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Abstract—Understanding group travel is vital for transporta-
tion planners and policymakers, especially when modelling
emerging on-demand mobility such as ridesharing and shared au-
tonomous vehicles. Existing agent-based simulations of rideshar-
ing services hardly consider group travel, even though these
services mainly occur during the weekend and for leisure trips
where people are more likely to travel in groups. This is due to the
limited availability of group travel data in many travel demand
models. This study uses a Swiss synthetic travel demand where
car drivers and passengers are modelled separately to identify
group travellers. A heuristic approach based on mixed integer
linear programming is implemented to create group travellers by
matching car drivers and passengers. An agent-based simulation
model is set up to simulate ridesharing while considering group
travel to reveal the impact on operational policies for ridesharing.

Index Terms—Group travel, travel party size, agent-based
models, on-demand mobility, ridesharing.

I. INTRODUCTION

As the field of transport planning evolves, planners are
increasingly considering the impacts of emerging on-demand
mobility options like ridesharing and Shared Autonomous
Vehicles (SAVs). Over the last decade, there has been a surge
in on-demand mobility simulation studies, particularly those
utilizing agent-based models. Agent-based models are pow-
erful tools for modelling complex problems related to travel
behaviour at the microscopic scale. They offer a foundation for
crafting policies and operational decisions for on-demand mo-
bility that could directly impact travellers, ultimately allowing
for more effective travel demand management.

Typically, in agent-based on-demand simulation models,
potential travellers can request a ride at any time, either
directly from their doorstep or a designated area, and a vehicle
arrives to transport them to their desired destination and
activity. Behind this operation is a centralized dispatching sys-
tem, which balances the management of an available fleet of
vehicles against service efficiency and effectiveness to ensure
optimal service levels. However, an important omission from
most simulation studies is the consideration of group travel.
Conventional simulation approaches often model a request
as a single person, even though one request might involve
multiple individuals travelling together for a specific activity.
Group travellers are typically modelled independently, but this
can lead to inaccurate estimations of group travel impacts on
transport infrastructure, such as fleet size requirements or the
formulation of pricing and subsidy schemes.
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Despite the growing importance of on-demand mobility,
existing models for ridesharing services often neglect group
travel, even though these services have been shown to occur
majorly during the weekends and for leisure trips where
persons are more likely to travel in groups [1], [2]. The Swiss
2015 household travel survey (HTS) [3] reveals that most
weekend trips have a higher percentage of car passenger trips
(about 19%) compared to weekdays (9%). The richer 2008
French National HTS data [4] shows that 64% of group trips
are made within households, out of which 80% were made by
car, 16% by walking, and 3% by public transport (PT). For
non-household group trips, 70% by car, 19% by walking, and
8% by PT. Clearly, families or groups of friends tend to travel
together and carpool. This behavioural trend suggests that
group travel should be a key consideration when simulating
on-demand mobility in travel demand models, especially when
modelling weekend travel patterns.

However, modelling group travel has proven challenging
due to data limitations and difficulty in identifying group
travellers. The methods for identifying group travellers range
from traditional discrete choice models to more complex
optimization algorithms. Discrete choice models have been
used to identify group travellers in households across different
travel demand models [5]–[7]. [8] and [9] used transit smart
card datasets to identify group travellers that travel with public
transit by grouping transit passengers by their time of entry
and exit from a train. However, these methods have not yet
been replicated in simulation models due to data availability
and implementation constraints.

Carpooling, a term typically used when individuals familiar
with each other share a private vehicle ride, is a form of group
travel, and has been well-studied with a rise in models that
match carpool passengers to carpool drivers [10]. Furthermore,
matching passengers and drivers to create group travellers
can also be seen as a dial-a-ride problem. Carpooling and
ridesharing services have been studied with various similar
approaches to match groups of travellers and drivers, typically
by solving a vehicle routing problem using optimization tech-
niques and heuristic approaches such as local search, hybrid
genetic algorithms, and simulated annealing [11]–[14]. Some
have improved these matching algorithms through the use of
generalized cost [15]. Usually, different objective functions ex-
ist in these optimization approaches with a focus on reducing
trip distances between drivers and passengers, system-wide
vehicle kilometres travelled, travel cost, or maximizing the
number of participants in a vehicle.

Despite these advancements, realistically simulating car
passenger trips in travel demand models remains challenging.
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Car passenger trips can occur within different contexts such
as households, personal social networks, or even between
strangers. Furthermore, the availability of a passenger mode
option depends on the behaviour of the driver offering a ride.
Thus, car passenger trips are often modelled simplistically.
While there have been a few attempts to model group travel
in travel demand simulation models [16], they often resemble a
ride-hailing or carpooling system rather than generating group
travellers that travel from the same households or locations.

In the context of this study, ”group travel” refers to mul-
tiple individuals, whether from the same household or not
but known to each other, who travel together from one or
more origins to one or more destinations. This differs from
”ridesharing” (commonly associated with shared taxi services
like UberPool) and aligns more closely with ”carpooling”.
In contrast to typical carpooling studies, which focus on
matching passengers to drivers and minimizing time, distance,
and travel costs, this study aims to identify individuals who
travel together from the same household or location.

Overall, the primary goal of this paper is to highlight
the importance of integrating group travel into on-demand
mobility simulations. As not doing so, can create a false
impression of the impacts of these services on the transport
system. Furthermore, this paper seeks to show how the impact
of group travel varies between weekdays and weekends and
to quantify these differences.

The subsequent sections of this paper present an approach
for identifying group travellers using synthetic travel demand
data. The study further includes a simulation case study to
demonstrate the influence of considering group travel in on-
demand mobility simulations. The Swiss synthetic travel de-
mand data is used to identify potential group travellers, with a
heuristic approach based on mixed-integer linear programming
implemented to match car drivers and passengers, who are
grouped into travel groups. Such a group could comprise mem-
bers of the same household or a circle of friends. The matching
process, which ensures that matched group travellers have
similar departure times, origins, and destinations, is necessary
to obtain groups as they are not available directly from the
data. The approach also considers vehicle capacity constraints
and the overall vehicle occupancy distribution of the region,
ensuring that the essence of group travel is preserved while
optimizing the driver-passenger matching based on time and
distance considerations. Finally, an agent-based simulation
model is set up to simulate ridesharing while considering
group travel.

II. METHODOLOGY

Group travel can be classified based on [17]’s four pat-
terns of ridesharing: identical, inclusive, partial, and detour
ridesharing. For example, in identical ridesharing, both the
origin and destination of the driver and passenger are the same.
In partial ridesharing, the pick-up and drop-off locations of
the passenger are on the way of the driver’s original route,
but either the origin or the destination is not on the way. In
this study, we first explore the problem of identifying group
travellers as travellers with the same origin and destination and

similar departure time, using a car as their mode of travel, i.e.,
identical group travellers.

A. Matching

Matching problems are not new, as they occur wherever
there is a need for a proper allocation of resources. Online
matchmaking, network flows, and Uber/taxi pickup problems
are a few examples. They are sometimes described as classical
assignment problems or graph problems. In this context of
driver-passenger matching to identify group travellers, the
problem follows a minimum weight matching in a bipartite
graph problem where we can represent each driver and pas-
senger as a node and draw an edge between a driver and
a passenger if they can be matched. The weight of each
edge represents the cost of the matching, which could be
based on factors such as the distance between the origins and
destinations of the driver and passenger or the departure time
required for the trip. The following are assumptions for the
matching:

• A travel group is made up of two or more persons,
depending on the vehicle capacity, with only one person
as a driver

• Persons in a travel group may be within the same house-
hold or among friends

• A travel group consist of persons whose trips have
approximately the same departure time, point of origin,
and destination

Therefore, given two subsets, N and M, representing car
passengers and drivers, respectively, the problem instance is
described by an n×m matrix C, where each C[i, j] represents
the cost of matching node i of the first subset, car passengers,
and node j of the second subset of car drivers. The cost is
made up of two components: time and distance. The time cost,
tij , is defined as the absolute difference in departure times
between passenger i and driver j. The distance cost, dij , is
computed as the sum of two components: the distance from the
driver’s origin to the passenger’s origin, and the distance from
the passenger’s destination to the driver’s destination. These
two cost components are combined into a single measure by
applying a weighted sum. The cost of matching a passenger
with a driver is thus defined as in follows in Equation (1):

cij =
∑

(α× tij + (1− α)× dij) (1)

where α is a parameter that determines the relative impor-
tance of time versus distance. A higher value of α would give
more importance to the time cost in the matching decision,
while a lower value would emphasize the distance cost.

The aim of the matching algorithm is to find a complete
matching of the drivers and passengers by minimizing the total
cost of matching passengers with drivers, subject to certain
constraints. These include limiting the number of passengers
that can be matched with a single driver, and requirements
on the vehicle occupancy distribution in the region. Figure 1
presents the matching algorithm. The linear problem is thus
formulated as follows:

Minimize
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min

n∑
i=1

m∑
j=1

(cij × xij) (2)

where xij = 1, if passenger i is matched with driver j
otherwise 0

Subject to:

Each passenger is assigned one driver

∀i ∈ {1, . . . , n}
m∑
j=1

xij = 1 (3)

Each driver is assigned at most k passenger

∀j ∈ 1, . . . ,m

n∑
i=1

xij ≤ k (4)

The occupancy distribution of all drivers is close to the
desired defined distribution

∀l ∈ {0, . . . , k}Zl − ϵ ≤
m∑
j=1

Yj,l ≤ Zl + ϵ (5)

whereby l represents the occupancy level of a vehicle, i.e., the
number of passengers in a vehicle. It ranges from 0 (vehicle
is empty) to k (vehicle is at maximum capacity).

Zl represents the desired occupancy distribution of vehicles,
i.e., the number of vehicles with an occupancy level of l. For
instance, Z0 would represent the desired number of empty
vehicles, Z1 would represent the desired number of vehicles
with one passenger, and so on up to Zk, which represents the
desired number of vehicles at maximum capacity.

The problem can be seen as a variant of the classical
assignment problem studied by researchers using various
methods, including mixed-integer linear programming (MILP)
and solvers such as Gurobi or CPLEX. However, the problem
formulated above is not a standard matching problem, given
that N and M can be as large as 500,000 elements; solving
this problem using a MILP solver can be computationally
expensive and may not scale well. Therefore, a heuristic
method is proposed to solve the problem. The algorithm
implements a greedy approach to find the minimum cost
pairing between drivers and passengers iteratively. The mo-
tivation behind a greedy algorithm is that it can provide near-
optimal solutions more efficiently than traditional optimization
techniques, especially for large-scale problems.

The algorithm identifies the next ’best’ match for a passen-
ger at each iteration under the following conditions:

1) The driver has not reached the maximum passenger
limit.

2) The cost of pairing with the current driver is lower than
with any other driver.

3) The number of matches for the current driver is within
the specified passenger occupancy distribution range.

4) The number of drivers with the current number of
matches is less than the occupancy distribution value
for that number of matches.

Fig. 1. Matching Algorithm

The algorithm, in its original form, has a time complexity
of O(n2), where n represents the number of passengers and
drivers, with the code’s efficiency depending on the size
of the cost matrix. However, to enhance the performance
of the algorithm, the strategy is to reduce the number of
potential driver candidates. This is achieved by segmenting
the driver pool into time bins and only considering drivers
within a specific time bin of a passenger as potential matches.
This allows the algorithm to focus on a manageable subset
of drivers, thereby reducing computation time. A minimum
threshold for the number of candidates is set to ensure that
there are adequate candidates for efficient matching. If the
number of candidates within a time bin falls below a minimum
threshold, the time bin is expanded incrementally in both
directions until either the threshold is met or a pre-defined
maximum number of attempts is reached. If these attempts
are unsuccessful, the passenger is considered unmatchable.
To ensure realistic pairings, a constraint is added to ensure
that driver candidates have trip lengths greater or equal to
the passenger’s considered trip length. Further, a maximum
acceptable difference for both time cost and distance cost can
be defined to filter out unlikely candidates during the matching.
Both scenarios, with and without the filtering constraints, are
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Fig. 2. Greedy Matching Heuristic

explored in this study to understand their impact on the algo-
rithm’s performance and the resultant matchings. This greedy
matching heuristic approach shown in Figure 2, while it may
not guarantee a globally optimal solution, provides a practical
approach to solving a large-scale group travel matching and
offers a balance between computational efficiency and solution
quality (See Appendix A for a small scale comparison between
a standard MILP algorithm and the heuristic approach).

B. Simulation Framework

The multi-agent transport simulation framework MATSim
[18] is used for this study and extended to include the capa-
bility for ridesharing and group travel. MATSim provides the
ability to model large-scale transport systems realistically. It
requires the following scenario data to emulate the transporta-
tion system: a network of links and nodes and travel demand
in the form of a synthetic population of agents with their travel
plans and other transport elements such as facility location and
transit schedules. Agents in MATSim are iteratively routed and
simulated through the network, using their chosen modes of
transportation to get from one place to another while engaging
in various activities. As the agents interact with each other
in the network, congestion occurs, affecting their decisions
in the next iteration. Agents optimize their plans in each
iteration until the system converges to a steady state. This
enables MATSim to simulate emerging behaviours that drive
travellers’ decision-making. In this study, only the network
routing functionality of MATSim is used, which serves as the
basis for future agent-based research. This is mainly because
this work focuses solely on comparing ridesharing group travel
patterns without the need to capture the entire travel behaviour
of the transportation system.

To represent a fleet managing system for shared autonomous
vehicles (SAVs) that allows for pooling and group travel,
MATSim’s demand-responsive transit (DRT) extension is used

[19]. The DRT extension was developed to enable MATSim
to simulate a dynamic ridesharing service where vehicles
can pick up and drop off agents at their request. A central
dispatching system that manages vehicles is responsible for
scheduling or rejecting incoming requests. The dispatcher is
presented with a list of available vehicles. It traverses the list
and assigns each request to the closest vehicle after ensuring
that constraints on wait time or detour times for passengers are
not violated. These constraints are that: (1) the overall time
spent on travelling for the passengers currently in a vehicle
or waiting for the vehicle and that of the new customer does
not increase beyond defined thresholds and (2) the expected
boarding times for the awaiting customers and the new one are
within a requested time frame. Should no suitable vehicle be
available, the request is rejected. This is described in detail in
[19]. Only individual passenger trips are considered for each
request, and as such, group travel is not captured in the existing
system. In reality, a single request might involve a group of
travellers, and this will require more than one seat, which must
be considered when assigning an appropriate vehicle for such
a request. Therefore, in this study, a constraint for group travel
is added to the dispatching algorithm to check the number of
passengers in the vehicles to ensure enough seats are available
to accommodate group travel requests.

III. CASE STUDY

In this study, we enrich a subset of the Swiss synthetic
travel demand with information about group travellers based
on the Swiss HTS. The focus is on Zurich city consisting of
the 12 districts of the city of Zurich, extended by a buffer of 5
km as shown in Figure 3. The Swiss synthetic travel demand
model, often referred to as the Switzerland Baseline scenario
[20], consists of a synthetic agent population that reproduces
Switzerland’s sociodemographic characteristics and travel be-
haviour.

The Swiss HTS surveys only one person per household
and only captures when a person has taken a trip within a
group, either as an accompanying person or as a car driver,
including the number of people in the car. Information on
whether they are from the same household or just friends
is not captured. Using this information, car passenger trips
have been identified and treated as their own distinct modes
when generating the Swiss synthetic population for travel
demand. This scenario initially developed for the average work
day has been extended to represent weekend travel behaviour
accounting for the differences in trip patterns between a typical
workday and the weekend.

The modal shares from the cut-out Zurich travel demand
for the modelled days were calibrated using MATSim and
validated against the Swiss HTS modal shares for the same
region. Out of the suite of available modes: bike, walk, public
transit, car (driver) and car passenger, the share of trips where
travellers drove cars or were car passengers are shown in
Table I, highlighting increased group travelling during the
weekends, as a substantial share of car passenger trips happens
on Saturday and Sunday compared to an average workday.
”Sim” refers to the simulated modal shares.
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Fig. 3. Analyzed study area with Zurich’s city limit indicated with black line)

TABLE I
MODAL SHARES

Saturday Saturday Sunday Sunday Avgday Avgday
Mode HTS (%) Sim (%) HTS (%) Sim (%) HTS (%) Sim (%)

car (driver) 28.74 28.85 30.45 29.50 29.19 29.27
car passenger 17.73 17.67 18.9 21.0 9.14 8.46

With the aim to identify group travellers by matching
car drivers and passengers using the Swiss synthetic travel
demand, the travel demand models for Zurich for an average
working day, Saturday and Sunday, are converted to trip-based
models. Only car driver and car passenger trips that start
and end within the region are considered, leaving 456 148,
539 629, 371 382 trips with an average vehicle occupancy of
1.51, 2.02, and 2.14, for an average workday, Saturday, and
Sunday respectively, based on the modal shares highlighted
in Table I. These car drivers and passengers’ trips are used
to identify and generate group travellers using the matching
algorithm described above. After the matching is done, a new
population file of all agents is generated, whereby all agents
are assigned the SAV service as their mode of travel and
agents identified as group travellers are given an attribute
to specify that they perform trips with other corresponding
agents. Unmatched trips are represented as single traveller’s

trips that use the SAV service individually.

A. Scenario Definition

For this study, 63 scenarios were simulated, consisting of
the three days of interest (average workday, Saturday, and
Sunday), a case where SAV service requests are made by
groups of travellers, single travellers that have individual trips
or single travellers that have individual trips synched with their
matched trips, and a set of 7 fleet sizes. These scenarios are
briefly described below and summarized in Table II.

• Group travel: For each simulated day, three scenarios
were generally defined with a difference in terms of the
presence or absence of group travel and the characteristics
of the trips. These scenarios include:
Individual scenario

– This represents the baseline scenario
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TABLE II
SIMULATION SCENARIOS

Scenario Attributes Attribute Levels

Days Workday, Saturday and Sunday

Grouping Scenario Individual, Group and
Synched Schedules

Fleet Sizes 4 000 - 10 000

– All agents have their own unique, uncoordinated
activity chain

– All agents request SAV individually and indepen-
dently

Group scenario:

– Car drivers and car passengers are ”matched”, mean-
ing that a car driver’s trip represents both their trip
and its matched car passenger(s) forming a group of
travellers. Consequently, the corresponding matched
car passengers are removed from the scenario.

– Matched car drivers make the SAV requests, repre-
senting their travelling group

– The request made for these matched trips contains
the travel party size

Synched Schedule scenario:

– Car drivers and car passengers are ”matched”, but
a car passenger is a separate agent, albeit with the
same activity chain as their matched car driver.

– Matched car drivers and car passenger(s) request
SAVs independently and as individuals

For example, the scenarios designed to represent an
average workday are named ”AvgdayIndividual”, ”Avg-
dayGroup” and ”AvgdaySynched”. In the ”AvgdayIndi-
vidual” scenario, matched pairs of car drivers and car
passengers use SAVs for their trips individually and
independently. This is the default way these trips are
generally simulated in most studies and thus serves as
the baseline scenario in this study. In the ”AvgdayGroup”
scenario, matched passenger trips are removed because
their trips have been merged with the corresponding
car drivers. In the ”AvgdaySynched” scenario, however,
matched travellers have the same travel plans as the
original car drivers to whom they are matched, i.e., the
same trip origin and destination locations and departure
time. This was done similarly for the other two days.

• SAV Fleet Size: Fleet sizes between 4 000 and 10 000 are
simulated for all scenarios. Fleet sizes are varied because
this is one of the most important operational measures
for operators and planners to consider when offering such
services, as it affects overall service levels and customer
experience. The range of fleet sizes was selected based
on results of related studies [21], [22], with assumptions
made about the number of vehicles that could serve the
proportion of car trips in the study region.

B. Matching configuration

The matching algorithm utilized in this study requires sev-
eral key configurations to ensure accurate and reliable results.
These configurations include:

• Trips data frame: The validated Zurich travel demand
model is used to provide this data. A data frame con-
sisting of trip information such as departure time, trip
length, origin and destination coordinates, and mode of
travel (i.e., driver or passenger).

• Passenger occupancy distribution: Data from the 2015
Swiss HTS is used to determine the probability distri-
bution of passenger occupancy for the study region and
simulated days. This probability distribution indicates
the likelihood of each driver having a given number
of passengers. It is used to randomly assign a different
number of passengers to each driver to create a passenger
occupancy distribution that allows all passengers to be
matched. See Table III for the occupancy distribution.

• Maximum number of passenger seats: A maximum of five
seats is defined based on typical car sizes that seat up to
five people, e.g. a small sport utility vehicle (SUV). This
value has also been selected while keeping the integrity
of the average vehicle occupancies in the HTS.

• Cost weighting value: The cost function in Equation (1)
is the sum of the weighted differences in departure time
and distance. The α value weights the relative importance
of time cost versus distance cost. Here α = 0.2 is used,
penalizing distance cost more and placing greater weight
on time cost. See Appendix B for sensitivity analysis of
α values from 0.1 to 0.9. The departure time filtering
constraints described next also make the departure time
difference more constrained before matching.

• Time binning value and threshold: A time bin of 5
minutes is used, including drivers with departure times
within 5 minutes before or after a passenger’s time bin.
A minimum threshold of 20 candidate drivers per time
bin is required for matching. If this threshold is not met
within five draws, the time bin is expanded to a maximum
of 45 minutes. If still unmatched, the passenger remains
unmatched.

• Filtering values: To ensure that passengers matched have
reasonable values for differences in the departure time
as well as their origin and destination, a maximum
difference in departure time and the maximum difference
in origin and destination coordinates can be set. Here,
a maximum value of 10 minutes is defined for the dif-
ference in departure time, following the recommendation
by [7]. For distance, there is more allowance with a 4km
bound. This choice is based on initial sensitivity analysis,
which showed that about 70% of the matched agents
were within the 4km bound while about 95% were within
10km. The assumption here is that perhaps about 30% of
the unmatched passengers may have been passengers that
were picked up along the way and cannot be identically
matched.

The matching configuration values are summarised in Table
III
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TABLE III
MATCHING CONFIGURATION VALUES

Average workday Saturday Sunday
No. Drivers 302598 343779 231257
No. Passengers 153350 195850 140125
Average Occupancy 1.507 2.027 2.144
Probability distribution
0 0.73 0.39 0.35
1 0.20 0.36 0.39
2 0.04 0.12 0.11
3 0.02 0.09 0.10
4 0.01 0.02 0.04
5 0.001 0.014 0.010
Occupancy distribution
0 194262 135138 80218
1 79149 125007 89549
2 17078 40780 24524
3 8917 29734 24176
4 2440 8173 10446
5 752 4947 2344
No. passenger seats 5
Cost weighting value 0.2
Time bin (max. expanded 5 (45)
time) [min]
Filtering time cost [min] 10
Filtering distance cost [km] 4

C. SAV Simulation Configurations

The SAV service in this study operates door-to-door for 30
hours with vehicles that can accommodate up to 5 passengers.
The passengers can either be a group of travellers or single
travellers. Although the DRT extension provides a possibility
to set rejection constraints for a maximum wait time and
maximum detour time (the time an in-vehicle passenger is
willing to lose while the vehicle picks up another passenger),
this is not considered. Rather, a constraint is set for rejection
when there is no vehicle available with a suitable number of
seats that can pick up agents travelling in groups. This means
very high wait times or detour times could happen during peak
demand periods. The SAV vehicles are initially placed based
on the population density of the network. When a vehicle is
empty, the vehicle remains at its last drop-off location until it
needs to serve another request. The simulation goes through
four iterations to reach an equilibrium state in terms of the
number of SAV trips served, average travel times, and waiting
times. This is because the system uses a dynamic vehicle
routing problem for its dispatching algorithm, where the free
speeds (i.e., speed without congestion) of the network are used
to calculate the travel times in the first iteration and updated
later until the times are stable.

MATSim version 15.0-SNAPSHOT (last accessed on 5th
March, 2023) has been used with the corresponding DRT
version. All car drivers’ and passengers’ trips from Zurich’s
100% population is simulated. Although this requires more
computational resources due to the dispatching algorithm used
by the SAV service, the negative effects of using a sample pop-
ulation can be avoided [23]. The simulations were performed
using the ETH High-Performance Computing Cluster (Euler)
with a maximum resource request of 8 cores and 192 GB
memory.

IV. RESULTS AND DISCUSSION

This section is in two parts. The first part describes the re-
sults of the matching algorithm, while the second part presents
findings from the simulation of the ridesharing scenario with
group travel behaviour.

A. Matching results

Matching stats
The results from the matching process are summarized

in Table IV. The results differ depending on the day being
modelled and whether filtering constraints are applied to
the matching algorithm, i.e., ”With filtering” or ”Without
Filtering”. The results of the matching algorithm show that
without filtering, the percentage of successful matching is 94%
for the workday and 99% for Saturday and Sunday scenarios.
However, the matching algorithm was able to successfully
match around 78%, 79% and 78% of the passengers with car
drivers when filtering for matches whose time costs are within
10 minutes and distance costs are within 4 km (about 75%
share of trip distances), for the workday, Saturday and Sunday
respectively. Even though the average time cost was generally
less than 2 minutes, and 99% of trips with about 7 minutes in
departure time difference across the different days, the distance
costs on average were almost 3 km on average, with about
25% of the matches having very large differences up to 35
km for the average workday. Many possible reasons exist for
these differences, ranging from specific constraints used in the
matching, specific characteristics of the population or even
differences from how the synthetic population was generated
or, perhaps, a certain share of group trips having unidentical
origins and destinations with drivers picking up passengers
along the way. It makes sense that Saturday and Sunday show
higher matches as these days have more likelihood of group
travel, even from the data. Further improvements beyond the
scope of this paper could be made to the algorithm in order
to increase the rate of successful matches.

Comparing the results for the workday and the weekend, one
can see that the percentage of successful matching increases
for both the case of with and without filtering. This suggests
that there are fewer potential passengers and drivers available
on workdays than on the weekend and one could easily point
to the idea that the matching result only reflects the higher
tendency for group travel on the weekends. However, looking
at the relative change in the decrease, there is only a slight
difference in how the different days perform. This indicates
that the differences are related to the characteristics of the
trips based on the synthetic travel demand, whereby a workday
reflects less potential for group travel.

Matching Validation
To validate the matching algorithm, the distribution of

passenger occupancy and trip distances from the algorithm’s
results were compared to those from the Swiss HTS data.
Figure 4 compares the occupancy distribution used as input to
the algorithm (based on multinomial logit probabilities) to the
matching results, with and without filtering. Figure 5 presents
the validation of the matching algorithm in terms of how well
vehicle occupancies are represented in their trip distances for
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TABLE IV
MATCHING STATISTICS

Average Workday Saturday Sunday
Without filtering With filtering Without filtering With filtering Without filtering With filtering

No. Unmatched passengers 8413 33428 569 39658 233 29835
% of successful matching 94.52 78.23 99.71 79.75 99.83 78.71

Time cost stats [min]
Mean 1.06 0.87 0.99 0.88 1.00 0.91
Median 0.62 0.57 0.62 0.60 0.65 0.63
75% 1.27 1.15 1.27 1.20 1.30 1.25
95% 3.35 2.73 2.98 2.67 3.00 2.75
99% 6.78 4.82 5.67 4.32 5.33 4.35
max 24.82 9.90 24.37 9.88 23.97 9.82

Distance cost stats [km]
Mean 2.74 2.02 2.89 2.15 2.96 2.20
Median 2.21 1.93 2.43 2.08 2.52 2.15
75% 3.37 2.67 3.62 2.83 3.73 2.89
95% 6.35 3.62 6.46 3.69 6.48 3.72
99% 11.07 3.92 10.04 3.93 9.75 3.94
max 32.99 3.99 33.78 3.99 34.24 3.99

Occupancy distribution
1 79149 68925 75626 73613 55092 53556
2 17078 15168 25727 22627 19629 16618
3 6104 4605 9659 7281 7046 4958
4 2440 1409 3986 2558 3171 1576
5 752 282 4656 1050 2344 464

Computation time [min] 134 - 188 - 106 -

the workday. The observations here for the average workday
are similar to the weekend days.

Figure 4 shows that the matching results slightly overesti-
mate the number of drivers with 1-2 passengers by 3-6% for
the different days. However, the relative difference increases
for higher occupancies, particularly on Saturdays and Sundays.
Similarly, this is reflected in Figure 5 whereby the distance
distribution diverges for occupancies of 4 or more, as there
are fewer observations to match at higher occupancies and
longer distances.

Furthermore, in Figure 5, while the matching algorithm
adequately represents lower occupancies and distances, the
differences between the algorithm’s and HTS’ distributions
increase for higher occupancies. Nonetheless, the algorithm
shows promising results for the scope of this study, and the
matched results with filtering constraints were then used for
the SAV simulation of group travel.

B. Simulation results

The simulation results demonstrate that the operational
performance and efficiency of a ridesharing system vary across
different scenarios. Notably, factors such as vehicle occupancy,
vehicle empty distance, wait time, and detour time are affected.
Vehicle occupancy refers to the number of passengers per
vehicle. The vehicle empty distance is the distance driven by
an SAV without any passengers onboard. Wait time represents
the duration of time a passenger must wait until an SAV arrives
to pick them up. Lastly, detour time denotes the extra time
required for a passenger to reach their destination when the

vehicle takes a route deviation to pick up or drop off another
passenger. Detour time is calculated as the detour factor, which
is the ratio of the total travelled distance to the estimated direct
travel distance.

The simulation results for the study are presented in Table
V and Figures 6 and 7. Table V provides an overview of
the simulation results for scenarios with a fleet size of 6 000.
Figures 6 and 7 depict the operational performance of the
SAV services. The blue lines represent the ”group” scenarios,
where group travellers can request a ride as a group, and the
red lines represent the ”individual” or ”synched” scenarios.
Figure 7 differs from Figure 6 such that in the ”synched”
scenarios, matched travellers have the same travel plans as
the original car drivers to whom they are matched, i.e., the
same trip origin and destination locations, and departure time.
In contrast, Figure 6 retains the original travel plans for the
matched travellers. The majority of the results’ discussion
focuses on the ”individual” scenarios depicted in Figure 6,
which can be considered the baseline.

Average vehicle occupancy: From Figure 6, one can im-
mediately see some differences between the ”group” scenarios
(blue lines) and ”individual” scenarios (red lines). The average
vehicle occupancy highlighted in Figure 6a, shows that there
are differences between ”group” and ”individual” scenarios,
with the former pooling more passengers on average. The
relative difference between the average occupancy of the
”individual” scenarios and the ”group” scenarios in this study
is up to 100%. For Figure 7a, where the travellers in ”group”
scenarios are the single travellers in the ”synched” scenarios,
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Fig. 4. Share of drivers for different passenger occupancy

the relative difference is quite smaller, only up to about
15%, demonstrating how well the dispatching algorithm of
the ridesharing system can perform when group travellers are
represented in the scenario even if singular requests are made
by each member of the group. Even in this case, still not
considering group travel in both the trip characteristics and
the ridesharing system can result in an underestimation of the
pooling capability of the system. The study thus highlights
the need for ridesharing simulation studies to consider group
travel to avoid underestimating its key benefit.

The average vehicle occupancy strongly varies by the day
modelled, specifically for the SaturdayIndividual scenario,
where the fleet size of 4000 in Figure 6a shows an outlier
due to insufficient vehicles for the demand. This is possibly
due to the fact that the SAV system is not allowed to reject
passengers’ requests for single trips unless there is no vehicle
in the system able to serve its request within the operation time
(based on the study design). Consequently, for the requests in
the ”individual” scenario, one can observe very high unrealistic
detour times and even higher empty distances (see Figure 6b
and d) as vehicles try to meet up the high demand.

Differences in fleet sizing: Fleet sizing is also impacted by
group travel. The average empty distance in Figure 6b notably
shows that the trends for the fleets are quite different when the
party size of group travellers is taken into account. Taking
as an example the Saturday scenario, which highlights the
most obvious difference, for small fleets, the empty distances
are higher for group travel compared to large fleets where
group travel has lower empty distances. This means that a
small fleet could result in an incorrect estimate of the empty
distance, which is important as empty distances contribute to
externalities. Furthermore, Figure 6a and d further highlights
the impact of group travel on fleet sizing. In these figures,

one can infer that in ridesharing simulations where the party
size of group travellers is not taken into account, one could
overestimate the number of vehicles needed to serve the
demand. Here one can see that for the ”group” scenarios, a
recommended fleet size to serve the different days would be
5 000 vehicles compared to 6 000 vehicles for the ”individual”
scenarios.

Wait time and detour time: Wait time is not impacted
much by group travel except for a smaller fleet size of 4 000,
where it is slightly longer, as shown in Table V. It is worth
noting that the wait time results are subject to limitations
imposed by the study assumptions, such as the absence of
other competing vehicles on the road. Therefore, the wait
time outcomes may differ when other traffic elements are
taken into account. Detour time, on the other hand, and
as expected, reduces by up to 17% when group travel is
considered, resulting in a more efficient system that avoids
unnecessary detours. As a result, the average driven distance
is lower for ”group” scenarios, as illustrated in Figure 6c.
This observation highlights the benefits of considering group
travellers in ridesharing simulations, which can result in a
more efficient system by avoiding unnecessary detours and
reducing overall vehicle kilometres travelled. Larger groups
have a reduced potential for multiple pickups along the way,
which allows for higher occupancy rates and more streamlined
routes.

Service rate: Table V provides an overview of the simu-
lation results. As expected in a system where wait time and
detour time rejection constraints are not considered, rejections
occur when there are no available vehicles to serve passengers.
In the ”group” scenarios, there are more rejections since
there is a higher chance of not finding vehicles that can
accommodate the size of the group of travellers who have
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Fig. 5. Distribution of passenger occupancy by distance for a workday (Sim: synthetic population, HTS: Swiss HTS)

TABLE V
RIDESHARING OPERATIONAL PERFORMANCE FOR SCENARIOS WITH FLEET SIZE OF 6 000

Average Workday Saturday Sunday
Group Individual Group Individual Group Individual

No. Served Requests 331006 428789 371676 521391 243407 349151
Rejections 268 86 1132 234 660 197
Avg Wait time [s] 259.82 320.96 229.55 370.95 173.9 293.80
Avg Detour Factor 1.18 1.24 1.18 1.30 1.15 1.22
Total vehicle driven distance [106 km] 1889 2248 1982 2615 1358 1848
Total empty vehicle distance travelled [106 km] 117 138 97 111 59 86
Total vehicle occupied distance [106 km] 1771 2109 1884 2504 1298 1762
Vehicle occupancy 1.90 1.59 2.12 1.64 2.13 1.56
Avg Travel time [s] 686.26 667.7 655.89 688.25 672.53 677.30

requested a ride. This finding warrants further investigation
into different vehicle capacities for group travel, potential
tendencies for groups to prefer not sharing with other groups,
and how these factors can affect fleet sizing and vehicle
operations. However, from this simplistic implementation, one
can observe a higher likelihood of rejections when there are
fewer vehicles available to accommodate large groups.

In conclusion, the simulation results suggest that rideshar-
ing systems could benefit significantly from including group
travel, resulting in greater efficiency and improved outcomes.
Incorporating group travellers into the synthetic population

demand, and taking account of the travel party size while
making requests, allows the dispatching algorithm of the
ridesharing system to optimize pooling, reduce detours, and
minimize travelled distances, as shown in Figure 6. It is also
important to note that it is the proper matching of group trav-
ellers in time and space that is essential in achieving optimal
results. By ensuring that the requests of group travellers occur
simultaneously, even when they are generated independently,
one can improve the results, as demonstrated in Figure 7,
even if travel party size is not explicitly considered. This is
particularly relevant in cases where group trips are generated
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Fig. 6. Operational performance. (blue lines represent group travellers, and red lines represent the individual - single travellers)

independently, without joint modelling of household and non-
household travel.

V. CONCLUSION

The aim of this study is to model group travel in agent-
based models of on-demand mobility, which can inform pol-
icy decisions related to travel behaviour and the operational
performance of ridesharing services. To achieve this goal,
the study developed an algorithm to simulate group travel
based on the Swiss HTS and used synthetic travel demand
data from Switzerland to identify potential group travellers.
The algorithm matches car drivers and passengers based on
vehicle capacity constraints and overall vehicle occupancy
distribution.

Moreover, the study developed an agent-based simulation
model to simulate ridesharing and analyze the impact of group
travel on ridesharing policies, using SAVs as a case study.
The results of the study can provide valuable insights into
the potential benefits of promoting group travel in ridesharing

services. They can aid in the design of more efficient and
effective ridesharing policies.

After applying time and distance constraints, the matching
algorithm successfully matched about 78% of passengers to
drivers, with an average difference of under 4 km and 10
minutes for the workday, Saturday, and Sunday trips. However,
the matching results slightly overestimated the number of
drivers with 1-2 passengers by 3-6% for different days. The
distance distribution diverged for occupancies of 4 or more, as
there were fewer observations to match at higher occupancies
and longer distances.

Despite these results, the algorithm shows promise for
simulating group travel at the scope of this study, but further
refinement may be needed to improve accuracy. For example,
integrating the matching approach prior to generating the
synthetic population or even controlling for or incorporating
other trip attributes, sociodemographic attributes or household
attributes in the matching algorithm could improve accuracy.
Future work can also focus on developing more accurate
methods for matching car drivers and passengers, such as using
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Fig. 7. Operational performance with matched passengers having the same trip characteristics. (blue lines represent group travellers, and red lines represent
the synched - single travellers)

machine learning algorithms to predict group travel behaviour.
Additionally, a future study can include group travellers who
use other mobility modes, such as public transport and active
modes, with consideration of how they can be represented as
group travellers in an agent-based model.

The simulation results highlight the importance of consider-
ing group travel when modelling on-demand mobility services,
and policies should factor in the needs and preferences of
group travellers. For instance, the relative difference between
scenarios where group travel is accounted for when requesting
an SAV service and scenarios where it is not can be up to
100% for average vehicle occupancy, which is a significant
measure for policies aimed at promoting pooling. However,
even if group travellers are only properly matched in time
and space within the synthetic population’s travel demand,
without considering the travel party size in the request, the
dispatching algorithm of the ridesharing system can perform
better and reduce the relative differences to around 15%.
Therefore, it’s crucial to ensure that the synthetic population’s

travel demand includes appropriately matched group travellers
in time and space, even when group travellers are generated
independently and there is no joint modelling of household
and non-household group trips.

This study is an essential first step towards opening up
discussions and research on incorporating group travel be-
haviour in ridesharing and SAV modelling. It provides several
opportunities for future research and is especially valuable in
regions where data on joint trip creation in travel demand gen-
eration is not readily available. The proposed methodology for
representing group travellers in simulations offers researchers
a useful tool for future studies.

However, this study’s scope is limited as it only focuses on
car drivers and passengers and does not consider other forms
of group travel that may arise from other modes, most notably
public transport. This limitation also extends to our simulation
model, which doesn’t fully capture the complex behaviour of
the agents, nor does it account for the competitive influence
of alternative transport modes on the on-demand service.
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Recognizing these constraints, the inclusion of competing
modes in the analysis would offer a richer understanding
of the on-demand system’s operational performance, as well
as provide a more comprehensive depiction of the decisions
made by group travellers regarding their mode of transport,
and would make the proposed model more beneficial for
practitioners. Additionally, the assumption that the trips have
approximately the same departure time, point of origin, and
destination may not always hold true in reality. Furthermore,
with the post-COVID world and the potential increase in work-
from-home policies, on-demand mobility modes may see more
variability in weekday usage intensity, necessitating separate
modelling of different days.

Therefore while this study provides a foundation, future
research should aim to integrate these components for a more
holistic representation of group travel dynamics, identifying
other forms of group travel and relaxing or increasing some
of the assumptions made, thus bolstering the study’s practical
relevance. Furthermore, there is a need to replicate this study in
different regions to standardize results and match parameters,
enabling comparison across regions.

In conclusion, this study’s findings offer important insights
into designing and implementing on-demand mobility services,
with valuable implications for researchers and policymakers.
Therefore, policymakers need to consider the findings in this
study, which emphasize the role of group travel dynamics
in on-demand mobility services. For example, the observed
rise in average vehicle occupancy when accounting for group
travel suggests that planners should actively integrate group
travel considerations into policy scenarios promoting pooling.
These policies could be pricing incentives for group travellers,
discounts for shared rides, or dynamic pricing strategies that
factor in the party size of travellers. Particularly, as emerging
mobility, such as autonomous vehicles, would disrupt how
people currently travel together, policymakers should antici-
pate and accommodate new dynamics that may form for group
travel. For example, situations where a person previously
required an escort might change, or friends may find it much
more convenient to use an SAV. Overall, proactively incor-
porating group travel considerations into on-demand mobility
policy planning will be necessary from now on.

APPENDIX A
COMPARING A STANDARD MILP MODEL WITH THE

GREEDY HEURISTIC ALGORITHM

The formulated MILP algorithm was implemented to com-
pare with the heuristic algorithm to check that the heuristic
algorithm approximates the results if a standard optimisation
model is used. Gurobi was selected as the optimisation solver
of choice and Python Gurobi implementation is used for the
problem. The decision variables xij and Yj,l are defined. For
which xij is a binary variable 1 if passenger i is assigned to
the driver j and 0 otherwise. Yj,l is a binary variable which
is 1 if driver j has occupancy level l, and 0 otherwise.The
objective function is defined to minimize the total cost. The
following constraints are added:

• Each passenger is assigned to exactly one driver.

TABLE VI
MATCHING CONFIGURATION VALUES

No. Drivers 50
No. Passengers 80
Occupancy distribution
0 14
1 13
2 9
3 8
4 4
5 2
No. passenger seats 5
Cost weighting value 0.2

• Each driver is assigned at most k passengers.
• Each driver has only one occupancy level.
• The total number of passengers in a vehicle equals its

occupancy level.
• The occupancy distribution is close to the desired distri-

bution. The total number of vehicles at each occupancy
level is within ϵ of the desired number Zl.

The constraints guarantee that the solutions will be feasible
for the problem, i.e., each passenger is assigned to precisely
one driver, each driver is assigned at most k passengers, each
driver has exactly one occupancy level, the total number of
passengers in a vehicle equals its occupancy level, and the
occupancy distribution is close to the desired distribution.

The costs cij , a 2D matrix that holds the cost for each driver-
passenger pair, is generated using the same cost definition as in
the heuristic algorithm. See Equation 1 in the Methods section.
Zl, a list that holds the desired vehicle occupancy distribution,
is generated. Table VI presents the following sample data
generated for the comparison. Random origin and destination
coordinates are generated for drivers and passengers using a
Numpy uniform random number generator. This is the same
for departure times.

The results of the heuristic algorithm and the Gurobi model
are compared using key metrics: total cost, the number of un-
matched passengers, and the distribution of vehicle occupancy.
These results are concisely presented in Table VII. A quick
look at the results reveals some immediate differences. Though
the heuristic algorithm gives a lower total cost of 32.45
compared to the Gurobi model’s 88.53, the Gurobi model does
better than the heuristic in specific essential performance met-
rics. For example, it achieves perfect passenger matching, leav-
ing no passenger unattended, unlike the heuristic algorithm,
which leaves three passengers unmatched. Also, the Gurobi
adhered better to the vehicle occupancy constraints. While
the heuristic algorithm offers a similar occupancy distribution,
it’s worth noting that it does have more vehicles with zero
occupancy and fewer vehicles with full occupancy compared
to the Gurobi model. This raises questions about the heuristic
algorithm’s optimality in fully utilizing vehicle capacity. Still,
the computational speed of the heuristic algorithm provides a
huge advantage which becomes increasingly necessary as the
problem size scales up. Furthermore, the heuristic algorithm
is more stringent in minimizing the cost. Therefore while
the Gurobi model is superior in performance, especially for
passenger matching and adhering to the vehicle occupancy
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TABLE VII
MATCHING RESULTS

Gurobi Heuristic Input
Unmatched passengers 0 3 -
Total matching cost 88.53 32.45 -
Run time [s] 2.3 0.5 -
Occupancy distribution
0 14 17 14
1 13 11 13
2 9 8 9
3 8 8 8
4 5 4 4
5 1 2 2

constraints, the heuristic algorithm still provides an adequate
solution, particularly for lower costs and faster run time,
making it suitable for large scale problem that has been done
in this study.

APPENDIX B
SENSITIVITY ANALYSIS OF COST WEIGHTING VALUES

This section presents the result of the sensitivity analysis
carried out to decide the α value that has been used for
the cost weighting as described in Section II. Based on the
results shown in Table VIII, the weight value, α = 0.2, has
been selected in this study. This choice penalizes distance
cost more and places greater weight on time cost. This helps
to account for possible biases in distances that could have
been generated during the synthetic population process. In
the synthetic population generation, distance distributions have
been used to determine secondary activity locations, possibly
introducing bias for leisure trips more likely to involve group
travel.
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TABLE VIII
SATURDAY - SENSITIVITY ANALYSIS OF COST WEIGHTING VALUES

weight 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time [min] mean 1.68 0.99 0.69 0.50 0.38 0.29 0.22 0.16 0.11

median 1.15 0.62 0.42 0.30 0.22 0.17 0.12 0.08 0.05
75-percentile 2.28 1.27 0.83 0.60 0.43 0.32 0.23 0.15 0.08

max 24.37 24.37 24.37 24.37 24.18 24.18 24.18 24.18 24.18

dist [km] mean 2.48 2.89 3.25 3.59 3.94 4.32 4.77 5.38 6.43
median 2.03 2.43 2.75 3.04 3.33 3.66 4.05 4.58 5.51

75-percentile 3.08 3.62 4.09 4.52 4.96 5.42 5.99 6.76 8.12
max 33.78 33.78 33.78 33.78 35.14 39.23 39.23 39.23 40.60

cost 17855.63 18923.13 18738.05 17820.68 16350.21 14430.73 12081.42 9275.57 5875.74
unmatched passengers 396 383 370 361 358 354 350 354 358

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2023.3328492

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, VOL. X, NO. X, MONTH 2023 16

REFERENCES

[1] S. R. Gehrke, M. P. Huff, and T. G. Reardon, “Social and trip-level
predictors of pooled ride-hailing service adoption in the greater boston
region,” Case Studies on Transport Policy, vol. 9, no. 3, pp. 1026–1034,
2021.

[2] K. M. Gurumurthy and K. M. Kockelman, “Analyzing the dynamic ride-
sharing potential for shared autonomous vehicle fleets using cellphone
data from orlando, florida,” Computers, Environment and Urban Sys-
tems, vol. 71, pp. 177–185, 2018.

[3] BFS, “Mikrozensus Mobilität und Verkehr,” https://www.bfs.admin.
ch/bfs/de/home/statistiken/mobilitaet-verkehr/erhebungen/mzmv.html,
2015, accessed: 2022-05-03.

[4] Ministry of Ecology, “Enquête nationale transports et déplacements
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