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ABSTRACT Deviations between system current measurements and real values in the power train of
Electric Vehicles (EVs) can cause severe problems. Among others, these are restricted performance and
cruising range. In this work, we propose a fleet-based framework to correct such deviations. We assume
that the real value is the mean of all identically constructed EVs’ measurements for the same input. Under
this assumption, we decide for each vehicle whether it displays hardware errors with the help of a binary
classifier. Depending on the classification, if no hardware errors are detected, we recover the parameters
of an assumed measurement error model via Linear Regression. Otherwise, we combine the regression
with a convex optimization problem and sparsity constraints. We achieve an overall recovery rate of up
to 90%, allowing the full automation of the measurement correction procedure with no need to add more
sensors, or computational units on-board of the EV.

INDEX TERMS Measurement correction, electric vehicles, machine learning, compressed sensing, sparsity
constraints, intelligent sensors.

I. INTRODUCTION

MEASUREMENTS of High Voltage (HV) currents play
a crucial role in the power train of EVs. For exam-

ple, when the HV system operates close to its physical
limits, measurements serve as base for the power limita-
tion. Harming the limit would result in restricted battery
life time and threaten safe vehicle operation [1]. The EV’s
safety is usually ensured with the help of battery pro-
tection offsets. The magnitude of the offsets depends on
the measurement accuracy to make sure that it is suffi-
cient even under the worst measurement conditions (compare
Figure 1). Thus, inaccurate measurements lead to high off-
sets. High offsets are problematic for several reasons. One
reason is that during acceleration the offset leads to a
restriction of the power even if the measurement is more
accurate than the worst expected and the power-train indeed
would be able to provide the requested power. In this case,
the EV’s performance is restricted unnecessarily. An even
worse problem occurs in the opposite situation. During
recuperation a too conservatively chosen offset leads to a
restriction of the amount of power which is charged into
the High Voltage Battery (HVB) although the HVB would

FIGURE 1. A schematic representation of power limitation due to battery protection
during the acceleration of an EV. The measurement (black) might differ from the real
value by some measurement tolerance (grey). To guarantee that the real value never
exceeds the maximum battery current (red, solid), an additional offset (red, dashed)
serves as prevention. The same principle is used analogously with negative currents
during recuperation [2].

be capable to store it. This decreases the EV’s cruising
range.
Kirchhoff’s current law states that the sum of all currents

at an electric node is equal to 0A. As our HV system consists
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FIGURE 2. A highly simplified view of the HV power train of the EVs which we use
for our studies. It consists of only a single node. Thus, the sum of all HV currents
must be equal to 0 according to Kirchhoff’s current law.

of only a single node (compare Figure 2), the sum of all
HV currents must be equal to 0A according to Kirchhoff’s
law. However, considering measurement signals of EVs with
distributed sensor systems, the sum of all currents can differ
by up to 25% of the maximum current (see Figure 3). If
we look closer at the Root Mean Square Error (RMSE) of
the sum of currents RMSE(isum) = 0.67%, we realize that it
has on average the same value as the current of the DCDC
converter which is μiDCDC = 0.67%.

Our aim is to increase the measurement accuracy to enable
a minimization of the battery protection offsets. To this
end, we develop and evaluate a measurement correction
system based on the measurement fault detection we propose
in [3]. The correction uses compressed sensing and sparsity
constraints. It works based on the power train data alone
and does not require further expert knowledge for manual
calibration.
We explain related work and our contribution to the state

of the art in Section II. In Section III, we explain the theory
behind our work before we describe the practical experiments
in Section IV. The results of our experiments are stated in
Section V. In Section VI, we discuss the advantages and
drawbacks of the proposed concepts. Finally, we draw our
conclusions in Section VII.

II. STATE OF THE ART
In this work, our contribution is the development of an auto-
mated measurement correction system based on compressed
sensing. We enhance the measurement deviation detection
presented in [3] in such a way that it is not only able to
detect, but also to recursively correct measurement faults.
The proposed system is able to minimize deviations between
measurements and real values. The self-reliant correction
uses methods from the field of Machine Learning and does
not require any expert knowledge or high calibration effort
for its execution. We develop the measurement system close
to its field of application. Thus, it works with only the
data already available in modern series EVs without addi-
tional sensors. Another advantage of our system is that it
does not increase the computation load or memory con-
sumption of the Electronic Control Units (ECUs) of EVs.

FIGURE 3. Currents of all HV components in an EV on a test drive. The sum of all
currents isum is plotted in black. According to Kirchhoff’s current law, it should be
constantly 0 %. But the measurements show that the deviation isum is higher than the
current of the DCDC converter iDCDC.

We evaluate our approach with simulation data based on
previously recorded real power train data of series EVs on
public roads. To the best of the authors’ knowledge, this
is the first time that a measurement correction system is
proposed for the HV power trains of close-to-production
EVs based on compressed sensing without redundant sensor
systems.
Within the scope of our work, we differentiate between

two different kinds of faults: measurement and hardware
faults. Hardware faults describe sensors measuring cor-
rectly wrong behavior, e.g., in the case of broken actuators.
Speaking of measurement faults, we mean faulty measure-
ment data caused by, e.g., corrupted sensors. Besides the
two kinds of faults, we distinguish between two groups of
Machine Learning approaches for measurement correction:
off-board and on-board approaches.
Off-board approaches train a model outside of its common

environment. The training is based on previously recorded
data or simulation. After training, the model is executed
on-board and detects deviations from the previously learned
behavior.
Malakar et al. [4] increase the quality of their measure-

ments with an off-board approach based on Neural Networks.
They detect and neglect input signals which lead to a bias in
the measurement output to improve the measurement qual-
ity. However, even corrupted signals might contain parts
with valuable information [5]. Neglecting the whole signal
means to drop also the valid parts of the information. Thus,
we prefer to correct corrupted signals instead of dropping
them. Malakar’s measurement environment consists only of
the sun and the air. There are no further actuators. In contrast
to our work, deviations in their data cannot be caused by
hardware faults and are always provoked by measurement
faults.
Hardware and measurement faults are distinguished by

Zhao et al. [6]. The authors construct a simulation model of
an aero-engine. Their model contains sub-models based on
physical principles. The sub-models represent all components
including actuators and sensors. Zhao et al. detect deviations
between expected and measured values with the help of
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Principal Component Analysis (PCA) and diagnosis models.
They are able to recognize sensor faults and the affected
system components due to the component-wise modeling.
This modeling technique demands expert knowledge about
the physical principles influencing the measurement environ-
ment. If the physical modeling is not carried out accurately
enough, it can lead to a problem which is known as the real-
ity gap in evolutionary robotics [7]. The reality gap denotes
the phenomenon that models perform well during simula-
tion, but fail once they are executed in the real world [5].
A reason for this failure is that the simulation data used for
training is often only available in certain working conditions,
whereas the environment of the real system varies across a
broad range during execution [8].
The reality gap is a general problem of off-board

approaches. It is their main drawback that situations might
occur during execution which the algorithm did not experi-
ence during training. As a result, these algorithms are not
able to adapt to new circumstances and thus perform subop-
timally in certain situations [8]. Another drawback is that the
training of Machine Learning methods usually is quite time-
consuming [5]. Off-board approaches separate this expensive
training from low-performance execution platforms. Thus,
they allow cheaper hardware which is an advantage in cost-
efficient industries like the automotive domain. Another
advantage is that the separated training environment allows
the use of higher computation and memory resources. This
enables a broad range of algorithms to be considered for
solving the requested problem. Additionally, the training is
not necessarily required to be executed in real-time.
The major difference of on-board approaches is that the

models are directly trained on the execution platform and
then updated continuously.
An example for an on-board approach is the DC current

calibration presented by Ren et al. with an high-precision
current adder [9]. The adder is an additional hardware com-
ponent which is able to correct faulty measurements during
execution. The authors apply the adder successfully in the
electrolysis industry. However, the automotive industry has
different requirements. Due to the restricted available instal-
lation space and the cost efficiency resulting from mass
production, we want to avoid additional hardware. Our
algorithms are supposed to run with the hardware and the
measurement data available in modern series vehicles.
The sensor set of a series production engine is sufficient

for Lu et al.’s inspiring approach [8]. They introduce an on-
board approach for sensor fault detection with an Extreme
Learning Machine and apply it to the control system of an
aero-engine. Although their approach is capable to detect
bias and drift faults, it is not able to distinguish between
hardware and measurement faults. Thus, if a hardware
fault occurs, it must be detected separately. Nevertheless,
their approach can correct measurement faults by providing
compensation data.
Like Lu et al., Kobayashi and Simon focus on the detec-

tion of faults in an aero-engine [10]. They propose an

on-board approach which is capable to differentiate between
hardware and measurement faults. Instead of an Extreme
Learning Machine, Kobayashi and Simon use a bank of
Kalman Filters. Each filter monitors a sensor signal sepa-
rately. Kobayashi and Simon create an additional signal to
detect hardware faults. They isolate corrupted signals with
the help of a decision matrix. However, particularly for prob-
lems with many signals, a filter for each signal leads to a
high number of filters and thus to high computational costs.
On the one hand, on-board approaches have the advantage

of continuously updating their model. Thus, these algorithms
are capable to adapt to never before experienced situations.
On the other hand, they suffer from three main disadvantages.
First, the training is required to be executed in real-time for
many use cases. Second, cost effective design prevents to
add additional performance and memory resources to ECUs.
Especially in the automotive domain, this is an issue of high
interest and restricts the capability of learning on-board of
EVs. As a result, many algorithms become infeasible for
automotive ECUs. Third, on-board approaches are only able
to detect deviating behavior of otherwise working sensors.
If the sensor returns biased measurements from the initial
execution, the data is mistakenly assumed to be correct.
In our previous work, we develop a fleet-based approach

with an on-board trained measurement model and an off-
board fault classifier for close-to-production EVs [3]. With
that hybrid approach, we combine the ability to handle
unseen situations with detecting ab initio corrupted sensors.
The on-board measurement model minimizes the data trans-
ferred over the air. This enables us to use the resources of
a back end. In the back end, the classifier is capable to dif-
ferentiate between hardware and two kinds of measurement
faults. The measurement deviation detection proposed there
serves as basis for our work in this paper. Here, we develop
the classifier further. Additionally, we append the still miss-
ing correction of deviations between measurements and real
values.
In their inspiring paper, Ohlsson et al. extend classical

compressive sensing to quadratic relations and second order
Taylor expansions [11]. They give examples for different
types of measurements. Their paper serves as theoretical
basis for our work described in this article. We want to extend
their approach to our measurements to correct measurement
faults.
Besides measurement faults and sensor uncertainties, the

divergence between measurements and real values can be
caused by time delays [12]. Time delays are not the focus
of this work. For this work, we assume that all data is
synchronized correctly and potential time delays have been
detected and corrected previously. We treat with the detection
of time delays in our other previous work [2], [12].

III. CONCEPTS
In the HV power train of an EV, we consider an elec-
tric system of K currents i1, i2, . . . , iK . To each current
ik, we dedicate one sensor providing measurements of ik
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FIGURE 4. A graphical illustration of our approach. For the sake of simplicity, our
approach is illustrated here only for the electric machine and the HVB. The reduction
to two HV component means that the current vectors i = (ieD, ibatt) and im = (ieD,m ,
ibatt,m ) are of dimension K = 2 in this case.

in real-time (without time delays), which we henceforth
denote by ik,m. We further assume that all K currents flow
into the same node, so that we have their sum

∑K
k=1 ik

equal to 0 by Kirchhoff’s current law (because of mea-
surement errors, this needs not to be true for the sum∑K

k=1 ik,m). To simplify notation, we denote from now on
by i and im the K-dimensional vectors (i1, i2, . . . , iK)T and
(i1,m, i2,m, . . . , iK,m)T , respectively.
Our approach is illustrated in Figure 4. We presume an

EV collecting measurement data {im(t)}1≤t≤T during driving.
Based on these data, we state our problem as that of learning
a correction mapping im �→ i. Our aim is to subsequently use
this mapping to correct the measurement signals in real-time.
The main challenge thereby is that only im(t) is available,
but not the corresponding ground truth i(t). The lack of
the ground truth makes it impossible to learn the desired
mapping a priori in a supervised manner.
Thus, we want to estimate an ideal ground truth is first

(see Section III-A). Then, a pre-trained classifier decides
whether the considered EV displays hardware faults (see
Section III-B). Finally, depending on the classification result,
a recovery algorithm is executed to learn the desired mapping
(see Section III-C).

A. IDEAL GROUND TRUTH ESTIMATION
In the sequel, we suppose the existence of a perfect vehicle
from the investigated model, i.e., a vehicle S featuring a
perfect behavior with respect to the model specifications, and
equipped with perfect sensors. Let ik,s be the k-th current
in S, and is = (i1,s, i2,s, . . . , iK,s)

T . Then, we can think of
is as the should-be value of im resulting in is = im. Thus,
for any imperfect vehicle we retrieve im �= is, whereby this
deviation can be caused by hardware faults, measurement
faults or a combination of both.
On the one hand, because of potential hardware faults

(e.g., a flat tire), the vehicle might display a dynamical
behavior different from that of S, which then changes is into i,

but without changing the sum of currents which remains 0,
i.e., 1T i = 1T is = 0.

On the other hand, because of measurement errors (e.g.,
a sensor offset/drift), a second deviation might be observed
between im and i. In contrast to hardware errors, this devi-
ation does most likely change the sum of currents, so that
in general one has 1T im �= 0. Together, we can write

im − is︸ ︷︷ ︸
total deviation

= im − i
︸ ︷︷ ︸

measurement error

+ i − is︸ ︷︷ ︸
hardware error

. (1)

We assume the existence of a fleet of N (imperfect) vehi-
cles from the investigated model, and denote the vector of
measured currents in the j-th vehicle by ijm. For each j, we
train a discrete State-Space Model consisting of the system
matrices Aj,Bj,Cj and Dj with state x, input u and output ijm
based on a set {ijm(t)}1≤t≤Tj of measurement data as described
in [3]. In the next step, we estimate the currents {ijm}1≤j≤N
that would be measured across the fleet, if all vehicles drove
under the exactly same conditions [3]. Simulated on these
unity drive conditions, {ijsim(t)}1≤j≤N denotes the outputs of
the trained measurement models at time t according to

x(t + 1) = Ajx(t) + Bjuud(t)

ijsim(t) = Cjx(t) + Djuud(t) (2)

with x0 = x(0) and u(t) = uud(t), t ∈ {1, 2, . . . ,Tud}.
Finally, by denoting the current vector is(t) of the perfect

vehicle S at time t under the unity drive conditions, we come
to the following assumption:
Assumption 1: For a sufficiently large N, and at each time

step t, is(t) can be accurately approximated by the average
of the simulated currents ijsim(t) across the N vehicles in the
fleet, i.e., we have

is(t) ≈ ĩs(t) := 1

N

N∑

j=1

ijsim(t). (3)

This assumption is based on the observation

1

N

N∑

j=1

ijsim = 1

N

N∑

j=1

(
is + ijm − ij + ij − is + ijsim − ijm

)

= is + 1

N

N∑

j=1

(
ijm − ij

)
+ 1

N

N∑

j=1

(
ij − is

)

+ 1

N

N∑

j=1

(
ijsim − ijm

)
(4)

and the assumption that for large N, measurement, hard-
ware and simulation errors at a certain time step average
to 0 across the fleet, so that the three averages in (4)
converge to 0.

B. CLASSIFICATION
Having obtained an estimation for ijm and is at each time
step t ∈ {1, 2, . . . ,Tud}, namely ijm(t) ≈ ijsim(t) and is(t) ≈
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ĩs(t) as in (3), we would have almost solved the problem
for the j-th vehicle, if we could exclude the possibility of
hardware errors. In fact, if that was the case, we would have
ij(t) = is(t) ≈ ĩs(t), which we could use together with ijsim(t)
to learn the desired mapping ijm �→ ij (i.e., the mapping is
learned by means of the tuples {(ijsim(t), ĩs(t))}1≤t≤Tud ).

In order to reduce the complexity of our approach, we
propose to first predict by means of a classifier whether any
given EV displays hardware errors. If the prediction is neg-
ative (i.e., no hardware errors are detected), we proceed as
described above. Otherwise, we utilize a more complex algo-
rithm to recover the measurement error (see Section III-C).
In this work, we propose and compare two different clas-
sification rules, both based on a set of K + 1 features
f1, f2, . . . , fK+1.
On the one hand, it seems reasonable that the absolute total

deviation between ijm and is would in average be larger, if
the j-th EV suffers not only from measurement faults but
also from significant hardware faults (see (1)). Accordingly,
we estimate by means of ijsim(t) and ĩs(t) for each vehicle j
and each current k the average quadratic deviation between
ijk,m and ik,s, and define that as the k-th feature for the j-th
vehicle

f jk = 1

Tud

Tud∑

t=1

(
ijk,sim(t) − ĩk,s(t)

)2 ≈ E

((
ijk,m − ik,s

)2
)

(5)

for 1 ≤ k ≤ K.
On the other hand, we define the (K + 1)-th feature as a

measure of the significance of measurement faults in the j-th
vehicle. Since these faults result in ijm almost surely not sum-
ming to 0, we quantify the magnitude of the measurement
faults by means of the average square of 1T ijm, i.e.,

f jK+1 = 1

Tj

Tj∑

t=1

((
1T ijm(t)

)2
)

≈ E

((
1T ijm

)2
)

, (6)

where a set {ijm(t)}1≤t≤Tj of measurement data is required
for the estimation.
Let fj = (f j1, f

j
2, . . . , f

j
K+1)

T . Based on fj, we decide
whether the j-th vehicle displays significant hardware faults.
We thereby compare between two classification rules:

• Simple Thresholding Classifier: The classifier decides
for the existence of hardware errors, if

ηj :=
K∑

i=1

f ji − 1

K
f jK+1 > δh (7)

for some threshold δh. For an intuitive explanation, we
rewrite the above criterion as

ηj ≈
K∑

k=1

E

((
ijk,m − ik,s

)2
)

− 1

K
E

((
1T ijm

)2
)

= E

⎛

⎝
K∑

k=1

(
ijk,m − ik,s

)2 −
(
1T ijm√
K

)2
⎞

⎠

FIGURE 5. Graphical representation for K = 2. Here, H is the line described by
i1 + i2 = 0. is is the should-be current and part of H as it satisfies Kirchhoff’s law.
Hardware errors in the j-th vehicle move is to another point on H, here ij . Then,

measurement errors move ij outside of H to ijm . When projected back on H, ijm
returns �H(ijm ). In (8), we use Pythagoras theorem on the triangle spanned by the

points is , ijm and �H(ijm ). The triangle is right-angled at �H(ijm ).

= E

(∥
∥
∥ijm − is

∥
∥
∥

2

2
−
∥
∥
∥ijm − �H

(
ijm
)∥
∥
∥

2

2

)

> δh (8)

by inserting (5). Here, �H is the projection operator on
the hyperplane H given by H = {x ∈ R

K | 1Tx = 0}.
Since is satisfies Kirchhoff’s law, we have is ∈ H, and
thus by Pythagoras (see Figure 5)
∥
∥
∥ijm − is

∥
∥
∥

2

2
−
∥
∥
∥ijm − �H

(
ijm
)∥
∥
∥

2

2
=
∥
∥
∥�H

(
ijm
)

− is
∥
∥
∥

2

2
. (9)

Knowing that ij also satisfies Kirchhoff’s law and thus
ij ∈ H, we can think of �H(ijm) as the best possi-
ble approximation of ij in the absence of any further
information. Thus, the above criterion is an approxi-
mation of the average squared distance ||ij − is||22, i.e.,
of the average squared deviation caused by hardware
faults (see (1)).

• Decision Tree Classifier: The classifier decides whether
or not the j-th vehicle displays hardware faults based
on previously induced comparison rules. The rules are
learned during a training phase with an artificially cre-
ated fleet of EVs. The artificial creation is based on
data from real drives and has the advantage for our
work that we know about the (non)-existence of hard-
ware faults in advance. Thus, we are able to evaluate
the correction.

Based on the utilized classifier, we distinguish between
four different cases:

• Case 1: Neither hardware nor measurement faults are
detected. In this case, we have a nearly perfect vehicle,
for which no further steps are necessary.
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• Case 2: Only hardware faults are detected. No further
steps are necessary in this case, too, as our goal is to
correct measurement faults only.

• Case 3: Only measurement faults are detected. Here,
only one further step is necessary, namely to use the
tuples {(ijsim(t), is(t))}t to learn the correction mapping
ijm �→ ij.

• Case 4: Both types of faults are detected, i.e., the devi-
ation between ijm and is is to be decomposed into its
two components as in (1). Without further assumptions,
the problem is however ill-posed, as there is an infinite
number of such decompositions. In order to provide
a unique solution, we propose in the sequel a set of
assumptions which we find to be both reasonable and
sufficient to make the problem well-posed again.

C. ERROR MODEL AND RECOVERY
In this section, we first present the error models we assume
for measurement and hardware faults. Since hardware faults
do not alter the validity of physical laws, here in particular
Kirchhoff’s law, one can in general model them using a
continuous mapping fh : is �→ i, such that it holds

is ∈ H =⇒ fh(is) ∈ H. (10)

In this work, we choose a simple linear model for fh
satisfying (10), namely:

fh(is) = (1 + dh)is + oh, (11)

where dh ∈ R is a drift scalar and oh ∈ H is an offset vector.
We retrieve

is, oh ∈ H
=⇒ 1T is = 1Toh = 0

=⇒ (1 + dh)1T is + 1Toh = 0

=⇒ 1T fh(is) = 0

=⇒ fh(is) ∈ H. (12)

Similarly, we model measurement faults as a linear map-
ping fm : i �→ im. However, we model the mapping without
the constraints from (10), since the noisy vector im does not
need to satisfy Kirchhoff’s law. This results in

fm(i) = (I + Dm)i + om, (13)

where I is the identity matrix, Dm ∈ R
K×K is a diagonal

drift matrix, and om ∈ R
K is an offset vector. Note that in

these terms, the goal of this work is to learn the inverse
mapping f−1

m (im). As i is unknown, we instead aim to learn
the parameters Dm and om with the help of the tuples (im, is).
From (11) and (13), we retrieve

im = fm ◦ fh(is) = (I + Dm)((1 + dh)is + oh) + om
= (I + Dm)(1 + dh)is + (I + Dm)oh + om. (14)

However, we cannot generally recover the parameters (in
particular Dm and om) from tuples in the form (im, is) (and
even less (isim, ĩs)). To solve this problem, we consider the
classification result and differentiate between two cases.

1) RECOVERY WITH NO HARDWARE ERRORS

This case is equivalent to setting both dh and oh to 0. We
retrieve im = (I+Dm)is+om from (14). We learn the param-
eters Dm and om straightforward by linearly regressing isim(t)
on ĩs(t). More precisely, we execute in total K regressions
where we regress isim,k(t) on im,k(t) for each k.

2) RECOVERY WITH HARDWARE ERRORS

Here, the problem is ill-posed without additional knowledge.
For example, if (dh, oh,Dm, om) satisfies (14), then (dh, oh+
e,Dm, om − (I + Dm)e) does so, too, for any e ∈ H. In
this work, we avoid such ill-posedness with the following
assumption.
Assumption 2: The vector x containing all parameters

(dh, oh,Dm, om) is a sparse vector, meaning that only few
of the therein included parameters are non-zero.
This assumption bases upon the following reasoning: in

one vehicle, it is very unlikely that all, or at least many, fault
sources exist concurrently. All faults at the same time would
mean that all K involved sensors suffer from offset or drift
faults, or even both. Additionally, K currents are affected by
hardware faults without exception. Thus, it is reasonable to
assume that only relatively few sources of faults exist in the
same vehicle at the same time.
Accordingly, we recover x as follows. First, we estimate

the expressions (I+Dm)(1+dh) and (I+Dm)oh+om based
on the tuples (isim(t), ĩs(t)). We do this estimation by linearly
regressing isim(t) on ĩs(t). More precisely, we define the k-th
diagonal element of Dm as dm,k, and the k-th elements of
oh and om as oh,k and om,k, respectively. Then, we retrieve
for each k ∈ {1, 2, . . . ,K}

(
1 + dm,k

)
(1 + dh) ≈ ak

(
1 + dm,k

)
oh,k + om,k ≈ bk (15)

where ak and bk are the slope and intercept estimates
obtained from regressing (isim,k(1), . . ., isim,k(Tud))T on
(ĩs,k(1), . . . , ĩs,k(Tud))T . Next, we define y = (a1, . . . , aK ,
b1, . . . , bK)T and x̃ = (dh, oh,1, . . . , oh,K , dm,1, . . . , dm,K ,
om,1, . . . , om,K, 1)T ∈ R

3K+2. We then rewrite each of the
estimated terms in a quadratic form x̃TQx̃ of x̃, for example

(
1 + dm,k

)
(1 + dh) =

(
x̃Te3K+2

)2 + x̃Te3K+2eTK+1+kx̃

+ x̃Te3K+2eT1 x̃ + x̃TeK+1+keT1 x̃
= x̃T

(
e3K+2eT3K+2 + e3K+2eTK+1+k

+ e3K+2eT1 + eK+1+keT1
)
x̃

:= x̃TQkx̃, (16)

where the notation e3K+2 denotes the canonical vector with
respect to 3K + 2. Similarly, we obtain (1+dm,k)oh,k+om,k =
x̃TQK+kx̃ and rewrite (15) as

∀i ∈ {1, 2, . . . , 2K} x̃TQix̃ ≈ yTei. (17)
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Finally, we recover x (resp. x̃) by solving the optimization
problem

min
x̃

‖x̃‖1 s.t.
2K∑

i=1

(
x̃TQix̃ − yTei

)2 ≤ ε,

x̃Te3K+2 = 1,

x̃T
(

K∑

i=1

e1+i

)

= 0. (18)

Thereby, ε is an error threshold. The constraint x̃Te3K+2 = 1
forces the last element of x̃ to be equal to 1, and the con-
straint x̃T(

∑K
i=1 e1+i) = 0 makes sure that the hardware

offsets oh1 , . . . , oh,K sum up to 0 to satisfy (10). To solve
the optimization problem from (18), we use the Quadratic
Basis Pursuit (QBP) algorithm suggested in [11]. This algo-
rithm uses a lifting technique to convexify the above problem
and thus makes it computationally tractable.
In the end of this section, we want to emphasize that

in theory, we could bypass the classification step from
Section III-B. Our proposed recovery does not require the
existence of hardware errors. It could theoretically recover
the parameters successfully even when dh = 0 and oh = 0.
Thus, we could directly execute the optimization in (18) for
all EVs, irrespective of whether or not they are affected by
hardware errors. We would only need to run the optimization
procedure in (18) when necessary. This would reduce the
complexity without negatively affecting the performance.
However, in the presence of classification errors, the recov-
ery’ success rate might be negatively affected. On the one
hand, in case of false positives, the algorithm would try
to recover the parameters using the optimization problem
from (18). Instead of the simple and highly reliable regres-
sion from Section III-C1, the optimization problem might fail
to recover the parameters. On the other hand, in case of false
negatives, the recovery algorithm would assume wrongly that
there are no hardware errors. The wrong assumption would
lead to a systematic estimation error. From these observa-
tions, we conclude that false negatives are more harmful than
false positives in our case. We will take this fact into account
for the evaluation of the classification step in Section V-B.

IV. EXPERIMENTAL SETUP
In this section, we describe the experiments we conduct in
order to evaluate the suggested method.

A. ARTIFICIAL GROUND TRUTH
Each experiment is based on an artificially created data set
D = {is(t)}1≤t≤T of ground truth current signals. To make
sure that the data set is realistic, we start with real measure-
ment data D′ = {im(t)}1≤t≤T of HV current signals recorded
during driving. The data set is modified in such a way that
at each time step t, the condition is(t)T1 = 0 is satisfied.
We guarantee the satisfaction of the condition by setting

ik,s(t) =
{
ik,m(t) for k ∈ {1, . . . ,K − 1}
−∑K−1

j=1 ij,m(t) for k = K
. (19)

FIGURE 6. The density function.

B. ARTIFICIAL RANDOM FLEET
Besides the artificial ground truth, we create a random fleet
of N EVs based on D and the model given in (14). We do
this by randomly drawing the parameters (dh, oh,Dm, om)

for each EV, so that

• the constraint oTh 1 = 0 is satisfied,1

• for a given sparsity level S, only (100 − S)% of the
parameters (up to rounding) are nonzero. (For example,
if K = 3 and S = 60, we have in total 3K + 1 = 10
parameters. Only 4 of these are set to be nonzero. The
support of the parameter vector is thereby chosen at
random.),

• each nonzero parameter is set as the realization of some
random variable X = (2B− 1)U where

B ∼ Bernoulli

(
1

2

)

and U ∼ U(a, b) (20)

for some hyper-parameters a and b. The corresponding
density function is depicted in Fig. 6. The rationale
behind this choice of the distribution is to prevent a
previously nonzero parameter to take very small values
(and thus become approximately zero).

Once we finished the sampling, we define the measure-
ment signal ijm(t) in the j-th vehicle as

ijm(t) =
(
I + Dj

m

)(
1 + djh

)
is(t) +

(
I + Dj

m

)
ojh + ojm, (21)

where djh, o
j
h,D

j
m and ojm are the sampled parameters.

On top of the above listed sampling conditions on the
individual vehicle level, we make sure that on the fleet-level,
the following two conditions are satisfied:

• The fleet is balanced, i.e., the ratio of EVs affected
by hardware faults to those which are not is around
1:1. Thus, we force oh and dh to be zero for half of
the vehicles in the artificial fleet. We use this trick
because for a larger K, and a smaller sparsity level S,
almost all EVs would be affected by hardware faults.

1. In our implementation, we utilize a slightly different parametriza-
tion, namely by only preserving the first K − 1 components of oh as
unknown parameters, and setting oh,K = −∑K−1

j=1 oh,j. This constraint is
then satisfied automatically.
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According to our experiences, this would be very unre-
alistic. Especially, if the fleet contains EVs of young
age with a low amount of vehicle miles traveled.

• The fleet is symmetric, i.e., we have for all t ∈
{1, . . . ,T}

is(t) = 1

N

N∑

j=1

ijm(t). (22)

This condition makes sure that Assumption 1 is nearly
satisfied.2 It is enforced by creating for each vehi-
cle in the fleet with parameters (dh, oh,Dm, om), three
other vehicles with parameters (−dh,−oh,−Dm,−om),
(dh, oh,−Dm, om), and (−dh,−oh,Dm,−om), respec-
tively. This means that we assume N to be divisible
by 4.

C. SIMULATION MODELS
In the previous two subsections, we define the ground truth
signal is(t) and the measurement signals ijm(t) for all j ∈
{1, . . . ,N} and t ∈ {1, . . . ,T}. The only step left is to define
the simulation signals ijsim(t) for all j ∈ {1, . . . ,N}. To do
so, we differentiate between two methods:

• State-Space Simulation: For each j, we split the avail-
able data into two parts. We define T1 = �0.8T� and
use the first part {ijm(t)}1≤t≤T1 to train and validate a
State-Space Model which is able to simulate the dynam-
ics of the j-th vehicle. By simulating the model on
the remaining 20% of the available data,3 we obtain
{ijsim(t)}T1+1≤t≤T .

• Artificial Simulation: Alternatively, we assume that the
error ejsim = ijsim − ijm is distributed as N (0, σ 2

simI) for
some variance σ 2

sim and define for j ∈ {1, . . . ,N} and
t ∈ {T1 + 1, . . . ,T}

ijsim(t) = ijm(t) + ejsim(t)

where ejsim(t) ∼ N
(
0, σ 2

simI
)
. (23)

While our method originally relies on the state-space sim-
ulation as described in [3], the second method allows us
to provide more general results by investigating the effect
of σ 2

sim on the overall performance of our method. Besides
that, it makes it easier to conduct experiments, especially
for larger values of N.

D. EXPERIMENTS
Following the previous sections, each experiment consists of
the following steps:
1) As described in Section IV-A, generate for all K

currents and time steps t ∈ {1, . . . ,T} an artificial
ground truth is(t).

2. Note that Assumption 1 uses the simulated currents and not the
measured currents.

3. For both training and simulation, we also use the corresponding input
vector {u(t)}1≤t≤T which is available from the original data set used to
build the artificial ground truth (see Section IV-A).

2) Depending on is(t), j ∈ {1, . . . ,N} and t ∈ {1, . . . ,T},
create a balanced artificial random fleet of N vehicles
as described in Section IV-B with sparsity level S to
obtain ijm(t).

3) Choose one of the simulation methods described
in Section IV-C to obtain the simulated currents
{ijsim(t)}T1+1≤t≤T .

4) Based on {ijsim(t)}T1+1≤t≤T , estimate the ground truth
as described in Section III-A according to

ĩs(t) = 1

N

N∑

j=1

ijsim(t). (24)

5) Based on {ĩs(t)}T1+1≤t≤T and {ijsim(t)}T1+1≤t≤T ,
classify whether the j-th vehicle is affected by
measurement and/or hardware faults as described in
Section III-B. Depending on the experiment, we either
utilize the simple thresholding classifier with parame-
ter δh, or a previously trained decision tree classifier.
In the latter case, the classifier is trained on another
data set Dtrain. This data set is created artificially in
the same way (i.e., using the same sampling scheme
and parameters) as D.

6) For each vehicle in the fleet, follow the descriptions in
Section III-C to recover the parameters (dh, oh, m, om).

7) Calculate the recovery rate, i.e., the ratio of cases for
which Dm and om have been recovered with a relative
error below 10%.4 The reason we only focus on Dm

and om is that we do not need the other parameters to
be able to correct the current via the inverse mapping

im �→ (I + Dm)−1(im − om). (25)

V. RESULTS
In this section, we evaluate our approach in an end-to-end
fashion. Therefor, we run the experiment from Section IV-D
multiple times with different parameter combinations (i.e.,
values of the number of currents K, the fleet size N, the
sparsity level S, etc.). By fixing all parameters but a few, we
investigate in a number of experiment series the effect of
the variable parameters on the overall achieved performance
as measured by the recovery rate defined above. Due to the
large number of parameters involved, we will thereby restrict
our analysis to the following effects.

A. EFFECT OF THE SIMULATION NOISE VARIANCE
All the steps of the proposed approach rely on simulated
signals, so that a too large simulation error is likely to cause
the recovery to fail. To avoid such a failure, it is important to
quantify how good the simulation should be for the algorithm
to achieve a sufficiently high recovery rate. In other words,
we investigate the stability of our approach against simula-
tion noise. For this investigation, we fix N = 1000, K = 2,

4. For our purposes, it is sufficient to assume cases with a relative error
below 10% as recovered. Of course, the reader is free to choose a value
depending on the individual use case.
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FIGURE 7. The recovery rate is plotted against the signal-to-noise ratio SNRdB.

and S = 60. For our experiments, we use the signal-to-noise
ratio SNRdB to measure the goodness of a simulation. We
run for the experiment 10 times for several signal-to-noise
ratios in the interval [−20, 60] with

σ 2
sim = 10−SNRdB/10 · P, (26)

where P is the average power of is,1(t),5 i.e., P =
T−1∑T

t=1 is,1(t)
2. Note that in order to isolate the inves-

tigated effect from other noise sources, we enforce a
symmetric fleet and a perfect classifier. A non-symmetric
fleet would introduce an additional noise in the ground truth
estimation (see (4)), and false negatives in the classifica-
tion would introduce a systematic error in the parameter
estimation.6

In Figure 7, we plot the average recovery rate (across
the 10 repetitions) as a function of SNRdB. We see that an
SNR above around 15 dB is necessary for the algorithm
to have a recovery rate above 80%, which we consider to
be a sufficiently mild requirement on the simulation model.
In fact, the State-Space Models introduced in our previous
work [3] largely satisfy this requirement.

B. EFFECT OF THE CLASSIFIER
As discussed in Section III-C, classification errors in general,
and false negatives in particular, are harmful to the recovery
rate. To investigate which of the two suggested classifiers
(simple thresholding rule vs. decision tree) produces better
results, we conduct the following experiment. We set N =
1000,K = 2 and S = 60 and run the experiment from
Section IV-D 10 times for each classifier with SNRdB = 20
in (26). Thereby, on the one hand, we set for the thresholding
classifier δh = δ̃hση, where δ̃h is empirically set to 1/3, and

5. Because K = 2, we have is,1(t) = is,2(t), so that P is also the average
power of is,2(t).

6. For false negatives, the classifier wrongly decides there are no hardware
faults. All parameters relating to hardware faults, i.e., dh and oh, are wrongly
set to 0, which leads to systematic errors in the estimation of dm and om.

TABLE 1. Results of the second experiment for simple thresholding, the decision tree

classifier and the perfect classifier.

ση is the standard deviation of the decision criterion across
the fleet (see (7)), i.e.,

ση =

√
√
√
√
√

1

N − 1

N∑

j=1

(
ηj − η̄j

)
with η̄j =

N∑

j=1

ηj. (27)

On the other hand, we train the decision tree on an artificial
fleet of 3, 000 vehicles. The fleet is created using the same
hyper-parameters as the ones utilized to create the primary
fleet (i.e., with the same sparsity level S and parameter dis-
tributions a and b). We further restrict the tree depth to 6 to
prevent overfitting.
On top of the two suggested classifiers, we include the

results obtained using a perfect classifier as benchmark. For
the evaluation, we use the following three metrics:

• The f2 score as a performance measure of each classifier.
We chose this score since we consider false negatives to
be more harmful than false positives, and thus consider
recall to be more important than precision.7

• The recovery rate as a measure of the end-to-end
performance.

• The percentage of cases for which the optimization pro-
cedure in (18) is executed (i.e., the percentage of cases
classified as displaying hardware errors) as a complexity
measure.

Table 1 summarizes the results of this experiment. We see
that the decision tree classifier outperforms the simple thresh-
olding rule on all evaluation criteria. In particular, thanks to
its better f2 score, the decision tree classifier is able to reduce
the complexity score to only 0.41, so that the classification
step is fulfilling its originally conceived target. Note that
this gain in computational resources does compensate the
resources needed to train the tree in the first place.

C. EFFECT OF THE SPARSITY LEVEL
The sparsity constraint is paramount to make the originally
ill-posed problem well-posed again. We therefore want to
evaluate our method for various values of S, and find out how
much sparsity is actually required to obtain a high recovery
rate. To do this, we run our algorithm in an end-to-end
fashion using the same setting as the last experiment, only
this time fixing the classifier to be a decision tree, and letting
S vary in {20, 40, 60, 80}. The results are summarized in
Figure 8.

7. This corresponds to the particular choice of β = 2 in the more gen-
eral fβ score defined as fβ = (1 + β2)pr/(β2p+ r), which is a weighted
harmonic mean of recall and precision, where the weight for recall (r) is
β2 times that of precision (p).
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FIGURE 8. Classification and recovery rates for different sparsity levels.

TABLE 2. Results of the end-to-end evaluation using state-space models.

D. OVERALL EVALUATION
As last experiment, we evaluate our method in an end-to-
end fashion using the state-space approach suggested in [3]
as concrete simulation model. We thereby set K = 2 and
N = 500, enforce the fleets to be symmetric and balanced,
and use pre-trained decision trees for the classification step.
Each tree is trained on an artificial data set created using
the artificial simulation method with SNRdB = 20. When
executing this for various values of S, we obtain the results
in Table 2.

VI. DISCUSSION
Our approach for the correction of measurement faults in
the power train of EVs consists of 3 steps. First, we esti-
mate the ideal ground truth. Second, we classify hardware
and measurement faults. Finally, the measurement faults are
recovered based on the classification result.
To evaluate our approach, we execute 4 experiments. In

the first experiment, we show that the recovery rate increases
for lower simulation errors. Our previously implemented
State-Space Models satisfy the experimental requirement of
15 dB needed to achieve a high recovery rate (> 80%, see
Figure 7). It is interesting that the recovery rate improves
just marginally at higher dB levels. This means that we need
a relatively accurate simulation model but do not require
highest accuracy. Thus, our approach is capable to handle
simulation errors to a certain extent.
Our second experiment shows that decision trees are supe-

rior to the thresholding rule. There are several reasons for
the decision trees’ advantages. First, they are trained on the
data before they are deployed in contrast to rules which are
set manually. Second, besides simple thresholding, they are
able to learn complex decisions rules and third, they take

all defined features as input. However, decision trees also
have some drawbacks. They require training which in turn
requires the creation of an artificial fleet. For the fleet’s cre-
ation, we need to state distributional assumptions about the
fleet. These assumptions might add uncertainty to our data
and lead to wrong decisions. Overall, even if the improve-
ment of decision trees to the recovery rate is relatively small
(0.86 vs. 0.84 as can be seen in Table 1), we still find them
better as they achieve a better classification rate (0.84 vs.
0.68 as can be seen in Table 1), which, as discussed in the
end of Section III, reduces the required computational power.
The main insight of our third experiment is that the

sparsity assumption is the crucial influencing factor on the
recovery rate. The recovery rate can be decreased to 47% by
low sparsity levels. This behavior is comprehensible since
the recovery algorithm is conceived to work with sparse vec-
tors and thus to minimize the 1-norm. The goal of sparsity
constraints is to deal with the ill-posedness of problems.
Assuming low sparsity means to deal with highly ill-posed
problems and low recovery.
From the fourth experiment, we learn that the recovery rate

is lower (e.g., 75% instead of 86% for S = 60) for State-
Space models instead of artificial simulation (see Table 1
and Table 2). This is surprising for us because State-Space
Models also fulfill the dB requirement of the first experi-
ment. A possible reason for the lower recovery rate might
be that the errors induced by the State-Space Models sat-
isfy the dB requirement for the standard deviation but are
not normally distributed. This might lead to some correla-
tions and decrease the accuracy of the regression in the first
recovery step. Further research into the exact reasons for
the lower recovery rate of State-Space Models is up to our
future work.
Regarding the whole work described in this article, we

realize that Assumption 2 is crucial for the results. Lower
sparsities induce worse results. This means that our algo-
rithm is sensitive to the previously stated assumption. We
expect this drawback to be solved by stabilizing the algorithm
with respect to simulation errors. Overall, if the assump-
tions are fulfilled, the results look very promising. The good
results with high recovery rates serve as basis for our future
work. Furthermore, we want to replace the simple linear
error model by more complex non-linear models.

VII. CONCLUSION
This article presents an advanced fleet-based framework to
correct measurement faults in the power trains of EVs.
Through a comparison with the mean behavior of the fleet,
we are able to classify whether a certain vehicle suffers
from significant hardware errors. Then, based on the classi-
fication result, we use a combination of linear regression and
convex sparse optimization to recover the parameters defin-
ing measurement errors. Using relatively mild and realistic
assumptions, we thereby achieve a high recovery rate of up to
90%. Overall, our framework is able to correct measurement
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faults in a completely automated way, and without additional
sensors or computational power on-board of the EV.

ABBREVIATIONS
ECU Electronic Control Unit
EV Electric Vehicle
HV High Voltage
HVB High Voltage Battery
PCA Principal Component Analysis
QBP Quadratic Basis Pursuit
RMSERoot Mean Square Error
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