
Optimal conflict resolution for vehicles with
intersecting and overlapping paths

Johan Karlsson, Nikolce Murgovski and Jonas Sjöberg

Abstract—A collaborative centralized model predictive con-
troller solving the problem of autonomous vehicles safely crossing
an intersection is presented. The solution gives optimal speed
trajectories for each vehicle while considering collision avoidance
constraints between vehicles traveling on the same path before,
after and/or within the intersection. This extends earlier results,
where collision avoidance was only considered for vehicles with
intersecting paths, with the possibility of vehicles on the same
path and by this, the controller is not only one step closer to
handling complex traffic intersections but can now be used for
merging and splitting of roads, roundabouts and intersection net-
works. The proficiency of the extended controller is demonstrated
by applying it to a four-way intersection. It is shown that the
controller provides smooth, collision free trajectories in scenarios
with and without vehicles traveling in the same lane. Further, it
is evaluated how the solutions differ when using various cost
functions and how the controller handles disturbances in the
form of a sudden lane blockage. Lastly, it is discussed how the
presented controller could also be extended to handle mixed-
traffic scenarios and how soft constraints can be used to avoid
infeasibility in the case of missing or noisy traffic data.

I. INTRODUCTION

The development of Intelligent transportation systems (ITS)
has been a major subject for the automotive industry as well as
governmental institutions in recent years, due to its potential
for safer, smarter and greener solutions [1]. Autonomous
driving is one of the areas undergoing extensive research
within ITS.

One of the most extensively researched applications of
autonomous driving is the intersection problem, [2], [3], [4].
The intersection problem is the problem of determining the
crossing order and collision free trajectories of a number of
autonomous vehicles traveling through an intersection.

Among the main motivations for studying the intersection
problem are that they are prone to congestion and accidents.
For example, in Europe, intersection-related accidents are
responsible for 21% of traffic related deaths and 43% of non-
fatal injuries [5]. Similar numbers have been reported for the
U.S. [6]. Due to this accident risk, intersections are highly
regulated by traffic lights, signs and road markings, which
increases the risk for congestion. Autonomous vehicles have

Manuscript received ...; This work was partially supported by the Wallen-
berg AI, Autonomous Systems and software Program (WASP) and partially
by the European Commission Seventh Framework Program under the project
AdaptIVe, grant agreement number 610428. Nikolce Murgovski acknowledges
the support of the Transport Area of Advance within Chalmers University of
Technology, Sweden

J. Karlsson, N. Murgovski and J. Sjöberg are with Chalmers
university, Gothenburg, Sweden (email: jokarls@chalmers.se;
nikolce.murgovski@chalmers.se; jonas.sjoberg@chalmers.se)

been suggested as one way of reducing the accident risk and
congestion, simultaneously.

Many solution techniques have been suggested for control-
ling autonomous vehicles in intersections including scheduling
formulations [7], [8], graph-based approaches [9], multi-agent
approaches [10], and model predictive controllers (MPC); both
centralized [11], [12], [13] and decentralized [14], [15], [16].

To solve the intersection problem using MPC, the problem
is modeled as an optimization program, where constraints en-
force collision avoidance, as well as state and control bounds.
This optimization program, called an optimal control program,
is solved over a prediction horizon to determine the future state
and control signals of the vehicles. However, to account for
deviations in the traffic environment from the predicted one,
on which the optimization is based, it is necessary to regularly
take new traffic information into account. This is done by
repeatedly solving the optimization problem over a moving
prediction horizon, containing updated traffic information [17].

One difficulty of solving the intersection problem is that
it is a combinatorial problem when the crossing order of
the vehicles is unknown. This leads to a computationally
expensive MPC. To handle this, it is common to split the
intersection problem into two parts; one combinatorial and
one non-combinatorial.

The non-combinatorial part consists of determining the opti-
mal trajectories, including longitudinal speed and acceleration,
of each vehicle crossing the intersection, under the assumption
that it is known in which order the vehicles cross and that
each vehicle is traveling along a fixed path inside the inter-
section. There are several suggested algorithms for solving
the non-combinatorial part of the intersection problem. The
main difference between them is how the collision avoidance
constraints are handled. In [11], [12] collision avoidance is
modeled by introducing constraints that prohibit more than
one vehicle to occupy the intersection at the same time. This
is suboptimal since it excludes solutions where vehicles with
non-intersecting paths cross simultaneously. Less conservative
but more complicated collision avoidance constraints can
be implemented by either splitting the physical area into
quadrants [18] or by introducing local critical zones centered
around the points where the predefined paths of vehicles
intersect [13]. Another difference between the MPC algorithms
is if the sampling is done in traveling time or distance. The
main advantages of sampling in distance is that all samples
at which collision is possible is known a-priori and the
simplicity of minimizing time by introducing traveling time as
an optimization variable. The resulting optimization problems
are usually quadratic problems (QP) or nonlinear QPs, both

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2023.3336533

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



NOMENCLATURE

List of Symbols
L Number of intersection legs.
M Number of predefined paths.
N Number of vehicles.
x, y Longitudinal and lateral coordinate.
v Speed.
a Acceleration.
vsl Speed limit of the road.
s Arc length of predefined path.
p Arc length position relative vehicle

starting point.
ψ Path angle.
t Travel time.
thw
nm Headway time between Vehicle n and

m.
z Inverse speed.
x, u State and control vector.
A,B State and control matrices.
A,B State and control block matrices.
O Crossing order vector.

κ Curvature of path.
anlat Lateral acceleration of Vehicle n.
∆p Discretized sampling step.
ξ Discrete state vector for all vehicles.
u Discrete control vector for all vehicles.
J(·) Cost function.
w Cost function weight.
∆pmn Sample shift for Vehicles n and m.
Q,R, S Weighting matrices.
f Function.
List of Index sets
R Set of real numbers.
N Index set of vehicles.
I Index set of predefined paths.
P Index set of discretized samples.
List of Indeces
(·)i, (·)j Variable for path i, j.
(·)n Variable for Vehicle n.
(·)min, (·)max Minimum and maximum value.
(·)d Discrete.
(·)k,p0 Variable at discrete sample k starting

at p0.

(·)r Reference.
(·)0 Initial value.
(·)f Final value.
(·)lin Linearization value.
(̃·) Linearized function.
(·)∗ Optimal value.
List of Sets
D1, D2 Sets of vehicle pairs with same exit

leg.
Pnm Set of collision points between Vehicle

n and m.
P f1
nm, P

f2
nm The set of samples in the exit lane

where the paths of Vehicles n and m
does not overlap.

Up0 Set of discrete control signals along
the prediction horizon.

List of Operators
(·)′ Derivative with respect to distance.
H(·) Hessian operator.
∂/∂p Partial derivative.
D(·) Discrete derivative.
‖·‖p, ‖·‖Q P-norm and weighted 2-norm.

of which can be solved efficiently using existing methods.
The combinatorial part consists of finding the order in which

the vehicles should cross the intersection. Since the number
of possible crossing orders grows rapidly with the number
of vehicles, a crossing order is often found by applying a
heuristic to reduce the computational complexity. Proposed
heuristics range from reservation systems, in which vehicles
reserve a time at which to cross the intersection, [19], [20],
to more advanced heuristics where the crossing order is
determined based on the solution of a mixed-integer program,
[18]. The downside of heuristics is that there is no guarantee
that the optimal crossing order is found, and the chosen one
might be much worse than the optimal one. This would lead
to higher emissions, higher congestion and making safety
critical solutions more prevalent. An alternative to heuristics
is to solve an optimization program to determine the optimal
trajectories of the vehicles for all possible crossing orders.
Solving for all crossing orders gives the optimum but is
computationally expensive due to the vast number of possible
crossing orders. It is, however, possible to somewhat reduce
the number of crossing orders through removal of apparent
non-optimal orderings in an ad-hoc fashion. Additionally,
by assuming no overtaking and removing orders which give
solutions that are identical to another solution the number of
crossing orders can be reduced even further. This can greatly
reduce the number of crossing orders that need to be solved
for some scenarios, [13].

This paper expands upon the approach previously presented
in [11] and [13]. Therein, a collaborative centralized MPC with
an optimal control program sampled in distance is proposed
for control of all autonomous vehicles in the intersection.
The approach presented in [11] and [13] is limited to a
single vehicle in each entry and exit lane when computing
the crossing order as well as the vehicle trajectories. In [13],
the collision avoidance inside the intersection is performed
using local critical zones between every vehicle pair with

intersecting paths to decrease the conservativeness of the
algorithm and increase the throughput. In this paper, the MPC
is expanded by allowing any number of vehicles in the same
entry lane, the same exit lane or traveling along the same path
throughout the intersection (this is the case if vehicles have
the same entry and exit lane), which demands the introduction
of additional collision avoidance constraints to prevent rear-
end collisions. It is shown how the collision avoidance for
local critical zones and vehicles along the same path can be
written using the same linear formulation applied at different
samples. Secondly, in a case study results are presented in
which it is shown how the controller behaves for different
cost functions and in the presence of disturbances in the form
of lane blockage; which forces the central control to redirect
vehicles onto different paths. Thirdly, it is concluded that the
optimal control program can be extended to a wider set of
applications, including, but not limited to, roundabouts and
intersection grids due to its function as a cooperative speed
controller when vehicles travel along the same paths.

The paper is organized as follows. Section II discusses the
features and limitations of the intersections which the con-
troller presented within this paper handles. In Section III the
intersection problem is formulated and all constraints needed
for the optimal control program are presented. In Section
IV the full continuous optimal control program is given. In
Section V the optimization problem introduced in Section IV
is discretized and formulated in a receding horizon fashion.
Section VI contains a case study in which it is demonstrated
that the MPC can plan collision free and smooth trajectories
for vehicles traveling through a four-way intersection. It is
further shown that the local zones are less conservative than
using the full intersection as a critical zone, how solutions
differ when applying different cost functions and that the MPC
can handle a sudden lane blockage. Section VII discusses ex-
tensions of the controller, such as inclusion of non-autonomous
vehicles, solving for more general intersections, roundabouts

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2023.3336533

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



and intersection grids. Lastly, it discusses the possibility to
introduce soft constraints and how to determine the crossing
order, before conclusions are drawn in Section VIII.

II. INTERSECTIONS

A traffic intersection may include crosswalks, bicycle paths,
lanes with limited travel options and divisional islands [21].
While the methods in this paper can be applied to such a gen-
eral intersection, the example used is a four-way intersection
containing motorized vehicles only.

The physical area of an intersection is the area in which
the roads merge, [22]. Each road that connects to the physical
area is referred to as an intersection leg or leg for short. In
this paper, the legs are numbered 1, 2, . . . , L. Besides its leg
number, a leg is identified via its leg angle. The leg angle
is the angle measured counterclockwise from the horizontal
axis to the leg. Each leg consists of a number of lanes;
the lanes where vehicles are traveling towards the physical
area are called entry lanes and the lanes in which vehicles
travel away from the physical area are called exit lanes. When
vehicles enter the physical area via one of the entry lanes,
they can travel through the physical area to any or a subset
of the exit lanes, depending on the traveling limitations of
the intersection. Lastly, a closed curve containing the physical
area within its interior is introduced. Any vehicle inside this
closed curve is assumed to be part of the intersection. This
closed curve is called the control boundary.

As an example, consider the four-way intersection depicted
in Fig. 1, where vehicles are allowed to turn right, drive
straight or turn left inside the physical area, depicted in gray.
There are four legs labeled Leg 1, Leg 2, Leg 3 and Leg 4 with
leg angles 0◦, 90◦, 180◦ and 270◦. Each leg consists of one
entry lane and one exit lane, as shown by the arrows implying
the direction of travel. There are a total of 12 predefined paths,
three from each entry lane leading to each exit lane which
does not belong to the same leg as the entry lane, see Fig.
1. It is assumed that all vehicles are traveling along one of
these paths. Thus, a vehicle can change its predefined path to
another path, only before reaching the physical area. Doing so
inside the physical area would necessitate the introduction of
additional paths. This is possible, but outside the scope of this
paper. Lastly, the red circle in Fig. 1 is the control boundary.

III. PROBLEM FORMULATION

Mathematically, any intersection is represented by the tuple

(xi(s), yi(s), κi(s), ψi(s), v
sl(s), I, s),

where xi(s), yi(s) are the global path coordinates for the
predefined path i ∈ I = {1, 2, . . . ,M}, κi(s) is the path
curvature and ψi(s) is the path angle defined by the tangent
angle at the sample s, which is the distance traveled along
the arch length of the path. In general, the speed limit of the
roads can vary between legs, but for simplicity it is in this
paper assumed that all legs have the same speed limit vsl(s).

Now, consider N > 0 autonomous vehicles traveling
through the intersection. For each Vehicle n within the set
of vehicle indices N = {1, . . . , N}, it is assumed that

Leg 1

Leg 2

Leg 3

Leg 4

Fig. 1: An intersection with four legs, each with one entry and exit lane. There
are 12 predefined paths, 3 starting from each entry lane. The paths starting
from the first leg are depicted in blue. The red circle represents the control
boundary. The gray area is the physical area.

1) the vehicle travels along one of the M predefined paths;
2) the assigned path is perfectly followed;
3) the speed vn ∈ R and acceleration an ∈ R of the vehicle

along the path can be varied;
4) the vehicle is not overtaking within the control boundary;
5) the vehicle clock is synchronized with that of the other

vehicles.

A. Vehicle paths

Each Vehicle n ∈ N is traveling along a path
(xn(p), yn(p), κn(p), ψn(p), p) that overlaps with one of the
intersection paths, i.e., xn(p) = xi(p), yn(p) = yi(p),
κn(p) = κi(p) and ψn(p) = ψi(p) for all samples p ∈
[pn0, pnf] and some i ∈ I. Here, pn0 is the vehicles’ initial
position and pnf is the vehicles’ final position. A vehicle is
part of the intersection, and therefore considered in the optimal
control program, if pn0 is inside of the control boundary. It is
also assumed that the final position pnf is outside of the control
boundary, i.e., the vehicles longitudinal motion is controlled
at least until it leaves the physical area.

Choosing all sampling intervals [pn0, pnf] to be of equal
lengths pf, each vehicle path is written as

(xn(p+ pn0), yn(p+ pn0), κn(p+ pn0), ψn(p+ pn0), p),

for all n ∈ N and all p ∈ [0, pf]. Thus, p is a sampling variable
representing the arc length of any vehicle along its predefined
path relative to its starting position pn0. For the sake of brevity,
xn(p+ pn0) will be written as xn(p) in the rest of the paper.

B. Longitudinal dynamics

Since sampling is done in distance via the sampling variable
p, the traveling time of a vehicle at any sample is unknown.
Therefore, the traveling time of each vehicle, tn(p), is chosen
as a state and fulfills t′n(p) = 1/vn(p), where (·)′ denotes the
derivative with respect to distance, i.e., d/dp. To get a linear
state space model, n additional states are introduced, repre-
senting the inverse speed zn(p) = 1/vn(p) of each vehicle,
see [11] for details. The state vector for Vehicle n reads

xn(p) = [tn(p), zn(p)]T ,

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2023.3336533

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



resulting in a total of 2N states, two for each vehicle. Each
Vehicle n is represented by a linear system

x′n(p) = Axn(p) +Bun(p),

where the control signal un(p) is the derivative of the inverse
speed of Vehicle n, i.e., un(p) = z′n(p), and

A =

[
0 1
0 0

]
, B =

[
0
1

]
.

C. State and control constraints

Each Vehicle n ∈ N is subject to state and control
constraints

xn(p) ∈ [xmin
n (p),xmax

n (p)],

un(p) ∈ [umin
n (p, zn), umax

n (p, zn)],
(1)

where each inequality is imposed for all p ∈ [0, pf] and

xmin
n (p) = [0, 1/vmax

n (p)]T , xmax
n (p) = [∞, 1/vmin

n (p)]T .

Here, 0 < vmin
n (p) ≤ vmax

n (p) denote the minimum and
maximum speed of Vehicle n, respectively.

An expression for the minimum and maximum bounds
umin
n (p, zn) and umax

n (p, zn) on the control signal is found by
using the lower and upper limit of the acceleration denoted
amin
n (p) < 0 and amax

n (p) > 0, respectively. Observe that

un(p) = z′n(p) =

(
1

vn(p)

)′
= −v

′
n(p)

v2
n(p)

= −v′n(p)z2
n(p),

v′n(p) =
d

dp
vn(p) =

an(p)

vn(p)
= an(p)zn(p),

which combined yields un(p) = −an(p)z3
n(p). From this, the

bounds on the control signal in (1) are given by

umin
n (p, zn) = −amax

n (p)z3
n(p),

umax
n (p, zn) = −amin

n (p)z3
n(p).

(2)

For details on the choice of bounds, see [11] and [13].
1) Motion on curved paths: When vehicles turn right or

left they move on paths with significant curvature, see Fig.
2. Thus, they are subjected to non-negligible lateral forces,
which should be constrained to lie within a range that is
realizable by actual vehicles. Since, the largest part of the
lateral acceleration in a curve stems from the centripetal force,
a maximum bound on the lateral acceleration is implicitly ap-
plied through the choice of the upper bound on the longitudinal
speed. If the maximum lateral acceleration of Vehicle n is
given by amax

nlat, the upper bound on the longitudinal speed is
equal to

√
amax
nlat/κn(p). Adopting the convention that division

by a curvature of zero yields infinity, the maximum speed for
Vehicle n at each sample is given by

vmax
n (p) = min

(
vsl(p),

√
amax
nlat/κn(p)

)
.

This means that when traveling along a straight part of the path
the maximum speed is vsl(p) while in a curve the maximum
speed is the smallest of

√
amax
nlat/κn(p) and vsl(p).

p
1

1

p
2

2

p
3

3

p
4

4

p
13

p
31

P
13

Fig. 2: Autonomous vehicles in an intersection. Each Vehicle n has a
predefined path pn depicted by a line. Vehicle 2 and Vehicle 4 are traveling
along paths with significant curvature. Vehicles 1 and 3 have intersecting paths
which give rise to the yellow rectangular critical zone. Collision avoidance
constraints are imposed such that only one vehicle resides within the critical
zone at the time. Vehicles 1 and 2 have overlapping paths prior to the physical
area while vehicles 3 and 4 have overlapping paths after the physical area.

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

P
12

+ p
12

P
12

+ p
21

P
12

Fig. 3: A zoom in on the paths of Vehicle 1 and 2 in Fig. 2. The horizontal
markings are samples, where red markings denote samples along the red path,
the blue markings denote samples along the blue path and green markings
denote samples which belong to both paths, i.e., the samples in P12. The
blue and red cross define the starting position of the Vehicle 1 and Vehicle 2,
respectively. The numbers represent the distance, in samples, from the initial
position. Rear-end collisions are avoided by restricting the time difference
between all samples in the shifted intervals P12 + ∆p12 and P12 + ∆p21.

D. Collision avoidance constraints

To find collision free solutions, the collision avoidance
constraints need to guarantee that there are no collisions
along overlapping or intersecting paths. Here, it is understood
that two vehicles have intersecting paths if their paths have
the same global coordinates at exactly one point, while they
have overlapping paths if their paths have the same global
coordinates at more than one point. As an example, the paths
of Vehicles 1 and 3 in Fig. 2 are said to intersect, while the
paths of Vehicles 3 and 4 (and 1 and 2) are said to overlap.
A vehicle traveling along a path which does not intersect or
overlap with the path of any other vehicle is assumed to not
be at risk of collision. A point where two vehicle paths have
the same global coordinates is referred to as a collision point.
For intersecting paths, the collision avoidance constraints can
be interpreted as a critical zone who’s entry and exit samples
guarantee that only one vehicle resides within the critical zone
at any given time, see the yellow rectangle in Fig. 2. For
overlapping paths, a safety distance between the vehicles needs
to be maintained to prevent rear-end collisions. This is done
by imposing collision avoidance constraints at every sample
along the overlapping path.

Let O ∈ RN represent a given crossing order, i.e., O is
a vector containing a permutation of the vehicle indices in
N . Also, let Ol be the l:th entry of O. Then, a Vehicle

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2023.3336533

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



n with the predefined path (xn(p), yn(p), κn(p), ψn(p), p)
crossing before a Vehicle m with the predefined path
(xm(p), ym(p), κm(p), ψm(p), p) has collision points with Ve-
hicle m at the samples

p ∈ Pnm = {p ∈ [0, pf] : (xn(p), yn(p)) = (xm(p1), ym(p1)),

p1 ∈ [0, pf], n = Ol, m = Ol̄, l < l̄},

where (xn(p), yn(p)) = (xm(p1), ym(p1)) indicates that the
paths of the two vehicles pass through the same point and
n = Ol, m = Ol̄, l < l̄ mean that Vehicle n crosses before
Vehicle m. For vehicle pairs with overlapping paths, the set
Pnm is an interval, for intersecting paths it is a point and for
vehicle pairs which have neither overlapping nor intersecting
paths, it is empty. However, imposing collision avoidance
constraints directly at the entries of Pnm is not enough since
it does not take into account the physical dimensions of the
vehicles, the reference points of the vehicles nor the fact that
the samples in Pnm are samples along the path of Vehicle n,
which are not necessarily equal to the samples of the path of
Vehicle m due to the shape of the path and/or different initial
positions, see Fig. 3. To account for all of this, the scalars
∆pnm, ∆pmn are introduced to shift the samples for Vehicle
n and m, respectively.

The collision avoidance constraint between Vehicle n and
Vehicle m is a linear constraint on the traveling time

tn(p+ ∆pnm)− tm(p+ ∆pmn) ≤ −thw
nm, ∀p ∈ Pnm, (3)

where thw
nm is a non-negative, typically positive, headway time

between Vehicle n and Vehicle m.
As an example, consider the scenario depicted in Fig. 2 with

the crossing order [1 2 3 4]. To form the collision avoidance
constraints we first find the collision points, i.e., all nonempty
sets Pnm. The nonempty sets are: P13 which contains the
sample at which the path of Vehicle 1 intersects with the path
of Vehicle 3, P34 which contains the samples at which the
path of Vehicle 3 overlaps with the path of Vehicle 4 and
P12 at which the path of Vehicle 1 overlaps with the path of
Vehicle 2. For Vehicles 1 and 3 the shifts, ∆p13 > 0 and
∆p31 < 0, are chosen such that P13 + ∆p13 is the sample at
which Vehicle 1 exits the critical zone, and P13 + ∆p31 is the
sample at which Vehicle 3 enters it, see Fig. 2. The collision
avoidance constraint then reads

t1(p+ ∆p13)− t3(p+ ∆p31) ≤ −thw
13 ,

and guarantees that Vehicle 1 exits the critical zone before
Vehicle 3 enters it.

For the collision avoidance between Vehicles 1 and 2 the
shift ∆p21 < 0 is chosen such that a safety distance between
the vehicles is introduced and the shift ∆p12 > 0 is chosen
to avoid collision at samples shortly after the paths split, see
Fig. 3 which depicts a zoom in of the paths of Vehicle 1 and
2 along with samples (horizontal markings) and the sets P12,
P12 + ∆p12 and P21 + ∆p21. Applying similar reasoning to
choose the overlapping paths of Vehicle 3 and 4 then gives
the collision avoidance constraints

t1(p+ ∆p12)− t2(p+ ∆p21) ≤ −thw
12 , p ∈ P12,

t3(p+ ∆p34)− t4(p+ ∆p43) ≤ −thw
43 , p ∈ P34.

E. Feasibility beyond the horizon

The collision avoidance constraints (3) guarantee that no
collisions occur along overlapping and intersecting paths de-
fined within the prediction horizon [0, pf]. However, since
vehicles with the same exit lane do not necessarily have the
same (absolute) position at the final sample pf, there is still
a risk of collision in the exit lane. As an example, consider
again the scenario in Fig. 2. As illustrated by the yellow and
purple lines, Vehicles 3 and 4 have the same exit lane and same
path length but different final positions due to different starting
positions and entry lanes. The collision avoidance constraints
(3) only guarantee that Vehicles 3 and 4 do not collide within
the prediction horizon, but not that collision is avoidable after
the path of Vehicle 3 ends.

To guarantee collision avoidance in the exit lane after a
vehicle reaches the end of their predefined path, additional
constraints are introduced on the velocity and final acceleration
of the vehicles. The constraints on the acceleration at the last
point of the horizon read

un(pf) ∈ [−ε1, ε2], ∀n ∈ N .

where ε1 and ε2 are small positive scalar numbers. This
constraint guarantees that the acceleration of all vehicles is
close to zero at the last sample and it is assumed that after
the horizon the acceleration goes directly down to zero. Thus,
adding a constraint which enforces that a vehicle traveling
behind another vehicle in an exit lane has a velocity that is not
higher than the vehicle in front, when the front vehicle reaches
its end position within the prediction horizon, would guarantee
collision avoidance beyond the horizon. To formulate such a
speed constraint, it is necessary to find the set of all vehicle
pairs that have the same exit lane. Further, we need to know
which vehicle travels the shorter distance in the exit lane. This
is found by studying the shifts ∆pnm, ∆pmn in the collision
avoidance constraints (3). If the vehicles n and m have the
same exit lane then ∆pnm = 0 if vehicle m is crossing first
and ∆pmn = 0 if Vehicle n is crossing first. Hence, exactly
one of the shifts is always zero for overlapping paths and
identifies which vehicle has the least number of samples in
the exit lane. Hence, the set

D1 ={(n,m) ∈ N 2 : ψm(pf) = ψn(pf), n = Ol,m = Ol̄,

l < l̄,∆pmn < 0},

denotes all vehicle pairs with the same exit lane when the
vehicle in front, n, has the shorter path, while

D2 = {(n,m) ∈ N 2 : ψm(pf) = ψn(pf), n = Ol,m = Ol̄,

l < l̄,∆pmn > 0},

denotes all vehicle pairs with the same exit lane when the
vehicle in front, n, has the longer path. Here, ψm(pf) = ψn(pf)
guarantee vehicles have the same exit lane and n = Ol,m =
Ol̄, l < l̄ guarantee Vehicle n crosses before Vehicle m. The
speed constraints for the last few samples are then written as

zn(pf) ≤ zm(p), ∀p ∈ P f1
nm, ∀(n,m) ∈ D1,

zn(p) ≤ zm(pf),∀p ∈ P f2
nm, ∀(n,m) ∈ D2,

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2023.3336533

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



where

P f1
nm = [pf + ∆pmn, pf], P

f2
nm = [pf −∆pmn, pf], (4)

are the sets of samples between the endpoints of the paths of
Vehicle n and m.

IV. OPTIMAL CONTROL PROGRAM

Let xn0 = [0, 1/vn0]T be the initial state vector of Vehicle n
where vn0 is the initial velocity of Vehicle n. Then, the optimal
control program, for a given crossing order, is formulated as

minimize
un(p)

N∑
n=1

Jn(xn(p), un(p), u′n(p)), (5a)

subject to
x′n(p) = Axn(p) +Bun(p), ∀n ∈ N , (5b)

xn(p) ∈ [xmin
n (p),xmax

n (p)], ∀n ∈ N , (5c)

un(p) ∈ [umin
n (p, zn), umax

n (p, zn)],∀n ∈ N , (5d)

tn(p+ ∆pnm)− tm(p+ ∆pmn) ≤ −thw
nm,

∀n,m ∈ N ,
(5e)

zn(pf) ≤ zm(p), ∀(n,m) ∈ D1, (5f)
zn(p) ≤ zm(pf), ∀(n,m) ∈ D2, (5g)
xn(0) = xn0, un(pf) = 0, ∀n ∈ N , (5h)

where the constraints (5b)-(5d) hold for all p ∈ [0, pf], (5e)
holds for all p ∈ Pnm, (5f) holds for all p ∈ P f1

nm and (5g)
holds for all p ∈ P f2

nm.
All constraints in (5) are linear except for the nonlinear

and non-convex input constraints (5d). The program can be
iteratively solved using linearized convex subproblems. This
solution method is commonly known as sequential convex
programming (SCP), or, if the subproblem is a quadratic
program, sequential quadratic programming (SQP), [23]. The
choice of objective function (5a) is discussed in detail after
discretization of the optimal control program, in Section V.
Next, the linearization of the constraints (5d) is discussed.

A. Linearization of input constraints

To see that the constraints (5d) are concave, recall that the
bounds are given by (2) and rewrite the bounds to

f1(zn, un) = −amax
n z3

n(p)− un(p) ≤ 0,

f2(zn, un) = amin
n z3

n(p) + un(p) ≤ 0,

and calculate the Hessian of both functions

H(f1) =

[
∂2f1(zn,un)

∂z2
n

∂2f1(zn,un)
∂zn∂un

∂2f1(zn,un)
∂un∂zn

∂2f1(zn,un)
∂u2

n

]
=

[
−6amax

n zn(p) 0
0 0

]
,

H(f2) =

[
∂2f2(zn,un)

∂z2
n

∂2f2(zn,un)
∂zn∂un

∂2f2(zn,un)
∂un∂zn

∂2f2(zn,un)
∂u2

n

]
=

[
6amin

n zn(p) 0
0 0

]
.

The Hessians are negative definite since amin
n < 0, amax

n > 0
and zn(p) > 0 for all p, which implies that the constraints
are concave, [24]. The linearization of a concave constraint is
always an inner approximation; thus the linearization does not
introduce non-realizable solutions.

To find the linearized bounds ũmin
n and ũmax

n , z3
n(p) is

linearized around the inverse speed znlin(p)

z3
n(p) ≈ z3

nlin(p) + 3z2
nlin(p)(zn(p)− znlin(p)).

Using this together with (2) gives

ũmin
n (p, zn) = amax

n (p)(2znlin(p)− 3zn(p))z2
nlin(p),

ũmax
n (p, zn) = amin

n (p)(2znlin(p)− 3zn(p))z2
nlin(p),

which leads to the linearized bounds

un(p) ∈ [ũmin
n (p, zn), ũmax

n (p, zn)]. (6)

Thus, the subproblem to be solved is (5), where (5d) is
replaced by (6). This gives a QP that can be solved efficiently.

V. MODEL PREDICTIVE CONTROL

In this section, the optimal control program (5) is dis-
cretized and written in a receding horizon fashion. Let
k ∈ {p0, p0 + ∆p, . . . , p0 + pf} = P be the discretized sam-
pling variable, P the set of discrete distance samples corre-
sponding to the continuous sampling interval [0, pf], p0 the first
sample and ∆p the length of the discrete sampling interval.
To simplify the formulation of the discretized optimal control
program, the state and control variables for all vehicles at
sample k are stacked into the vectors

ξk,p0
=
[
xT

1,k,p0
, . . . ,xT

N,k,p0

]T
,

uk,p0
=
[
u1,k,p0

, . . . , uN,k,p0

]T
,

(7)

where x1,k,p0 is the state vector of the first vehicle at iteration
k when the sampling starts at p0 and u1,k,p0

is the correspond-
ing control signal. Discretizing the dynamical model (5b) using
zero-order hold yields

ξk,p0
= Adξk−∆p,p0

+ Bduk−∆p,p0
, ∀k ∈ P \ p0,

ξp0,p0
= ξ0,

,where ξ0 is the initial state vector stacked in the same
order as the states in (7). Further, the state and input
matrix is given by Ad = Diag(Ad, . . . , Ad) ∈ R2N×2N , and
Bd = [Bd, . . . , Bd]T ∈ R2N , respectively. Here

Ad =

[
1 ∆p
0 1

]
, Bd =

[
∆p2

2 ∆p
]
.

Letting the full input sequence be
Up0

= [up0,p0
,up0+∆p,p0

, . . . ,up0+pf,p0
], the discretized

optimal control program on receding horizon form reads

minimize
Up0

Jd(ξk,p0
,uk,p0

), (8a)

subject to

ξk+∆p,p0
= Adξk,p0

+ Bduk,p0 , ∀k ∈ P \ Pf, (8b)

ξk,p0
∈ [ξmin

k,p0
, ξmax

k,p0
], ∀k ∈ P, (8c)

uk,p0 ∈ [ũmin
k,p0

(ξk,p0
), ũmax

k,p0
(ξk,p0

)],∀k ∈ P, (8d)

tn,k+∆pnm
− tm,k+∆pmn

≤ −thw
nm, ∀k ∈ P d

nm,

∀n,m ∈ N ,
(8e)

zn,p0+pf ≤ zm,k, ∀k ∈ P f1
nm, ∀(n,m) ∈ D1, (8f)

zn,k ≤ zm,p0+pf , ∀k ∈ P f2
nm, ∀(n,m) ∈ D2, (8g)

ξp0,p0
= ξ0, up0+pf,p0

= 0, (8h)

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2023.3336533

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



where ξmin
k,p0

, ξmax
k,p0

, ũmin
k,p0

and ũmax
k,p0

are vectors containing the
stacked bounds and initial states, respectively, in the same way
as the states and inputs in (7). Lastly, the cost function Jd is
the discretized version of (5a).

After solving the discretized problem (8), the first optimal
control signal, u∗p0,p0

, is used to calculate the states of all
vehicles at sample p0 + ∆p. This corresponds to all vehicles
moving ∆p meters on their paths. Then N , the shifts ∆pnm,
∆pmn, and the set Pnm are updated along with the state
bounds, control bounds, the initial and final states before the
optimal control program is resolved over a shifted horizon.

A. Convex cost functions

In this section it is shown how the commonly used cost
functions: minimum time, trajectory tracking [25] and mini-
mum discomfort are formulated for the optimal control pro-
gram (8). For an explanation on how the time formulated costs
correlate with the spatial costs presented in this paper, see [11].

1) Trajectory tracking: States and inputs are tracked using
the cost function

Jd(·) =
∑
k∈P

(
‖ξk,p0

− ξr,k,p0
‖2Q

+‖uk,p0 − ur,k,p0‖2R + ‖Duk,p0‖2S
)
.

(9)

Here, Q, R and S are positive definite weighting matrices
while ξr,k,p0

and ur,k,p0
are the reference trajectories for the

states and inputs, respectively. Further, Duk,p0
refers to the

discrete derivative of uk,p0
and is included to mitigate high

spikes in jerk which may result from using pure tracking costs.
Typically, the input reference ur,k,p0 is zero.

2) Minimum time: A common goal for traffic control of
intersections is to maximize the throughput. Mathematically,
this is formulated as a cost function that minimizes the p-norm
of the final traveling time of each vehicle, i.e,

Jd(·) =‖ξp0+pf,p0
‖Q,p,

where Q = diag(q1, 0, q2, 0, . . . , qN , 0) ∈ R2N×2N is the
weighting matrix for Vehicle n ∈ N . The most intuitive
choice of norm is p = 1 which corresponds to minimizing the
weighted sum of all final times and p =∞ which corresponds
to minimizing the largest final time.

Minimizing only the time can lead to sudden shifts in
acceleration and jerk resulting in an uncomfortable ride for the
occupants of the vehicle. This is mitigated by adding penalties
for the input signal uk,p0

and its derivative Duk,p0
, i.e.,

Jd = ‖ξp0+pf,p0
‖Q,p +

∑
k∈P

(‖uk,p0‖2R + ‖Duk,p0‖2S). (10)

where R and S are positive definite weighting matrices.

VI. CASE STUDY

In this section, the proposed MPC is validated on the
scenarios in Fig. 4. Besides the solver metrics such as solution
time and closeness to the optimal solution there are many
metrics that are interesting when studying the effectiveness of
an intersection algorithm, including: completion time, i.e., how
long it takes before the last vehicle leaves the intersection;

1

2

3

4

(a) Scenario 1: Four vehicles going
straight.

1

2

3

4

5

6

7

8

Leg 1

Leg 2

Leg 3

Leg 4

(b) Scenario 2: Eight vehicles turning.

Fig. 4: Scenarios investigated in the case study.

TABLE I: Vehicle specific parameters for the four vehicles of Scenario 1 and
the eight vehicles of Scenario 2. Symbol * implies that the crossing order is
optimized and not calculated beforehand.

Description Values
Initial position (m) [50, 60, 50, 60]

[60, 70, 70, 70, 80, 85, 85, 85]
Initial speed (km/h) [36, 38, 40, 42]

[37, 36, 40, 30, 40, 40, 40, 40]
Initial acceleration (m/s2) [0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 0]
Reference speed (km/h) [36, 38, 40, 42]

[50, 50, 50, 50, 50, 50, 50, 50]
Crossing order *

[1, 3, 2, 5, 6, 7, 4, 8]

how well vehicles track their reference speed (if there is
one), average time it takes for a vehicle to travel through the
intersection, level of congestion and energy consumption.

Not all these metrics can be optimal simultaneously. For
instance, tracking a reference speed and minimizing comple-
tion time are competing objectives unless the reference speed
is equal to the upper limit of the speed. Which metrics are
most important for the current application should factor into
the choice of cost function, see Section V-A.

The scenarios in Fig. 4 take place in a four-way intersection
where all leg angles are 90◦ and each leg consists of two lanes
with a width of 5 m. The physical area is 30 m across and
the control boundary is a circle with a radius of 90 m whose
center coincides with the center of the physical area. For both
scenarios, it is assumed that vmin

n (p) = 1 km/h and

vmax
n (p) =


50 km/h κn(p) = 0,

18 km/h κn(p) = 0.08,

21.3 km/h κn(p) = 0.0571,

(11)

where the curvature κn(p) = 0 corresponds to a straight path,
κn(p) = 0.08 corresponds to a right turn and κn(p) = 0.0571
corresponds to a left turn. The speed values in (11) correspond
to a maximum lateral acceleration of amax

nlat = 2 m/s2 for all
n ∈ N and a constant road speed limit vsl = 50 km/h for
all intersection legs. The longitudinal acceleration limits are
amin
n = −3.5 m/s2 and amax

n = 2 m/s2 for all n ∈ N . The
sampling interval is chosen to be ∆p = 1 m.

Two cost functions are used in the case study. The first cost
function is a combination of speed tracking and minimization

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2023.3336533

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



TABLE II: Minimum headway difference between vehicles inside a local
critical zone. Values higher than −1.10 s would imply a violation of the
collision avoidance constraints.

Scenario 1 Scenario 2
local cz Tracking Min. Time

t1 − t2 −1.10 s −3.53 s −4.10 s
t1 − t4 −1.36 s −7.045 s −7.67 s
t3 − t2 −2.67 s −1.10 s −1.10 s
t3 − t4 −1.10 s −11.09 s −11.20 s
t2 − t5 N/A −1.10 s −1.10 s
t5 − t4 N/A −1.10 s −1.10 s

of discomfort written on the form (9), with the weights

Q = diag(0, q1, 0, q2, . . . , 0, qN ) ∈ R2N×2N ,

R = diag(r1, r2, . . . , rN ) ∈ RN×N ,

S = diag(s1, s2, . . . , sN−1) ∈ R(N−1)×(N−1),

where

qn = ∆pv3
nmqnv, rn = 2∆pv5

nmqna, sn =
2qnjv

7
nm

∆p
,

and qnv = 1, qna = 1 and qnj = 0.5 for all n ∈ N are the
weights corresponding to a time formulated problem, see [11].
Further, vnm is the mean velocity of the linearization velocity,
i.e., vnm = mean(1/znlin), and the reference vectors are

ξr,k,p0
= [0, vr,k,1, . . . , 0, vr,k,N ], ur,k,p0 = 0

where vr,k,n is the reference velocity of Vehicle n. This cost
function is referred to as the tracking cost in this case study.

The second cost function is a combination of minimizing
the sum of the final vehicle traveling times and discomfort. It
is written on the form (10) with R and S chosen as for the
tracking cost, p = 1 and

Q = diag(1, 0, 1, 0, . . . , 1, 0) ∈ R2N×2N .

This is referred to as the minimum time cost in this case
study. In the first MPC iteration, when no previous solution
is available, the inverse linearization speed which the input
constraints (8d) depend on is chosen to be the inverse reference
speed of each vehicle n ∈ N for the tracking cost and the
upper speed limit for the minimum time cost. Thereafter, for
both cost functions, the linearization is done about the previous
solution, shifted by one example.

The proposed controller is implemented in MATLAB and
the optimal control program (8) is solved using the built-in
solver quadprog. All simulations are performed on a laptop
with Intel Core i7-5600 CPU at 2.60GHz with 16 GB RAM.

The case study is divided into three parts: comparison
between local and global critical zones, a comparison between
cost functions and an investigation of how well the algorithm
handles a sudden lane blockage. In addition to the figures and
analysis presented within this paper there is also an animation
showing the optimal solution of each case solved1.

1https://chalmersuniversity.app.box.com/folder/140303688929

0 50 100 150

Position (m)

0

5

10

15

20

25

T
im

e
 (

s
)

Intersection

Car 1

Car 2

Car 3

Car 4

(a) Traveling time at each position for
all vehicles. The solution is collision
free since there is only one vehicle in-
side the physical area (depicted in gray)
at any given time.

0 50 100 150 200
10

20

30

40

50

S
p
e
e
d
 (

k
m

/h
)

Car 1

Car 2

Car 3

Car 4

0 50 100 150 200

Position (m)

-2

0

2

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

Limits

(b) Speed and acceleration for all ve-
hicles. The acceleration constraints are
fulfilled since the acceleration of all
vehicles is between the dashed limits.

Fig. 5: Results of solving the optimal control program for Scenario 1 with a
tracking cost function and using the physical area as a global critical zone.

40 50 60 70 80 90

Position (m)

3

4

5

6

7

8

9

T
im

e
 (

s
)

Car 1

Car 2

Car 3

Car 4

(a) Traveling time at each sample.

0 50 100 150 200
10

20

30

40

50

S
p
e
e
d
 (

k
m

/h
)

Car 1

Car 2

Car 3

Car 4

0 50 100 150 200

Position (m)

-2

0

2

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

Limits

(b) Velocity and acceleration for all ve-
hicles.

Fig. 6: Results of solving the optimal control program for Scenario 1 with a
tracking cost function and using local critical zones.

A. Comparison of local and global critical zone

In this part of the case study, the proposed controller is
applied to Scenario 1; a scenario where four vehicles are
moving straight through an intersection, as depicted in Fig. 4a.
This scenario is similar to the one we solved in [13] and is
resolved here using the new MPC formulation for repeatability
and for its simplicity, before the more complicated Scenario
2 is solved. In addition to the parameters introduced in the
previous section, the time headway is chosen to be thw

nm = 1.1 s
for all n,m ∈ N and the initial conditions are as shown in
the column labeled Scenario 1 of Table I. The tracking cost
is chosen as the cost function.

Scenario 1 is solved for all crossing orders and the crossing
order with the lowest cost is chosen, i.e., the crossing order
and vehicle trajectories are optimized. A solution is found for
both the case of local critical zones and the case where the
full physical area is considered a global critical zone within
which only one vehicle is allowed at the time.

The result for the global critical zone is presented in Fig. 5.
The Fig. 5a shows the traveling time of each vehicle plotted
against its position. The gray area represents the physical area,
which is also the global critical zone. Since no vehicles have
overlapping paths the solution is collision free if there is at
most one vehicle inside the physical area at the time. It can be
seen that this is the case for the solution in Fig. 5a since the
time at which a vehicle enters the physical area, represented by
a red circle, is always lower than the exit time of the preceding
vehicles, represented by a blue square.

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2023.3336533

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



0 50 100 150 200

Position (m)

-12

-10

-8

-6

-4

-2

0

2
t n

-t
m

 (
s
)

t1-t5

t1-t7

t3-t7

t2-t6

t2-t8

t5-t7

t6-t4

t4-t8

(a) Time headway between vehicles
with overlapping paths.

0 50 100 150 200
10

20

30

40

50

S
p
e
e
d
 (

k
m

/h
)

Car 1

Car 2

Car 3

Car 4

Car 5

Car 6

Car 7

Car 8

0 50 100 150 200

Position (m)

-2

0

2

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

Limits

(b) Velocity and acceleration for all ve-
hicles.

Fig. 7: The solution for Scenario 2 using the tracking cost. Fig. a) The thick
part of the coloured lines represent the positions at which the paths of the
vehicle pairs overlap. Overlapping paths are collision free if the thick part
of the lines are below the negative headway −0.7 s, depicted by the black
dotted line. b) The acceleration bounds are fulfilled since the acceleration of
all vehicles is between the dotted limits.

0 50 100 150 200

Position (m)

-12

-10

-8

-6

-4

-2

0

2

t n
-t

m
 (

s
)

t1-t5

t1-t7

t3-t7

t2-t6

t2-t8

t5-t7

t6-t4

t4-t8

(a) Time headway between vehicles
with overlapping paths.

0 50 100 150 200
10

20

30

40

50

S
p

e
e

d
 (

k
m

/h
)

Car 1

Car 2

Car 3

Car 4

Car 5

Car 6

Car 7

Car 8

0 50 100 150 200

-2

0

2

A
c
c
e

le
ra

ti
o

n
 (

m
/s

2
)

Limits

Position (m)

(b) Velocity and acceleration for all ve-
hicles.

Fig. 8: The solution for Scenario 2 using the minimum time cost. Fig. a) The
thick part of the coloured lines represent the positions at which the paths of
the vehicle pairs overlap. Overlapping paths are collision free if the thick part
of the lines are below the negative headway −0.7 s, depicted by the black
dotted line. b) The acceleration bounds are fulfilled since the acceleration of
all vehicles is between the dotted limits.

The results for the local critical zones are presented in
Fig. 6. Here, the traveling times plotted against the vehicle
positions are shown in Fig. 6a. However, since the physical
area is no longer the critical zone it is not enough to study
this plot to determine if the collision avoidance constraints are
fulfilled or not. Indeed, as expected, it is seen in this figure
that several vehicles occupy the physical area at the same time.
Instead, collision avoidance is verified when there is only one
vehicle within each local critical zone at the time. That this is
the case in this Scenario is seen in the second column of Table
II, which lists the time difference between the exit of the first
vehicle and entry of the second vehicle into each local critical
zone, and since all of them are equal to or less than −1.1 s,
the solution fulfills the collision avoidance constraints.

From Fig. 5a it is seen that the optimal crossing order is
[3, 4, 1, 2] when the critical zone is the full physical area.
When the problem is solved with local critical zones the
optimal crossing order is instead [3, 1, 4, 2] (this is not easy to
discern from Fig. 6 and Table II). Thus, when using local crit-
ical zones, compared to a global critical zone, Vehicle 1 swaps
places with Vehicle 4 in the crossing order. This together
with the less conservative collision avoidance constraints that
allow for several vehicles inside the physical area at the same
time makes it possible for the vehicles to accelerate/decelerate

less and keep a speed closer to their reference throughout the
simulation, compare Fig. 5b and Fig. 6b. Especially vehicles 1
and 2 have to decelerate significantly more in the case of the
global critical zone and due to this, it takes the last vehicle,
Vehicle 2, 14.34 s to leave the physical area for the global
critical zone while only 8.87 s to leave the physical area in
case of the local critical zones.

B. Comparison of cost functions

In this section, a scenario is solved with two vehicles in
each of the four lanes, see Fig. 4b. This scenario is referred
to as Scenario 2 throughout the rest of the paper. Scenario 2
is here solved using the tracking cost and the minimum time
cost, see Section V-A.

In addition to the parameters introduced in Section VI, the
time headway is chosen to be thw

nm = 0.7 s for all vehicles
n,m ∈ N with overlapping paths and thw

nm = 1.1 s for all
vehicles n,m ∈ N with intersecting paths. Finally, the initial
conditions are as shown in the third column of Table I.

The solution obtained when applying the tracking cost is
presented in Fig. 7, while the corresponding solution for using
the minimum time cost is shown in Fig. 8.

To determine that the tracking cost solution is collision free,
we study Fig. 7a and the third column of Table II.The Table II
lists the headway difference for all vehicles with intersecting
paths, in the same way as for Scenario 1. Fig. 7a, depicts
the headway difference between all vehicles with overlapping
paths against the position. The thicker part of the lines corre-
sponds to the positions at which collision avoidance constraints
are active. For example, the red line labeled t1 − t5 is thick
for all the plotted samples since Vehicles 1 and 5 have the
same path, while the brown line, labeled t5− t7, is thick from
110 m onward since the Vehicles 5 and 7 have overlapping
paths after the physical area. Here, a circle indicates the start
of the overlapping path and a square represents its end. Since
the headway difference is below −0.7 s for all vehicle pairs
with overlapping paths at all samples where there is a risk
of a rear-end collision and the headway difference is below
−1.1 s for all vehicle pairs with intersecting paths, the solution
obtained by applying the tracking cost is collision free. The
corresponding plot and table column for the minimum time
objective, Fig. 8a and the fourth column of Table II, show
that the minimum time solution is also collision free.

The headway difference plots for the tracking cost, Fig. 7a,
and the minimum time cost, Fig. 8a, are similar and so are
the headway differences for the intersecting paths, see Table
II. However, if one studies the velocities and accelerations
plotted in Fig. 7b and Fig. 8b there are some differences. In
the case of the minimum time cost Vehicle 1 applies maximum
acceleration at the start of the scenario and almost reaches the
speed limit of 50 km/h. However, for the tracking cost, where
50 km/h is the speed limit and the speed tracked, Vehicle 1
stays far below that value until after the physical area has
been passed. A similar pattern is seen for most other vehicles,
where the speed for the earlier samples are kept higher in the
minimum time solution than in the tracking solution. Further,
the velocities of Vehicles 7 and 8 have smoother trajectories

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2023.3336533

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



TABLE III: Minimum headway difference between vehicle pairs at risk of
collision. Values lower than −0.7 s for overlapping paths and lower than
−1.1 s for intersecting paths imply there is no violation of the collision
avoidance constraints.

10 m 30 m 50 m
Intersection
t1 − t2 −1.69 s −3.52 s −4.23 s
t1 − t4 −5.22 s −6.97 s −8.95 s
t2 − t5 −1.10 s −1.10 s −1.48 s
t5 − t4 −1.10 s −1.13 s −1.10 s
Overlapping
t1 − t3 −2.13 s −2.71 s −4.28 s
t1 − t5 −2.14 s −2.22 s −2.22 s
t1 − t7 −6.24 s −7.93 s −10.77 s
t3 − t5 −1.42 s −2.91 s −1.62 s
t3 − t7 −1.54 s −1.55 s −1.55 s
t2 − t6 −1.25 s −1.41 s −1.41 s
t2 − t8 −7.83 s −9.71 s −8.89 s
t5 − t7 −2.13 s −2.12 s −1.24 s
t6 − t4 −4.64 s −4.75 s −6.29 s
t4 − t8 −1.70 s −1.71 s −1.71 s

in the minimum time cost. The price to pay for using the
minimum time cost is increased acceleration of Vehicle 1 at
the start of the simulation. It is also seen that the vehicles
accelerate faster, up to 50 km/h, after the physical area for the
minimum time case than in the tracking case. As expected,
the sum of travel times until all vehicles reach their final
position is shorter for the minimum time cost, 191.4 s, than
for the tracking cost, 197.7 s, while the last vehicle (Vehicle
8) reaches the last sample at 30.1 s and 29.5 s, respectively.
Hence, the minimum time solution pushes the vehicles through
the intersection faster than the tracking cost.

C. Lane blockage

In this last part of the case study, Scenario 2 is solved
with an added disturbance. The disturbance is the blockage
of the exit lane of Leg 2. The blockage forces the controller
to redirect all vehicles, in this case only Vehicle 3, from the
exit lane of Leg 2 to another exit lane. In this scenario it is
assumed that Vehicle 3 is redirected to the exit lane of Leg 4,
i.e., after the lane blockage all vehicles travel along the paths
defined in Fig. 4b except Vehicle 3, which is now traveling
along the same path as Vehicle 7. The Scenario is solved for 3
cases: when the blockage occurs after 10, 30 and 50 samples.
Note that in all these three cases the blockage occurs prior
to Vehicle 3 reaching the physical area to guarantee that it
can choose one of the other predefined paths. Lane blockages
occurring after Vehicle 3 has entered the physical area would
require a method to construct a new path for the vehicle to
follow, which is not a part of this paper.

The result for the three cases is presented in Table III and
Figs. 9a-9c. The table lists the minimum time headway along
overlapping paths and the headway difference for intersecting
paths. The time headways are 1.1 s for all intersecting paths
and 0.7 s for all overlapping paths. Therefore, Table III shows
that the solver yields collision free solutions for all three cases.

To see the effect of the blockage, the three Figs. 9a-9c
are compared. The direct consequence of the blockage is that
Vehicle 3 takes a right turn instead of a left turn, which forces
it to lower its speed when getting close to the physical area.
As is seen in Fig. 9a-9c this deceleration starts at the moment

the blockage occurs, and is more severe the later the blockage
occurs. Further, the change of the path of Vehicle 3, makes it
possible for Vehicle 2 to get through the physical area faster
due to it no longer having to wait for Vehicle 3. This is why
the speed and acceleration of Vehicle 2 jumps in Figs. 9a-9b
at the sample where the blockage occurs. This jump is not as
prominent in Fig. 9c, since Vehicle 2 is close to the physical
area when the blocking occurs and has a speed already close
to its allowed maximum inside the physical area, 21.3 km/s.
Similar behavior is observed for Vehicle 6. This is due to the
fact that Vehicle 6 travels behind Vehicle 2 before the physical
area, which allows it to accelerate when Vehicle 2 does.

Lastly, the speed and acceleration of Vehicle 1 is af-
fected. This is because it has the same exit lane as Vehicle
3 after the blockage occurs. Since, the crossing order is
[1, 3, 2, 5, 6, 7, 4, 8], Vehicle 1 has to accelerate ones the
controller becomes aware of the blockage to reach the exit lane
before Vehicle 3. This is illustrated by the jump in acceleration
at the occurrence of the blockage in Figs. 9a-9c.

VII. WIDER APPLICATIONS OF THE CONTROLLER

In this paper, it has been shown how the algorithm for
cooperative coordination of vehicles driving in traffic inter-
sections is extended to include vehicles traveling in the same
lane. This enables the algorithm to be used as a cooperative
speed controller before and after the intersection. Further, this
enables other extensions, e.g., cooperative control in round-
abouts and intersection grids. Other useful extensions include
the possibility of handling mixed traffic, optimization of the
crossing order and avoidance of feasibility problems in the
presence of noisy or non-existing data using soft constraints.

A. Mixed traffic

Since it is not realistic that all of today’s vehicles are re-
placed by autonomous vehicles at the same time, it is beneficial
for intersection algorithms to handle mixed traffic, i.e., traffic
with both autonomous and non-autonomous vehicles.

It is possible to include non-autonomous vehicles into the
control program (8) given that the centralized controller has
access to a predefined path and planned/predicted longitudinal
speed along the path for all non-autonomous vehicles. Then,
collision avoidance constraints similar to (8e) can be for-
mulated between non-autonomous and autonomous vehicles.
However, it is not possible to prevent non-autonomous vehicles
from colliding with each other.

B. A grid of intersections

Since, the optimization program (8) models collision avoid-
ance for vehicles with intersecting and overlapping paths, it is
straightforward to generalize the MPC to a grid of intersec-
tions, as the one in Fig. 10. For each intersection, a program
identical to (8) is solved, and in between intersections, i.e.,
outside of the control boundaries, the same program but with
only overlapping collision avoidance constraints is solved. If
the distance between intersections is small, it is possible to use
a large control boundary encompassing multiple intersections

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2023.3336533

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



0 20 40 60 80 100 120 140 160 180
10

20

30

40

50
S

p
e
e
d
 (

k
m

/h
)

Car 1

Car 2

Car 3

Car 4

Car 5

Car 6

Car 7

Car 8

0 20 40 60 80 100 120 140 160 180

Position (m)

-3

-2

-1

0

1

2

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

Limits

(a) Blockage occurs after 10 samples.

0 20 40 60 80 100 120 140 160 180
10

20

30

40

50

S
p
e
e
d
 (

k
m

/h
)

Car 1

Car 2

Car 3

Car 4

Car 5

Car 6

Car 7

Car 8

0 20 40 60 80 100 120 140 160 180

Position (m)

-3

-2

-1

0

1

2

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

Limits

(b) Blockage occurs after 30 samples.

0 20 40 60 80 100 120 140 160 180
10

20

30

40

50

S
p
e
e
d
 (

k
m

/h
)

Car 1

Car 2

Car 3

Car 4

Car 5

Car 6

Car 7

Car 8

0 20 40 60 80 100 120 140 160 180

Position (m)

-3

-2

-1

0

1

2

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

Limits

(c) Blockage occurs after 50 samples.

Fig. 9: The speed and acceleration for three cases where Vehicle 3 in Scenario 2 is forced to change its exit lane from Leg 2 to Leg 4 due to a blockage in
the exit lane of Leg 2 after 10, 30 and 50 samples.

Fig. 10: A grid of four intersec-
tions. Each blue circle represents the
control boundary of the respective
intersection.

Fig. 11: A roundabout with four
legs, each with an entry and exit
lane. Paths starting in the first leg
shown in blue.

and regarding them as a single large intersection while if
the distance between the intersections is large, one might
consider using a controller between the intersections that
permit overtaking, e.g., the one proposed in [26].

C. Generalized intersections

The algorithm can be applied to other types of intersections
besides the four-way intersection. As long as the predefined
paths are well defined for all vehicles, the intersection can have
any number of legs and lanes. It is also possible to apply the
algorithm to merging and splitting of roads. One application
that is enabled due to the extended possibility of avoiding
rear-end collisions is cooperative driving in roundabouts, Fig.
11. However, including road users with a different movement
pattern, such as pedestrians and/or bicyclists is more complex,
since it would require predicting their path and speed along
that path. Such predictions are often based on a probabilistic
model and would require computation of robust bounds to be
implemented in the proposed algorithm.

D. Determining the crossing order

One straightforward way of determining the crossing order
is to solve the optimization program (8) for all possible
crossing orders and choose the solution with the lowest cost
(or one of the solutions with the lowest cost). However, the
number of possible crossing orders increases rapidly with the

number of vehicles. If every vehicle is traveling along its own
lane, the number of possible crossing orders is equal to the
number of ways to permute the vehicle indices. This means
that for N vehicles there are N ! possible crossing orders. As an
example, if eight vehicles are crossing the intersection, there
are 8! = 40320 possible crossing orders. However, typically
there are more vehicles than intersection legs, which lowers
the number of possible crossing orders, due to the assumption
of no overtaking. Considering the scenario depicted in Fig.
4b, which contains eight vehicles but only four intersection
legs, the number of combinations that need to be considered
when removing the possibility of overtaking is 2520. Further,
some crossing orders might be identical in the sense that they
provide the same cost when (8) is solved. This is due to the fact
that interchanging two adjacent vehicles in the crossing order,
which do not have intersecting or overlapping paths, does not
affect the formulation of the optimal control program (8).

By only considering the crossing orders in the Scenario in
Fig. 4b which provides a unique solution to (8), the number
of orderings are reduced further to 14. While it was possible
to reduce the number of crossing orders significantly in this
particular case, the reduction is heavily dependent on the
predefined paths of the vehicles. For more details on how to
find the unique orderings see the paper [13].

E. Soft constraints

In the case study, Section VI, the measurement of states
and inputs are assumed to be perfect and instantaneous. In
reality, noisy and/or delayed measurements might lead to small
violations of constraints and infeasibility. A common solution
to this is to use soft constraints, [24]. This introduces slack
variables for the state bounds (8c) and collision avoidance con-
straints (8e), which allows for violation of these constraints.
The square of these slack variables are then highly penalized
in the cost to discourage constraint violation.

VIII. CONCLUSION

In this paper, a centralized model predictive controller for
optimal control of autonomous vehicles at intersections is

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2023.3336533

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



presented. The intersection is defined mathematically as a
number of known paths along which the vehicles are allowed
to travel. The optimal control program is based on the sequen-
tial quadratic modeling first introduced in [11], but extended
with collision avoidance constraints for vehicles with the same
entry lane, the same exit lane and traveling along the same
path throughout the intersection. The optimal control program
is formulated in the spatial domain where the vehicle speed is
replaced by its inverse.

The suggested model predictive controller can handle any
type of intersection consisting of intersection legs and a
physical area where the vehicles can go straight, turn left
and/or turn right. This includes merging and splitting of roads.
It can further handle multiple vehicles traveling in the same
lane, sudden lane blockages.

The controller is shown to give smooth and collision free
solutions in a number of scenarios and with different objective
functions. It is also shown that the formulation of the optimal
control program only contains collision avoidance constraint
between vehicles that are at risk of collision, instead of
between all vehicles entering the physical area. It is shown
that since the optimal control program only implies collision
avoidance constraints between vehicles that are at risk of
collision, instead of between all vehicles entering the physical
area, the throughput is increased.

REFERENCES

[1] L. Greer, J. L. Fraser, D. Hicks, M. Mercer, K. Thompson et al.,
“Intelligent transportation systems benefits, costs, and lessons learned:
2018 update report,” United States. Dept. of Transportation. ITS Joint
Program Office, Tech. Rep., 2018.

[2] M. R. Hafner, D. Cunningham, L. Caminiti, and D. D. Vecchio, “Cooper-
ative collision avoidance at intersections: Algorithms and experiments,”
IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 3,
pp. 1162–1175, 2013.

[3] T. Tram, I. Batkovic, M. Ali, and J. Sjöberg, “Learning when to drive in
intersections by combining reinforcement learning and model predictive
control,” in IEEE Intelligent Transportation Systems Conference (ITSC),
2019.

[4] M. Khayatian, M. Mehrabian, E. Andert, R. Dedinsky, S. Choudhary,
Y. Lou, and A. Shirvastava, “A survey on intersection management of
connected autonomous vehicles,” ACM Transactions on Cyber-Physical
Systems, vol. 4, no. 4, pp. 1–27, 2020.

[5] M. C. Simon, T. Hermitte, and Y. Page, “Intersection road accident
causation: A European view,” in International Technical Conference on
the Enhanced Safety of Vehicles, 2009.

[6] E.-H. Choi, “Crash factors in intersection-related crashes: An on-scene
perspective,” in National Traffic Highway Safety Association, 2010.

[7] H. Ahn and D. D. Vecchio, “Safety verification and control for colli-
sion avoidance at road intersections,” IEEE Transactions on Automatic
Control, vol. 63, no. 3, pp. 630–642, 2018.

[8] B. Qian, H. Zhou, F. Lyu, J. Li, T. Ma, and F. Hou, “Toward collision-
free and efficient coordination for automated vehicles at unsignalized
intersection,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 408–
10 420, 2019.

[9] Y.-T. Lin, H. Hsu, S.-C. Lin, C.-W. Lin, I. H.-R. Jiang, and C. Liu,
“Graph-based modeling, scheduling, and verification for intersection
management of intelligent vehicles,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 18, no. 5s, pp. 1–21, 2019.

[10] H. Kowshik, D. Caveney, and P. R. Kumar, “Provable systemwide safety
in intelligent intersections,” IEEE Transactions on Vehicular Technology,
vol. 60, no. 3, pp. 804–818, 2011.

[11] N. Murgovski, G. R. de Campos, and J. Sjöberg, “Convex modelling
of conflict resolution at traffic intersections,” in Decision and Control
(CDC), Osaka, Japan, 2015.

[12] L. Riegger, M. Carlander, N. Lidander, N. Murgovski, and J. Sjöberg,
“Centralized MPC for autonomous intersection crossing,” in ITSC,
Osaka, Japan, 2016.

[13] J. Karlsson, J. Sjöberg, N. Murgovski, L. Hanning, V. Olsson, S. Luu,
and A. Rasch, “Intersection crossing with reduced number of conflicts,”
in ITSC, Hawaii, USA, 2018.

[14] A. Katriniok, P. Kleibaum, and M. Joševski, “Distributed model predic-
tive control for intersection automation using a parallelized optimization
approach,” in IFAC, Toulouse, France, 2017.

[15] G. R. de Campos, P. Falcone, R. Hult, H. Wymeersch, and J. Sjöberg,
“Traffic coordination at road intersections: Autonomous decision-making
algorithms using model-based heuristics,” IEEE Intelligent Transporta-
tion Systems Magazine, vol. 9, no. 1, pp. 8–21, 2017.

[16] X. Zhao, J. Wang, G. Yin, and K. Zhang, “Cooperative driving for
connected and automated vehicles at non-signalized intersection based
on model predictive control,” in ITSC, Auckland, New Zealand, 2019.

[17] E. F. Camacho and C. Bordons, Model predictive control. Springer
Science & Business Media, 2013.

[18] R. Hult, M. Zanon, S. Gros, and P. Falcone, “An MIQP-based heuristic
for optimal coordination of vehicles at intersections,” in Decision and
Control (CDC), Miami Beach, USA, 2018.

[19] S. Huang, A. W. Sadek, and Y. Zhao, “Assessing the mobility and envi-
ronmental benefits of reservation-based intelligent intersections using an
integrated simulator,” IEEE Transactions on Intelligent Transportation
Systems, vol. 13, no. 3, pp. 1201–1214, 2012.

[20] M. Ma and Z. Li, “A time-independent trajectory optimization approach
for connected and autonomous vehicles under reservation-based inter-
section control,” Transportation Research Interdisciplinary Perspectives,
vol. 9, 2021.

[21] Massachusetts Highway department, “Project development and design
guide,” 2006.

[22] American Association of State Highway and Transportation officials
(AASHTO), A policy on geometric design of highways and streets,
6th ed., 2011.

[23] J. Nocedal and S. J. Wright, Numerical optimization, 2nd ed. Springer,
2000.

[24] S. Boyd and L. Vanderberghe, Convex optimization, 1st ed. Cambridge
University Press, 2004.

[25] R. Hult, “Optimization-based coordination strategies for connected and
autonmous vehicles,” Ph.D. dissertation, Chalmers university of technol-
ogy, 2019.

[26] J. Karlsson, N. Murgovski, and J. Sjöberg, “Computationally efficient
autonomous overtaking on highways,” IEEE Transactions on Intelligent
Transportation Systems, vol. 21, no. 8, pp. 3169 – 3183, 2020.

Jonas Sjöberg received the degree of master
in applied physics from Uppsala University
1989 and the degree of doctor in engineering
(PhD) in 1995 from Linköping University,
Sweden. After Post-Docs at ETH Zurich, he
became Assistant Professor at Chalmers, and

after research visits at TU Wien, and at Technion in Haifa, he
became a Full Professor at Chalmers University of Technology
in 2001. His research interests are in mechatronics, and mecha-
tronic related fields, such as signal processing, and control.
Within these fields, interest focus on model based methods,
simulations, system identification, and optimization for design
and product development of mechatronic systems. Many of the
applied projects target the transport area, both electro-mobility,
and, active safety and autonomous driving. He was the winner
of Volvo Cars technology award 2011. In 2015 he was co-
main chair of the FASTzero symposium, and 2016 he is main
chair of IEEE Intelligent Vehicles Symposium. Since 2017 he
is BOG member of IEEE ITSS.

Nikolce Murgovski is an Associate Professor
with the Department of Electrical Engineering,
Division of Systems and Control, Chalmers
University of Technology. He received the
M.S. degree in Software Engineering from
University West, Trollhättan, Sweden, in 2007,

and the M.S. degree in Applied Physics and the PhD degree in

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2023.3336533

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Systems and Control from the Chalmers University of Tech-
nology, Gothenburg, Sweden, in 2007 and 2012, respectively.
His research interests are in optimization, optimal control,
modelling, online learning and estimation. His typical research
projects are within electromobility, autonomous driving and
automotive active safety.

Johan Karlsson received the M.sc degree in
mathematical engineering from Chalmers Uni-
versity of Technology, Gothenburg, Sweden in
2016. He is currently a PhD with the De-
partment of electrical engineering, Chalmers
University. His areas of interest include opti-

mization and optimal control in the automotive area.

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2023.3336533

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


	Introduction
	Nomenclature
	Intersections
	Problem formulation
	Vehicle paths
	Longitudinal dynamics
	State and control constraints
	Motion on curved paths

	Collision avoidance constraints
	Feasibility beyond the horizon

	Optimal control program
	Linearization of input constraints

	Model predictive control
	Convex cost functions
	Trajectory tracking
	Minimum time


	Case study
	Comparison of local and global critical zone
	Comparison of cost functions
	Lane blockage

	Wider applications of the controller
	Mixed traffic
	A grid of intersections
	Generalized intersections
	Determining the crossing order
	Soft constraints

	Conclusion
	References

