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ABSTRACT Trustworthy environment perception is the fundamental basis for the safe deployment of
automated agents such as self-driving vehicles or intelligent robots. The problem remains that such trust
is notoriously difficult to guarantee in the presence of systematic faults, e.g., non-traceable errors caused
by machine learning functions. One way to tackle this issue without making rather specific assumptions
about the perception process is plausibility checking. Similar to the reasoning of human intuition, the final
outcome of a complex black-box procedure is verified against given expectations of an object’s behavior.
In this article, we apply and evaluate collaborative, sensor-generic plausibility checking as a mean to
detect empirical perception faults from their statistical fingerprints. Our real use case is next-generation
automated driving that uses a roadside sensor infrastructure for perception augmentation, represented here
by test scenarios at a German highway and a city intersection. The plausibilization analysis is integrated
naturally in the object fusion process, and helps to diagnose known and possibly yet unknown faults in
distributed sensing systems.

INDEX TERMS Intelligent transportation systems, plausibility checks, automated driving, smart infras-
tructure, dependability, sensor data fusion.

I. INTRODUCTION

THE VERIFICATION of a complex environment model
without explicit knowledge of – or access to – the full

processing pipeline is one of the key challenges of modern
perception systems. Causes for incorrect observations can
involve electronic system malfunctions of sensors or unin-
tended system behavior, i.e., misperception in the absence of
malfunctions such as misuse or incomplete information [1].
Notably, object detection further relies more and more on
machine learning techniques such as deep neural networks,
which are known to be sensitive to particular faults that defy
a classical safety assurance (e.g., erroneous training data,
ontology gaps, adversarial noise, etc.) [2]. We here refer to a
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wider class of root causes for the incorrect environment per-
ception of an intelligent sensing device as perception faults.
The detection and evaluation of such perception faults is
the prerequisite for a safety analysis concerning the user of
the environment model, e.g., an automated vehicle (AV),
as regulated by standardization bodies such as the ISO
26262 [3] or ISO/PAS 21448 (SOTIF) [4].
Among quantitative model-based verification

approaches [5], [6], we see a characteristic trade-off
between the complexity of the verification process and
the coverage of potential faults: traditional fault diagnosis
techniques, based, e.g., on a direct hardware or software
redundancy, provide variable sets of high completeness,
leading to a potentially high fault coverage. However,
a replication of components is neither cost-efficient nor
feasible in many scenarios. In contrast to that, analytical
redundancies inferred from known functional dependencies

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

176 VOLUME 1, 2020

HTTPS://ORCID.ORG/0000-0002-9776-9603


FIGURE 1. An example experiment performed in the KoRA9 project, see also [7]. (Left) Object tracks accumulated over time at a highway test segment. Plausibilization can be
applied to identify false positive tracks, and reveal inconsistencies in regions of sensor overlaps. (Right) One elementary perception fault is the misorientation of individual
sensors at the roadside.

TABLE 1. Typical safety-critical perception errors and faults, as identified from real smart infrastructure experiments. Faults with similar local effects in the system are
combined to fault classes. The selected highlighted faults are injected in simulation in Section V to test plausibility-based fault evaluation.

on the input variables, or a priori rules, allow to check
output variables with greatly reduced complexity. For that
reason, plausibility checks that verify complex environment
variables against a range of expected outcomes are promis-
ing candidates for the verification of black-box perception
systems [2]. On the other hand, functional relationships
are often unknown or ambiguous, resulting in a lack of
diagnostic residuals which can diminish the fault coverage.
It is therefore of great interest to numerous safety-critical
applications if and how such an approach is able to diagnose
realistic perception faults.
In this article, we investigate the suitability of plausibility

checking for the evaluation of perception faults in the con-
text of a distributed sensor network (DSN) for collaborative
environment perception. Our use case is a roadside sensor
network that supports automated vehicles with complemen-
tary high-quality data [8], a concept also known as smart
infrastructure, that represents one of the driving forces in
the fast-growing market of intelligent transportation systems
and smart cities [9]. Verification methods as the one studied
in this article allow to quantify trust in the integrity of the
perception data, and will be required to achieve certifiably
safe infrastructure systems in the future (see, e.g., [10]).
DSNs typically adopt a decentralized tracking architecture,

where each sensing device performs a series of processing
steps and eventually provides with lists of tracked objects.
The data from multiple sensors are then combined in a central
node in the course of high-level sensor data fusion (SDF), or

object fusion. Starting from the architecture of [11] and the
track-to-track (T2T) fusion implementation of [12], we here
present a plausibility checking framework that integrates natu-
rally into the object fusion process. Uncertainties are handled
within the Dempster-Shafer (DS) theory of evidence [13],
[14]. Besides an instantaneous plausibility assessment, we
provide with statistical metrics in order to identify systemat-
ical faults. While additional customized plausibility checks
can be readily incorporated due to the modular structure of
the framework, we here focus on sensor-generic checks that
are not limited to a specific modality of the underlying sensor
network (most commonly camera, Radar, Lidar), in order to
keep the methodology widely applicable.
We test our plausibility-based fault diagnosis in simulation,

using the injection of typical perception faults as identi-
fied from real-world infrastructure experiments. In particular,
we use insights from the German publicly funded projects
KoRA9 [15] and P++ [16]. In KoRA9, environment percep-
tion with a Radar-only roadside sensor network is studied
at a German highway, see also Fig. 1. The P++ project on
the other hand is set up to monitor a cohesive test area of
highway, rural, and urban roads with a variety of sensormodal-
ities including camera and Radar. The Tab. 1 gives examples
of empirical, potentially safety-critical faults that challenge
roadside perception systems due to their systematic, erratic,
and unsignaled nature. Selected fault instances that are rep-
resentative of broader classes with similar local effects will
be used in this article to identify characteristic signatures.
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FIGURE 2. (Left) System sketch of the decentralized tracking architecture for collaborative perception. (Right) Schematic of the fusion module, performing combined object
fusion and plausibilization.

In summary, the novel contribution of our work is twofold:
• While in [11] separate modules for T2T and existence
fusion are envisioned, we here describe a more efficient
combined approach, meaning that plausibility checks
and existence estimation are naturally integrated into
the object fusion process. We further introduce addi-
tional checks that correlate the track status of an object
with other observed attributes. This allows for a more
differentiated and realistic situational assessment.

• We demonstrate that plausibility-based metrics repre-
sent a valid strategy to detect realistic perception faults
in the given setup. The signatures of three empirical
faults are studied in simulation, and characteristic fin-
gerprints are identified. We provide an interpretation of
the plausibility metrics with respect to the underlying
source of implausibility.

The article is structured as follows. In Section II we review
related literature, before we present our model in Section III,
including the process integration and the various plausibil-
ity checks. Next, Section IV describes the method for the
detection of perception faults. The respective plausibility sig-
natures are analyzed in Section V for two different scenarios,
before we conclude in Section VI.

II. RELATED WORK
First, it is key to note the difference between measure-
ment uncertainty, plausibility, and risk. The former refers
to the statistical inaccuracy of a sensor observation, and its
propagation throughout the system. Plausibility represents a
notion of trust in a hypothesis (e.g., “object exists”), that
is established by checking a piece of information against
expectations based on a priori knowledge or consistency
with other sources. As given in Section III, the plausibility
of an existence hypothesis can be conveniently mapped onto
a probability of existence measure. Risk on the other hand
refers to an event, which can occur with a certain likelihood
and a given impact on a user. Probabilities of existence and
uncertainties are valuable inputs to a risk analysis, but can
not provide with any context or user impact. In this arti-
cle, we are not concerned with the explicit evaluation of
measurement uncertainty or risk, but with plausibilization.

Different hierarchies of plausibility checking are to be
distinguished, the authors of [17] define for example three
categories of increasing complexity: i) Single signal moni-
toring, ii) redundancy-based checking, and iii) model-based
checking. Interesting examples for the latter category are,
e.g., the plausibilization of trajectory curvature against possi-
ble lateral acceleration [18], or unphysical overlaps of object
shapes [19]. Among the established mathematical methods to
quantify confidence, in particular Bayesian belief networks
and the DS theory have proven to be appropriate tools [20].
In the domain of safety for automated driving, plausi-

bility checking methods have been applied to verify the
environment perception of (overlapping) in-vehicle sensors
– including camera, Lidar, and Radar modalities – and to
infer a probability of existence metric [11], [21], [22]. Most
of the applied checks there are single-signal and redundancy
checks. This assessment can take place at different stages
of the SDF, and the checks take different forms depending
on the available features. High-level object fusion architec-
tures with DS plausibilization have for example been studied
in [11], [21]. Here, the position of an object is for exam-
ple checked against the position of other objects to identify
implausible occlusions, and a non-uniform belief is assigned
across a sensor’s field of view (FoV). Another body of
literature harnesses plausibility checking to address secure
vehicle-to-everything (V2X) communication, see, e.g., [19],
[23], [24]. Information that is transmitted to a vehicle from
external sources, such as the infrastructure or other vehicles,
is plausibilized to detect misbehavior or spoofing. A basis
for verification are the parameters contained, e.g., in the for-
mat of a basic safety message (BSM), including position,
speed, acceleration or object dimensions [18], but also the
sensing and communication range.

III. MODEL
A. OBJECT REPRESENTATION
The Fig. 2 gives a schematic overview of a high-level fusion
system. Objects tracked by the individual sensors are passed
to a central fusion module. In the highlighted infrastructure
use case, this component runs for example on an edge cloud
server at the roadside. We here focus on an integrated model
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of object fusion and plausibilization as the core functionality
of this module.
Let us define a tracked object reported by an individual

sensor as a structured list O, while O is the local object
list, i.e., the set of all individually registered objects at a
common time step,

O = (i, n, t, x,P, d, trstatus, . . .) ≡ Oin(t), (1)

O(t) =
{{
Oin(t)|n = 1, 2, . . .

}
|i = 1, 2, . . .

}
. (2)

The minimal required object attributes in our model are:
i sensor index, n track identifier (ID), t time stamp, x
object state, P state covariance matrix, d object dimensions,
and trstatus tracking status information. Any object can be
uniquely identified by (i, n, t). For notational ease, we only
give selected attributes if clear from the context (e.g., Oi

refers to a given object reported by a sensor i, xOi ≡ xi,
etc.). We specify

x = (
x, y, z, vx, vy, vz

)
,

d = (L,W,H, h),

trstatus = (sc, cnf , cst, . . .). (3)

Object position and velocity are represented by x, y, z
and vx, vy, vz, respectively. The dimension entails length (L),
width (W), height (H), and heading (h) of the perceived
object. In our simulation, we adopt a sequential multi-object
tracking (MOT) scheme – different implementations are pos-
sible and do not affect the general model – where the
track score sc is a log-likelihood ratio [25] that increases
(decreases) with each incoming (missing) update. The binary
value cnf indicates whether the object track is a confirmed
(cnf = 1), or a tentative (cnf = 0) track. Furthermore, the
binary cst incorporates information about the coasting status,
i.e., whether the object track is updated at the current time
step (cst = 0) or not (cst = 1).

Next, a system object Õ is defined to be a global tracked
object, that can be observed by multiple sensors at the same
time, and therefore can have multiple varying local repre-
sentations. Similar to Eq. (2) we define the system object
list Õ at a common time t,

Õ = (
n′, t, x,P, d, trstatus, p∃, s∃, . . .

) ≡ Õ n′(t), (4)

Õ(t) =
{
Õ n′(t)|n′ = 1, 2, . . .

}
. (5)

Here, p∃, s∃ are the respective probability existence and exis-
tence uncertainty metrics derived in Section III-D, using the
concepts of belief and plausibility. The goal of the object
fusion with integrated plausibility checking is the trans-
formation O(t) −→ Õ(t), under consideration of temporal
continuity. In the process, the metrics p∃ and s∃ are assigned
to give a quantifiable estimate for trust in the observation.

B. FUSION MODULE
The integral part of this process is track-to-track fusion [25],
which combines the dynamic state variables of multiple
tracks. Furthermore, object fusion merges features like

dimensions, headings etc. We encounter the following steps
(see Fig. 2):

• Object association Synchronous and confirmed local
representations in O are grouped to track clusters,
[O(t)]clustered. We adopt the T2T distance calculation
and the global nearest neighbor (GNN) association
of [12], which can include the history of local rep-
resentations for better association robustness.

• Merging All local object representations within one
cluster are merged to a single system object [12]. The
result of this fusion process is a system object list
[Õ(t)]inst (for instantaneous), with arbitrary IDs.

• Association across frames We associate the unique
object labels from the previous and the current time
frames via another GNN association, so that persis-
tent objects keep the same unique ID in the matched
list [Õ(t)]matched. Dimensions and existence estimations
can be averaged across recent frames for improved
robustness.

Our model now integrates various plausibility checks in
the object fusion process to evaluate the quality of the sensor
data. Extending the paradigm of [17], we have three different
types of checks, see Fig. 2 and Sections III-C–III-E:

• Single–sensor checks are based on the attributes of
local representations from a single sensor and result
in the basic belief assignments of the DS framework.
An attribute is here checked against predefined thresh-
olds (signal-based) or known relations to other attributes
(model-based).

• Redundancy checks compare local object representa-
tions from different sensors that refer to the same system
object, as identified by object association. Such redun-
dancy checks are applied after the clustering and before
the merging step. Here, they are represented by the DS
combination, together with the registration of misses
and unexpected observations.

• Collaborative model-based checks aim to verify the
final outcome of the fusion process against predefined
rules about the expected behavior of system objects.
This additional processing step transforms the out-
put of the frame-association process [Õ(t)]matched into
the desired output Õ(t). Such checks may be based
on instantaneous interrelations among merged object
attributes, or on the evolution of merged attributes over
time. In this work, we present two possible checks
that can be used to tackle false positives or spoofed
detections (see Section III-E). Various further checks
of increasing complexity can be envisioned at this
point, including, e.g., traffic-rule-compliant trajectory
checking, or self-learned motion patterns.

The process diagram of Fig. 2 further illustrates which
information beyond the sensor object data is required to
perform the plausibility checks described in our model.
Single-sensor (and partially the redundancy) checks build
upon the knowledge of sensor metadata such as the sensor

VOLUME 1, 2020 179



GEISSLER et al.: PLAUSIBILITY-BASED FAULT DETECTION METHOD FOR HIGH-LEVEL FUSION PERCEPTION SYSTEMS

field of view and mounting locations, or the expected road
boundaries of a digital map. Physical limits of variables and
predefined rules help to establish additional plausibility for
all three types of checks.

C. SINGLE-SENSOR CHECKS
Compared to a Bayesian-based object existence estimation,
the well-studied Dempster Shafer theory of evidence [13],
[14], [26] postulates an extended probability space of �DS =
{∅, ∃,�, {∃,�}}, where ∅ is the null set, ∃ and � are the
propositions that a given object exists or does not exist,
respectively, and the element {∃,�} represents the possibility
that the existence of the object is unknown. Basic belief
assignments (BBA) give rise to belief masses that indicate
the degree of belief in a proposition according to a given
sensor. Explicitly, mi(XÕ ) denotes the belief mass for the
proposition X ∈ �DS of Õ based on the local observation
Oi of sensor i.
The following sensor-generic plausibility checks define

our BBA,

mi
(
∃Õ

)
= pitrust pFoV(O

i) pocc(O
i)

× pex(O
i) pdm(O

i) pval(O
i),

mi
(
�Õ

)
= pitrust pFoV(O

i) pocc(O
i)

×
[
1 − pex(O

i) pdm(O
i) pval(O

i)
]
,

mi
(
{∃,�}Õ

)
= 1 − [mi(∃)+ mi(�)]. (6)

Note that despite the formal equivalence to some of the
models of [21], [22], [27], [28], the BBA factors in Eq. (6)
take a different form due to the fact that we study tracked
objects instead of detections, which leads to important addi-
tional interrelations of the attributes of Oi. The plausibility
factors p can be grouped into two categories: a reduced
value of ptrust, pFoV, pocc will support ignorance of the system
object, while a low weight on pex, pdm, pval favors the propo-
sition of non-existence. The individual factors defining the
BBA are explained in more detail in the following.
First, pitrust is an object-independent trust factor for the sen-

sor i, which can be interpreted as its typical object detection
capability [22].
The factor pFoV checks whether the reported object is

in the three-dimensional FoV, here defined as fovi =
(ri, ωi, ψ i), where r is the range, ω and ψ the horizon-
tal and vertical view angle, respectively. Given that at least
one point across the body of an extended object (here we
check the eight corners of the bounding box, object center,
and two additional points in the middle front and rear of
the bounding box) is found to be within the expected FoV,
we denote (xi, di) ∈ fov. Otherwise, a distance metric D is
applied to measure the closest distance from the object cen-
ter xi to the FoV. For example, D(xi, ri) is the difference of
the radial distance of xi and the sensor range, and analogous

for ω,ψ . We then define

pFoV(O
i) =

{
1 if

(
xi, di

) ∈ fovi,

e−
∑3

n=1 D
(
xi,fovin

)
/
(
fovin/2

)
otherwise.

(7)

This choice of weighting is motivated by two additional
considerations: i) Tracked objects can leave the FoV while
coasting, in which case it is legitimate to have pFoV > 0;
ii) Tracks far away from the original FoV should be sup-
pressed, whether coasting or not (otherwise unrealistic, e.g.,
spoofed tracks that pop up at an arbitrary remote location
and start coasting would be supported).
Next, pocc verifies if an object is rightfully observable in

relation to other objects perceived by the same sensor. If at
least one of the checked surface points of Oi is in the line of
sight of sensor i, given all other confirmed observations of i,
we denote (xi, di) ∈ LoSi({Oi}). If that this is not the case,
and at the same time the track is not coasting, the object
is occluded and the belief in this observation is forfeited. A
track that is coasting in the shadow of another object will
not be affected.

pocc(O
i) =

{
0 if

(
xi, di

)
/∈ LoSi

({
Oi

}) ∧ csti = 0,
1 otherwise.

(8)

Furthermore, pex(O
i) is the existence probability of the

object as estimated by sensor i. Here, we infer pex directly
from the track score [25], [29],

pex(O
i) = 1/

(
1 + e−α scorei+β), (9)

where α and β are tunable coefficients to control the slope
of the sigmoid function. We here chose α and β such that a
newly initialized, tentative track starts with pex = 0.9, and
increases to pex = 0.99 if the score reaches the confirmation
threshold. A detection missed by sensor i will be handled as
pex(O

i) = 0, leading with Eq. (6) to mi(∃Õ ) = 0, mi(�Õ ) =
pitrust, and mi({∃,�}Õ ) = 1 − pitrust.
The factor pdm(O

i) compares the position of an object
to the expected road boundaries. Let dm be a digital grid
map with binary values corresponding to road (1), and non-
road (0) squares. For each object, the metric D(xi, dm) then
calculates the Euclidean distance from the measured position
xi to the closest road square. As a normalization factor we
use a typical lane width [30] of Wlane = 3.5m,

pdm(O
i) = e−D

(
xi,dm

)
/Wlane . (10)

Finally, we have the signal value factor pval which com-
pares object attributes against physically possible limits. In
particular, we check the vertical position relative to the road,
dimensions, and absolute velocity,

pval(O
i) = exp

⎛
⎝−

∑
A∈{z,W,L,H,|v|}

[
Ai,Amax

]
+/Amax

⎞
⎠. (11)

Here we denote [A,B]+ = θ(A− B)(A− B) as the positive
real difference, where θ(. . .) is the Heaviside function. The
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predefined maximum limit of an attribute A is represented
by Amax, and we choose an empirically parameter set of
zmax = 3m, Wmax = 5m, Lmax = 25m, Hmax = 5m, and
|v|max = 80m/s.

D. REDUNDANCY CHECKS
To obtain an overall notion of plausibility of Õ , the belief
masses of the individual sensors referring to the same system
object are fused – note ⊕ – with the help of the DS com-
bination rule [26]. Assuming a total number of N sensors,
we arrive at the fused belief masses mF ,

mF
(
XÕ

)
≡ [m1 ⊕ m2 ⊕ . . .⊕ mN]

(
XÕ

)
. (12)

Iterating through all sources, any sensor that makes a
local observation of Õ can possibly generate non-zero belief
masses for all propositions X ∈ �DS\∅. We register unex-
pected observations when a reported object is outside the
non-occluded FoV of the reporting sensor, and at the same
time is non-coasting. These situations will produce a high
belief in the proposition mi({∃,�}Õ ) 	 1. If a given sensor
i′ has no local representation in the respective cluster, it mat-
ters whether it failed or was unable to perceive the object.
Therefore, we check if Õ (as given by the available reports
of other sensors) is in the non-occluded field of view of
sensor i′, in which case we register a miss for i′, along with
the mass mi′(∃Õ ) = 0 (see Section III-E). Further, a miss
is as well registered (without change of the masses) for a
sensor that fails to update an object in its non-occluded FoV,
as can be inferred from a positive coasting status. Finally, if
i′ has no representation but Õ is outside its FoV or occluded,
i′ is an irrelevant contributor, and we have mi′({∃,�}Õ ) = 1.
Such sensors do not have any impact under the DS com-
bination rule. Unexpected observations and misses will be
used for a statistical fault analysis (see Section IV).

E. COLLABORATIVE MODEL-BASED CHECKS
We describe two additional, sensor-generic checks that help
to verify the integrity of high-level perception data based on
collaborative knowledge. More complex or sensor-specific
model-based checks – e.g., related to object classes or trajec-
tories – can be incorporated the same way, and are envisioned
for further research.
Plausible observation history: We check whether an

increase of belief in the object existence across two subse-
quent time steps is justified. This is not the case if there is no
current observation update obtained from any sensor (i.e., if
a system object has global coasting status cst = 1). The exis-
tence probability and uncertainty of a coasting object then
have to be corrected appropriately, with the belief increment
�hist being transferred to the ignorance hypothesis,

�hist,∃
(
Õ (t)

)
= −

[
mF

(
∃Õ (t)

)
,mF

(
∃Õ (t − 1)

)]
+

× cst(t),

�hist,�

(
Õ (t)

)
= 0,

�hist,{∃,�}
(
Õ (t)

)
= −�hist,∃

(
Õ (t)

)
. (13)

This check will prevent objects that have already left the
field of view, or spoofed objects with an alleged coasting
status to become more relevant.
Dimension − velocity check: The type of an object is

related to its physical speed limitations. Let us here dis-
tinguish the two classes of vulnerable road users (VRU,
i.e., pedestrians, bicycles, etc.), and other objects (vehicles,
trucks, etc.). Since not all sensor modalities can reliably
identify object classes, we use the object dimensions for a
basic type estimate: VRUs are characterized by the com-
bination of small width and length extensions, and low
speed, as parametrized here by the empirical upper thresh-
olds lvru = 2m and vvru = 20m/s. Small and fast objects
will be considered implausible as a consequence, and full
ignorance is assumed (θ is the multi-dimensional Heaviside
function),

�dim-vel,∃
(
Õ

)
= −mF

(
∃Õ

)

× θ(lvru −W, lvru − L, |v| − vvru),

�dim-vel,�

(
Õ

)
= 0,

�dim-vel,{∃,�}
(
Õ

)
= −�dim-vel,∃

(
Õ

)
. (14)

Note that object occlusions can temporarily reduce the
effectively observed object dimensions, and lead to a low-
plausibility assessment in Eq. (14). However, we expect this
effect to be short-lived and statistically uniform across all
sensors of the network, such that no individual fault patterns
will emerge due to this check.
Final combined metric: The corrections from all model-

based checks are combined as

mF

(
Õ

)
→

[
mF

(
Õ

)
+ �hist

(
Õ

)
+ �dim-vel

(
Õ

)]1

0
, (15)

with mF(Õ ) = (mF(∃Õ ),mF(�Õ ),mF({∃,�}Õ )) and
�(Õ ) = (�∃(Õ ),��(Õ ),�{∃,�}(Õ )). In case the accumu-
lated increments exceed the correct belief mass interval
bounds, we reestablish them by the mapping [ . . . ]1

0 apply-
ing subsequent shift and renormalization operations. The DS
framework defines the quantities of overall belief and plau-
sibility [26], however, we here work instead with the related
object existence probability p∃, and belief interval s∃, which
can be retrieved from the fused belief masses by the pignistic
transformation [28]

⎛
⎝p∃

(
Õ

)

s∃
(
Õ

)
⎞
⎠ =

(
1 1

2
0 1

2

)⎛
⎝ mF

(
∃Õ

)

mF
(
{∃,�}Õ

)
⎞
⎠. (16)

With p∃, a Bayesian-like probability of the existence of Õ
from all observed evidence is recovered. On the other hand,
s∃ can be interpreted as an epistemic uncertainty measure,
since it is directly proportional to the weight of the ignorance
proposition mF({∃,�}Õ ).
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IV. FAULT ANALYSIS
A. ADDRESSED FAULTS
For the roadside sensor network at hand, a service fail-
ure occurs if the system does not deliver data of sufficient
information quality to safely support AVs on the road. This
can happen in the form of various failure modes, com-
monly categorizing failures from the view points of domain,
detectability, consistency, and consequences on the environ-
ment [6]. We here focus on system failures that can not
be detected easily with component monitoring, but leave
statistical signatures to be studied in the plausibility met-
rics. Therefore, our addressed failure mode is erratic (data
delivery does not halt but is silently corrupted, or mistimed),
unsignaled, systematic, and catastrophic (data corruption can
be safety-critical). Importantly, in this article, we adopt a sin-
gle fault hypothesis. This is justified by the assumption that
our analysis, possibly in combination with additional sensor
diagnostics, allows for a quick fault detection, that renders
the occurrence of multiple faults in that very time interval
unlikely. Perception faults that were found to be relevant
in roadside sensing experiments and testbeds, and that all
manifest in the above failure mode, were listed in Tab. 1.
The highlighted items there are chosen for further simulation
studies in the following section, to investigate their respec-
tive fingerprints in the plausibility metrics. Our analysis will
however be representative of a wider spectrum of faults that
belong to the same class, and thus manifest themselves in a
similar form.

B. STATISTICAL EVALUATION
Systematic faults as the ones given in Tab. 1 alter sensor
readings over the course of many sensing cycles, such that we
expect statistically relevant deviations from a baseline sce-
nario. The goal of the fault evaluation process is to identify:
i) which of the sensors is faulty (assuming single failures),
and ii) what fault or fault class is present. To that end,
we inject the selected faults in separate setups, and con-
sider three characteristics for a statistical interpretation: The
miss ratio (MR) per sensor, the unexpected observation rate
(UOR) per sensor, and most importantly the probability of
existence of an object (involving all sensors, see Eq. (16)),
here in relation to the observed position in the monitored
region. For the former two, we define for a given time and
a given sensor,

MR = misses

misses + all observations
,

UOR = unexpected observations

all observations
. (17)

The above metrics are evaluated at each time step, how-
ever, it is important to note that the corresponding variables
are not independent due to the nature of the underlying object
tracking. For example, an object with a low track score caus-
ing a low plausibility at a given time step will likely have
a low plausibility in the next time step as well, since the
track score only changes gradually. To make the quantities

quasi-iid variables, either of the two following steps can be
applied: i) The setup is run various times with independent
random distributions of the objects, where the respective
signatures are averaged out across one individual scenario.
ii) One long scenario run is split into quasi-independent time
intervals, where each interval is long enough such that the
scene changes significantly from one interval to another. The
plausibility metrics within one time interval are averaged out,
and the statistics is performed over the resulting iid interval
means, assuming a normal distribution. The data basis for
our fault analysis is therefore the averages and errors of the
various interval means. Using standard methods [31], every
data point is presented with its 95% confidence interval (CI)
in the figures of Section V, and a fault is diagnosed if the
CI of a interval mean does not overlap with the CI of the
baseline scenario (no injected fault). For MR and UOR, a sta-
tistical baseline without faults is established by performing
an additional cross-sensor weighted-least-squares average.
In the following section, we analyze three selected fault

mechanisms in two different smart infrastructure scenarios
motivated by real experiments. The first setup is a highway
segment monitored by a network of overlapping Radar sen-
sors, where various vehicle types move on very structured
trajectories on multiple lanes. Objects moving in parallel on
different lanes occlude each other frequently. In the second
setting, we explore an urban intersection monitored by two
Lidar sensors with high accuracy. This setup includes not
only various vehicle types but also cyclists and pedestri-
ans, that all accelerate, stop, and take turns. Each temporal
interval in our simulations has a sample rate of 0.1s and a
duration of 5s, which we found to be a sufficient duration
for the highly dynamic scene to change significantly.

V. RESULTS
A. SCENARIO 1: RADAR HIGHWAY INFRASTRUCTURE
This scenario of highway surveillance by a network of
Radar sensors is guided by long-term observations within
the KoRA9 project [7], [15]. In our setup, a four-lane road
segment of about 600m is monitored by 12 Radars at a
separation of 50m, where we discard the first and last sen-
sor for the statistics to minimize finite size effects, see
Fig. 3. The simulation is done in MATLAB [32] using
the radarDetectionGenerator class and decentralized MOT
with extended Kalman filters (EKF). Key characteristics are
fov = (90m, 30◦, 8◦), detection probability pd = 0.9, false
alarm rate of pfa = 10−6, and a track confirmation thresh-
old [25] of 	cnf = 1.5 log(pd/pfa). To reflect experiences
with realistic Radar signal behavior, we implement an addi-
tional signal generation up to a range of 100m, with a
reduced likelihood, which results in unexpected observa-
tions. The adopted highway traffic model features various
vehicle classes such as cars, trucks, buses, and generates
speed, lane, and type distributions based on realistic high-
way statistics [33]. Vehicle maneuvers such as overtaking
are neglected here since they do not impact the observation
quality significantly, see also [7].
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FIGURE 3. Scenario of a four-lane highway segment monitored by a network of Radar sensors. An existence estimate is assigned to each observed object. Sensor indices are
shown in red color.

FIGURE 4. Plausibility signatures of the highway scenario of Fig. 3 with injected azimuthal misorientation fault (at sensor 5). Due to the rotated track headings, already small
variations �φ of a few degrees lead to a characteristic fingerprint in all considered metrics MR, UOR, and p∃.

FIGURE 5. Plausibility signatures of the highway scenario with injected tracking parametrization fault (reduced track confirmation threshold �cnf at sensor 5). This fault can
be identified from the locally reduced average p∃ as well as the increased MR of the neighboring sensors.

Fig. 4 illustrates the plausibility signatures of an injected
miscalibration fault at one of the central sensors (here sensor
number 5 located at x = 200m, see Fig. 3), representing
fault class 1 in Tab. 1. The affected Radar is misoriented
counter-clockwise by an azimuthal disturbance angle�φ. All
objects observed by the affected sensor then appear rotated
(in the opposite direction) to the fusion module, which is
not aware of the altered sensor pose. As a result, object
tracks do not run parallel to the lanes anymore, and coast
out of the road boundaries. We find that the lane-averaged
existence probability p∃ is significantly reduced in a locally
confined region of 200m � x � 300m, which clearly indicates
a dependability issue of nearby sensors (see Fig. 4). The
deviation appears on top of undulations in p∃ caused by the

varying distance of a passing objects to the respective closest
sensor, which can be observed also in the absence of faults.
The inconsistencies of observations made by the faulty sensor
with its neighbor sensors leaves a trace in the misses and
unexpected object statistics as well: the MR of sensor 5 is
significantly increased, as this sensor will no longer observe
all targets close to the lower road boundary, in contradiction to
its neighbor sensor 6. At the same time the UOR is reduced,
which can be explained the following way: the dominant
contribution of unexpected observations in our model comes
from objects that are in the sensing cone but beyond the
regular sensing range. As sensor 5 is misoriented counter-
clockwise, this sensor field segment is no longer covering
the road, and thus no objects are to appear there.
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FIGURE 6. Plausibility signatures derived from the two Lidar sensors covering the intersection shown in Fig. 7. The perception of sensor 1 is impaired by a blind spot of
azimuthal extension ωBS, inducing a high false negative rate.

In the next scenario analyzed in Fig. 5 we simulate a fault
of class 2 (see Tab. 1) by altering the tracking parameters
of the test sensor 5. While an appropriately parametrized
tracking system is quite robust against noise, the tuning of
track management parameters has a significant impact on the
false object observation rate. A poor parametrization can be
caused for example by human intervention, software updates,
or – if machine learning is involved – by the deployment of
non-optimal training sets etc. Such faults seem a valid con-
cern given that the use of deep learning methods for MOT
is a popular trend not only for video applications [34]. To
demonstrate tracking errors we here modify the track con-
firmation threshold 	cnf. When reduced with respect to its
original value 	cnf,0, tentative tracks are accepted after fewer
matching measurement updates, such that more false positive
confirmed tracks are generated across the sensor’s FoV. As
a consequence, our simulation showcases that the MR of the
neighboring sensors 4 and 6 are significantly increased, since
those overlapping sensors can not confirm the large number
of false positive tracks generated by sensor 5. On the other
hand, this mismatch is effectively compensated by the like-
wise increased number of overall observations for sensor 5
itself. In the UOR statistics, no significant fingerprint can be
found since the false positive tracks are mostly born in the
regular FoV and thus will not be registered as unexpected.
Finally, the lane-averaged p∃ again gives a clear indication
of the locally confined dependability issue. The dip in the
projected existence probability here follows a mexican hat
potential, which reflects the geometry of the sensor field
overlaps.

B. SCENARIO 2: URBAN INTERSECTION WITH LIDAR
According to recent surveys [35], about 37% of fatal vehi-
cle crashes in the USA are intersection-related. Junctions as
critical hotspots will thus benefit in particular from infras-
tructure assistance, and represent an interesting use case for
plausibility-related fault evaluation. In this section, we study
an urban intersection scenario that is guided by the real
infrastructure testbed in [36] (with the difference that Lidars
are deployed instead of cameras for ease of the simulation
pipeline). The recordings were performed in the open-source

FIGURE 7. Overview of the CARLA multi-lane intersection used for the urban
scenario. Two Lidar sensors are located on two opposite corners of the junction,
cocentric circles indicate the point clouds generated by each Lidar. A blind spot fault
with tunable occlusion angle ωBS is injected at sensor 1.

simulator for autonomous driving research CARLA [37].
Based on the Unreal Engine for the rendering, it provides
with a set of towns and maps in addition to various sen-
sor models such as RGB cameras, depth sensors, and Lidar
sensors. For this scenario, a four-way intersection of the
Town03 map that resembles the setup in [36] was chosen,
see Fig. 7. Multiple lanes at each intersection leg, and a large
variety of randomly spawned vehicles allow for a diverse
urban traffic scenario featuring cars, trucks, cyclists as well
as pedestrians roaming on the sidewalks. The recorded sce-
nario has an overall length of 370s, which is split into
quasi-independent intervals of 5s each, and on average 18
tracks are detected per frame.
At this intersection, two Lidar sensors are placed at two

opposing corners, with a fov = (80m, 360◦, 28◦) that allows
to monitor all events taking place at the junction. This layout
represents a minimal example setup for accurate object detec-
tion, under mitigation of occlusion events. Each 16-channel
Lidar sensor provides with a cloud of 230400 points per sec-
ond, at an update rate of 20Hz. The point cloud feeds into
a deep neural network performing 3D object detection with
the PointPillars algorithm, see [38], [39] for performance
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TABLE 2. Overview of the simulation results obtained in Section V, confer also with
Tab. 1. The three selected empirical perception faults analyzed in the two smart
infrastructure scenarios lead to distinct fingerprints in the plausibility metrics.

and accuracy benchmarks on the KITTI data set. A sep-
arate study with synthetic CARLA data was conducted to
verify that PointPillars achieves a mean average precision
similar to KITTI on the classes car, cyclist and pedestrian,
both from a bird-eye-view and a 3D perspective [40]. The
generated object list includes information about 3D dimen-
sion, position, and heading. Subsequently, the extracted
bounding boxes are tracked with an EKF. CARLA further
provides with an autonomous agent behavior. Vehicles stay
in their lanes, follow traffic lights and take random turns
at intersections (whenever possible), drive at a predefined
speed, and do not perform any maneuvers such as overtak-
ing. Another limitation of the CARLA simulator is the fact
that the traffic lights at an intersection follow a round-robin
schedule, where only one road has a green light at a time.
Even though the traffic model in the simulator is simplistic,
there are enough actors to produce occlusions.
In Fig. 6, we see that the established baseline of the

averaged p∃ shows an unsteady behavior at the intersection
interfaces, even in the absence of injected faults. This can
partially be attributed to the fact that vehicles are frequently
turning and accelerating in this zones, which poses severe
challenges for the trackers. A class-3-fault (see Tab. 1) is
now injected into the simulation, in the form of a blind spot
for sensor 1 that represents, e.g., a significant mud splash
on the Lidar cover. Sensor 1 is now blind to detections
under certain azimuthal angles facing the intersection center,
where the extension of the blind spot is controlled by the
parameter ωBS, see Fig. 7. The simulation results in Fig. 6
demonstrate that the observed probability of existence is
statistically reduced in the inner junction, given a sufficiently
drastic sensor pollution. At the same time, the miss ratio of
the affected sensor 1 is increased due to the inconsistent
observations with respect to sensor 2. Note that this gives
us a handle to identify the faulty Lidar within the described
plausibilization scheme, in a busy urban environment, even
though in this experiment only two overlapping sensors were
used.

VI. SUMMARY AND CONCLUSION
This article investigated whether specific plausibility metrics
– in our model represented by sensor miss ratios, unexpected

observation ratios, and the collaborative existence proba-
bility derived from various plausibility checks across the
monitored region – can act as fault indicators in complex
decentralized perception systems. For two realistic roadside
infrastructure scenarios, we have tested selected perception
faults in simulation, and demonstrated that the resulting
statistical fingerprints in the plausibility metrics allow for
a conclusive fault detection and evaluation. The injected
faults were hereby identified from experience with the real-
world smart infrastructure systems KoRA9 and P++. Tab. 2
summarizes the results of this analysis.
Since the deployed plausibility checks are independent of

the input sensor modality, or the underlying perception algo-
rithms, our analysis can be used in particular to verify the
integrity of systems with black-box behavior. An extension
with checks focused on machine learning-based perception
faults is envisioned for further research. The plausibility sig-
natures are the more pronounced the more sensor overlap
can be generated. With this work, we therefore emphasize
as well the importance of redundant, independent sources of
information for fault tolerant automated driving.
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