital transformation, and strategic
management.

HAMDI FRIJI received the National Diploma
of Engineering degree (Hons.) in information
and communication technology from the Higher
School of Communication of Tunis, University
of Carthage, Tunisia, in 2020. He is currently
working as a Research Assistant with the Stevens
Institute of Technology, Hoboken, NJ, USA. His
study area is the intersection of artificial intelli-
gence, computer vision, mathematical modeling,
optimization, the Internet of Things, and graph
theory.

HAKIM GHAZZAI (Senior Member, IEEE) received
the Diplome d’Ingenieur degree (Hons.) in
telecommunication engineering and the master’s
degree in high-rate transmission systems from the
École Superieure des Communications de Tunis,
Tunis, Tunisia, in 2010 and 2011, respectively,
and the Ph.D. degree in electrical engineering
from KAUST, Saudi Arabia, in 2015. He was
a Visiting Researcher with Karlstad University,
Sweden, and a Research Scientist with the Qatar
Mobility Innovations Center, Doha, Qatar, from

2015 to 2018. He is currently a Research Scientist with the Stevens
Institute of Technology, Hoboken, NJ, USA. He has authored over 130
articles in peer-reviewed journals and conferences. He is on the editorial
board of the IEEE COMMUNICATIONS LETTERS, the IEEE OPEN JOURNAL

OF THE COMMUNICATIONS SOCIETY, and Frontiers in Communications
and Networks. His general research interests are in the areas of wireless
networks, UAVs, Internet-of-Things, and intelligent transportation systems.

YEHIA MASSOUD (Fellow, IEEE) received the
Ph.D. degree in electrical engineering and com-
puter science from the Massachusetts Institute
of Technology, Cambridge, MA, USA. He is
currently the Dean of the School of Systems
and Enterprises, Stevens University of Science
and Technology, Hoboken, NJ, USA. He was
selected as one of ten MIT Alumni Featured
by MIT’s Electrical Engineering and Computer
Science Department in 2012. He has held sev-
eral academic and industrial positions, including

a member of the Technical Staff with the Advanced Technology Group,
Synopsys, Inc., Mountain View, CA, USA, a Tenured Faculty Member with
the Departments of Electrical and Computer Engineering and Computer
Science, Rice University, Houston, USA, the W. R. Bunn Head of the
Department of Electrical and Computer Engineering, UAB, Birmingham,
USA, and the Head of the Department of Electrical and Computer
Engineering, Worcester Polytechnic Institute, USA. He has authored over
325 articles in peer-reviewed journals and conferences. He was a recipient of
the Rising Star of Texas Medal in 2007, the National Science Foundation
CAREER Award in 2005, the DAC Fellowship in 2005, the Synopsys
Special Recognition Engineering Award in 2000, and several best paper
award nominations. He has served as an Editor of Mixed-Signal Letters—
The Americas and also as an Associate Editor of IEEE TRANSACTIONS ON

VERY LARGE SCALE INTEGRATION SYSTEMS and IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS. He has served as a
Distinguished Lecturer by the IEEE Circuits and Systems Society and as
an elected member of the IEEE Nanotechnology Council.

VOLUME 2, 2021 127

http://dx.doi.org/10.1109/CVPR.2016.91

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

