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ABSTRACT Accurate estimation of current position and attitude of a vehicle is one of the key technologies
for autonomous driving. Due to the defect of LiDAR intrinsic parameter and the sparsity of LiDAR
beam in the vertical direction, current LiDAR-based simultaneous localization and mapping (SLAM)
system generally suffers from the problem of inaccurate height positioning. In this study, a LiDAR and
inertial measurement unit (IMU) tightly coupled localization algorithm considering ground constraint is
proposed, which is developed based on a pose graph optimization framework. At the front end, the ground
segmentation algorithm Patchwork is improved to obtain a point cloud with higher verticality, which
is added to the LiDAR inertial odometry. Moreover, constraints are constructed by using current frame
ground points and world map ground points, which are added to factor map optimization to limit elevation
errors. At the back end, SC++ descriptors are used to construct loop constraints to eliminate accumulated
errors. Verifications based on KITTI dataset show that the height positioning accuracy will be improved
through introducing ground constraint factor and loop detection factor. Real vehicle tests indicate that
the proposed algorithm has better height positioning accuracy and better robustness compared with the
LeGO-LOAM algorithm.

INDEX TERMS LiDAR inertial system, height positioning, pose graph optimization, ground constraint.

I. INTRODUCTION

SIMULTANEOUS localization and mapping (SLAM)
plays a crucial role in autonomous driving. Results

of SLAM algorithms can be considered as perception of
intelligent vehicle, which is the basis for decision, planning,
and control of autonomous vehicle [1], [2], [3]. SLAM can
be realized with a variety of sensors, including cameras [4],
radar [5], [6] and LiDAR [7], [8]. Camera-based visual
SLAM algorithms, including ORB-SLAM [9], [10], VINS-
Mono [11], are sensitive to the illumination and is affected by
motion blur when driving speed is high. LiDAR can provide
precise information about the surrounding environment [12].

The review of this article was arranged by Associate Editor Xin Xia.

Therefore, LiDAR and IMU tightly coupled SLAM becomes
the main localization method in autonomous driving [13],
[14], [15], [16].
Nevertheless, influences of measurement noises on

LiDAR-based SLAM have not received enough attention.
It was found that LiDAR had a high measurement bias
when incidence angles were high, which would result in a
slight curvature of observed points on the road surface [17].
Moreover, the sparsity of LiDAR beam in the vertical
direction made LiDAR had insufficient vertical resolution.
What’s more, dew, artificial dirt, and foam would affect
output data of LiDAR beam [18], and information loss would
take place during vertical vibration [19]. Therefore, results
of SLAM are easily to drift along the vertical direction. In
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this paper, a LiDAR-inertial localization system considering
ground constraint is proposed to increase accuracy of height
positioning. The ground constraint is applied to reduce the
error caused by LiDAR measurement bias in a flat scenario.
Main contributions of this paper are as follows:
i) A SLAM framework based on pose graph optimization

integrates the ground segmentation algorithm at the front
end to effectively separate the ground points with higher
verticality.
ii) To convert the plane expressed in Hesse Form (HF)

form into a three-dimensional vector through a unique
projection method to avoid over-parameter phenomenon in
the optimization process.
iii) Construct the ground constraint factor through the

current frame ground points and the world map ground
points, and calculate the residual and Jacobian matrix.

II. RELATED WORK
The ground segmentation methods are studied by many
researchers [20], [21], which is commonly used for two
purposes, one is for drivable areas extraction in naviga-
tion [22], and the other is for object tracking or target
recognition [23], [24]. Because most of targets that have
interaction with the host vehicle are road users in contact
with the ground, these road users can be easily identified
with a low computational cost when ground points are
eliminated [25]. Patchwork is one of the most important
ground segmentation algorithms for the purpose of traffic
target identification [26]. It is validated in KITTI database
and results show that it has little performance disturbance
and strong robustness in complex and uneven urban roads.
However, Patchwork aims to eliminate dynamic objects on
the ground, which also regards bulges and potholes on
the road as ground points. Hence, it is not suitable for
adding ground constraint in SLAM when higher planeness
of ground points is required. Consequently, current ground
segmentation algorithms are mainly aimed at drivable area
extraction and target tracking, so they do not consider the
requirement of vertical constraints. Therefore, Patchwork
is improved in this paper to acquire ground with higher
planeness, which can provide vertical constraints to reduce
vertical drift of the localization algorithm.
For the representation of a plane, three methods are

mainly employed. The first one is Hesse form (HF), which
is represented by the normal vector of the plane and the
distance from the origin of the coordinate system to the
plane. Because a three-dimensional vector is utilized to
represent two degrees of freedom, singular matrixes may
appear when performing least squares optimization. The
second is to use the azimuth and elevation angles to represent
the normal vector in spherical coordinates, but ambiguity
will emerge when the elevation angle is ±π /2. The third is
to use the unit quaternion to represent the plane [27], but the
physical connection between the quaternion and the plane is
unknown.

FIGURE 1. Block diagram of laser inertial SLAM system based on ground constraint.

The idea of using ground points is reflected in some typical
SLAM frameworks. For example, ground points in LeGO-
LOAM [28] and LOAM [29] are extracted to estimate 3
of the 6 degrees of freedom, but ground information is not
integrated into the pose graph optimization framework in
these works. Ground-SLAM introduces ground constraint in
pose graph optimization to reduce errors in roll angle, pitch
angle, and vertical displacement [30]. However, RANSAC
algorithm is applied in the ground segmentation in Ground-
SLAM, which has a large amount of calculation. Moreover,
it constructs constraints through ground points extracted
between adjacent frames, which has poor stability.

III. LIDAR-INERTIAL LOCALIZATION SYSTEM BASED ON
GROUND CONSTRAINT
First, the proposed localization system overview is intro-
duced. Next, the front end processing is indicated. In the
end, the back end optimization is demonstrated.

A. SYSTEM OVERVIEW
The system block diagram of the localization and mapping
algorithm based on the tight coupling of LiDAR and
IMU based on ground constraint is shown in Fig. 1,
which mainly includes the following parts: one is front-
end processing, including ground point segmentation, feature
extraction, LiDAR inertial odometry, etc. The second is the
optimization of the back end factor graph, which mainly
includes the construction of the odometry factor, the ground
point constraint factor and the loop constraint factor. The
main algorithm flow of the system is:
i) For the point cloud data of the current frame, motion

distortion is recursively removed through the optimized pose
and IMU state of the previous frame, and then passed to the
front-end for processing.
ii) A ground point segmentation algorithm is used to divide

the point cloud into ground points and non-ground points.
iii) Use the curvature attribute near the point to uniformly

extract corner points and plane points, and calculate the
normal vector of the ground point fitting plane.
iv) For the historical frame, the point cloud in the LiDAR

coordinate system is transferred to the world coordinate
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system to obtain world map points through the optimized
pose, and the current frame is used to match the world map,
then the L-M algorithm is used to solve the odometry pose
of the current frame whose iteration initial value is obtained
by IMU integration.
v) The normal vector of the current frame ground points

and the normal vector of the world map ground points
constitute a plane constraint. The loop closure detection is
run through a separate thread, and the loop closure constraint
is obtained when a loop closure is detected. The odometry
constraint, ground constraint, and loop closure constraint are
added to the factor graph optimization to obtain a more
accurate global pose.
vi) The low-frequency pose output by the front-end and the

IMU pre-integration constraints are added to the optimization
of the tightly coupled factor graph, and the iterative initial
value for the world map matching of the next LiDAR frame
is obtained through optimization.
vii) In the end, the SLAM system can output high-

frequency and low-frequency poses. Through the poses,
the point cloud collected by each frame of radar can be
transformed into a global map in the world coordinate
system, thereby completing the localization and mapping
process.

B. FRONT END PROCESSING
The front end processing includes two parts, i.e., ground
point segmentation and motion estimation.

1) GROUND POINT SEGMENTATION

The proposed ground segmentation algorithm, which is
named AdationBin, is mainly composed of ground point
extraction based on bird-eye view and outlier point elimina-
tion based on likelihood function.

1) Mesh region division:The bird-eye view [31] is applied to
divide a point cloud frame into mesh grids. Adaptive mesh
division method is adopted to avoid the lack of representation
caused by small mesh area the distance is too close or the
sparse phenomenon caused by too few points in a grid when
the distance is far. The bird eye view is divided into four
areas according to the distance, which is denoted as

Qn = {
ph ∈ P|Lmin,n ≤ ρh ≤ Lmax,n

}
, (n = 1, 2, 3, 4)

where P is a frame of point cloud. ph is the h-th point,
whose coordinate is [xh, yh, zh]T. ρh = √

xh2 + yh2. Lmin,n
is the inner boundary of the n-th area, and Lmax,n is the
outer boundary of the n-th area. Each frame of point cloud
is divided into Nρ,n × Nθ,n grids according to distance and
azimuth, and point set in each grid Sp,q,n is defined as follows

Sp,q,n =
{
ph ∈ Qn| (p−1)·Ln

Nρ,n
≤ ρh − Lmin,n <

p·Ln
Nρ,n

,
(q−1)·2π
Nθ,m

≤ θh + π <
q·2π
Nθ,m

}

(1)

where θh = arctan(yh/xh), Ln = Lmax,n − Lmin,n, Lmax,n =
Lmin,n+1, Lmax = Lmax,4, Lmin = Lmin,1, Lmin,2 = 6Lmin+Lmax

7 ,
Lmin,3 = (4Lmin+Lmax)

5 , and Lmin,4 = 2Lmin+Lmax
3 .

Larger grids are utilized in areas Q1 and Q4 to mitigate the
lack of representation and the sparsity deficiencies mentioned
above.
2) ground-point-extraction:
Ground points are extracted after grid division. First, initial

ground points are obtained based on z-coordinates of points

Ĝ(0)m = {
ph ∈ Sm|z(ph

)
< zmean + zthr

}
(2)

where Ĝ(0)m indicates initial ground points contained in the
m-th grid. z(·) indicates the z-coordinate of the point, zmean
is the average value of z-coordinate in one grid, and zthr is
the ground point threshold in the vertical direction.
Second, the ground point plane is iteratively opti-

mized. Principal components analysis (PCA) algorithm
is adopted [32] because the commonly used RANSAC
algorithm is time-consuming [33]. In the PCA algorithm,
a covariance matrix C ∈ R∼

3×3 for points in a grid is
calculated. The eigenvalues of the matrix from large to small
are denoted as λ1, λ2, λ3, and the corresponding eigenvectors
are denoted as v1, v2, v3, respectively. The normal vector of
the ground point plane can be denoted as n=v3, and therefore
the plane coefficient can be expressed as d=−n·pmed, where
pmed is the median point in the grid. The difference of this
plane coefficient calculated by two adjacent iterations less
than a certain threshold is employed as a termination criterion
of the iteration. Hence, the iterative can be denoted as

Ĝ(l+1)
m =

{
ph ∈ Sm|dm(l) − d̂h < dthr

}
(3)

where Ĝ(l)m indicates ground points contained in the m-th grid
after the l-th iteration. d̂h = −nm(l) · ph. dthr is the iterative
threshold, which is set to be a constant.
3) outliers-elimination:
Bulges and holes on the ground are eliminated as outliers

by using a binary classification method based on the area
probability detection. Let L(θ |X) be the likelihood function. θ
represents all parameters in a probability distribution, which
can be understood as characteristics of ground points. X
represents the random variable, which is expressed as a
ground point or a non-ground point. Assuming the grids
are independent of each other, the likelihood function is
expressed as

L(θ |X) = f (X|θ) =
∏

m

f (Xm|θm) (4)

where Xm and θm represent variables and grid parameters of
the m-th grid.
Vertical drift can be suppressed by using ground point

segmentation with higher planeness. In order to increase the
planeness of the ground constraints, the uprightness and the
elevation in Patchwork are improved to obtain better horizon-
tal ground constraints. Characteristics of ground points can
be described by verticality, height and smoothness [26]. The
smoothness is not considered here because it is introduced
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to restore the wrongly excluded slope point. Therefore, the
probability density function of the grid is expressed as

f (Xm|θm) � ϕ
(
v3,m

)
ψ(zmean, sm) (5)

where ϕ(v3,m) is the verticality probability density function,
and ψ(zmean, sm) is the height probability density function.

Bulges and holes on the ground will be regarded as outliers
because the proposed ground extraction method has high
requirements for the verticality and height of ground points,
so probability density functions are expressed as

ϕ
(
v3,m

) =
{ v3,m·z

‖v3,m‖‖z‖ > pthr

0, else
(6)

ψ(zmean, sm) =

⎧
⎪⎨

⎪⎩

(
1 + e−zmean+k(sm))−1

, sm < Lthr and zmean < hthr(
1 + ezmean−k(sm))−1

sm < Lthr and zmean > hthr
1, else

(7)

where z=[0, 0, 1]T. pthr is the perpendicularity threshold,
generally set to 0.8∼0.98. k(sm) is the height threshold that
changes with the area. Lthr is the range threshold, which
means that filtering according to height threshold will not
be performed on points outside a certain radius. hthr means
the height threshold for pothole elimination, which is related
to the installation height of the LiDAR.
The final estimated ground points are represented as

follows

Ĝ =
⋃

m∈M

[
f (Xm|θm) > 0.5

]
Ĝm (8)

where M is the number of grids in a frame of point cloud,
and [·] is Iverson bracket.

2) MOTION ESTIMATION

A matching algorithm based on the feature points to the
world map (scan-to-map) is used for motion estimation.
Feature points extraction method is inherited from LOAM,
i.e., plane points Sp and the corner points Se are distinguished
according to the curvature. Plane points are those with
curvature less than a plane threshold, whereas corner points
are those with curvature greater than a corner threshold.
In the current point cloud frame, the pose of LiDAR

is represented by a transformation matrix (TwLc), and
coordinates of the i-th point in plane points and the j-th
point in corner points are denoted as Xc,e,i and Xc,p,j.
Therefore, points in the world coordinate system can be
obtained through TwLc. The distance residuals are calculated
by using point-line iterative closest point (ICP) algorithm
and point-plane ICP algorithm, which can be expressed as

{
de = fe

(
Xc.e,i,TwLk

)
, i ∈ Se

dp = fp
(
Xc,p,j,TwLk

)
, j ∈ Sp

(9)

Thus, an optimization as equation (10) can be achieved
and can be solved iteratively by using Levenberg-Marquardt
algorithm.

(TwLk)∗ = arg min
TwLk

⎛

⎝
∑

i

∥∥de,i
∥∥2 +

∑

j

∥∥dp,j
∥∥2

⎞

⎠ (10)

C. BACK END FACTOR GRAPH OPTIMIZATION
The back end optimization includes three parts, i.e., ground
constraint factor, loop constraint factor and factor graph
model.

1) GROUND CONSTRAINT FACTOR

Extracted ground points provide position constraints in z-axis
as well as rotational constraints in roll and pitch for back
end optimization, i.e., ground constraint.
1) residual-calculation:
The ground constraint is constructed by matching ground

points in the current frame with those in the world map.
This ground constraint is a binary constraint, that is, poses
and ground points in world map can be optimized at the
same time. Ground points are expressed in the form of
Hesse Form (HF). Therefore, ground points in the current
frame and in the world map are expressed as �c=[nc,dc]T

and �w=[nw,dw]T, respectively. The normal vector in the
current frame nc=[ncx,ncy,ncz]T and the normal vector in
the world map nw=[nwx,nwy,nwz]T are calculated using the
PCA algorithm. The attitude of LiDAR (RwLc) is utilized to
transfer the normal vector in the world map to a transformed
normal vector in the current frame

nt = RwLcTnw (11)

To obtain two orthogonal vectors which are orthogonal to
nc, an auxiliary coordinate base (naxis) is built, which can
be expressed as

naxis =
⎧
⎨

⎩

[1, 0, 0]T , if min
(|ncx|,

∣∣ncy
∣∣, |ncz|

) = |ncx|
[0, 1, 0]T , if min

(|ncx|,
∣∣ncy

∣∣, |ncz|
) = ∣∣ncy

∣∣
[0, 0, 1]T , if min

(|ncx|,
∣∣ncy

∣∣, |ncz|
) = |ncz|

(12)

According to the geometric relationship between naxis, nc,
and nt, the required two vector bases can be calculated as

bc1 = nc × naxis
‖nc × naxis‖ (13)

bc2 = nc × b1

‖nc × b1‖ (14)

It is easy to identified that bc1 is orthogonal to bc2. The
difference between transformed normal vector and normal
vector in the current frame nt-nc is projected onto bc1 and bc2
to obtain the required a two-dimensional rotation residual,
which can be calculated as

r(RwLc,nw) = Bc(nt − nc) = Bc
(
RwLcTnw − nc

)
∈ R

2×1

(15)

Bc =
[
bc1T

bc2T

]
∈ R

2×3 (16)

This rotation residual only affect the roll and pitch during
optimization.
The position of LiDAR (twLc) as well as the normal vector

in the world map (nw) are employed to transfer the distance
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FIGURE 2. Schematic diagram of the loop closure descriptor.

in the world map (dw) to a transformed distance in the
current frame (dt), which can be calculated as

dt = dw − nwtwLc (17)

The distance residual can be expressed as

d(twLc, dw) = dt − dc = dw − dc − nwtwLc ∈ R (18)

This distance residual only affects the position in the z-axis
during optimization.
2) jacobian-calculation:
The residual of the ground constraint is denoted as

D(TwLc,�w) =
[
r(RwLc,nw)
d(twLc, dw)

]
∈ R

3×1 (19)

Derivative of residuals for each components are

J2×3
RwLc

= ∂r(RwLc,nw)
∂RwLc

= Btnt̂ (20)

J1×3
twLc = ∂d(twLc, dw)

∂twLc
= −nw (21)

J3×3
�w

= ∂D(TwLc,�w)

∂�w
=

[
BtRwLcTBwT 0
twLcTBwT 1

]
(22)

where J2×3
RwLc

, J1×3
twLc , J

3×3
�w

are the derivatives of the residual
to the rotation component, translation component, and world
map ground point, respectively, and the upper right corner
of the symbol indicates the dimension of the matrix.

2) LOOP CONSTRAINT FACTOR

Loop closure constraints are one of the most impor-
tant constraints to eliminate cumulative errors in factor
graph optimization. SC++ descriptor proposed by Giseop
Kim [34] is used for environment re-identification, as
shown in Fig. 2. Compared to the Scan Context [35]
descriptor proposed in 2018, it not only increases lateral
offset invariance, but also proposes two different forms of
Polar Context (PC) descriptor relative to polar coordinates
and Cart Context (CC) descriptor relative to Cartesian
coordinates. The PC descriptor is selected for loop detection
and constraint construction.

FIGURE 3. LiDAR-inertial back end factor graph model.

3) FACTOR GRAPH MODEL

The factor graph model of the LiDAR and IMU tightly
coupled framework in this chapter is shown in Fig. 3,
including IMU pre-integration factors, LiDAR odometry
factors, loop detection factors, and ground constraint factors.
Among them, the IMU factor is obtained by pre integrating
the IMU measurement value between two consecutive key
frames, the LiDAR odometry factor is obtained by matching
the current frame point cloud with the world map point cloud,
and the loop detection factor is obtained by establishing a
loop between the current frame and the candidate frame.
The ground constraint factors are obtained by constructing
constraints between the current frame ground points and the
world map ground points. These factors are added to the
factor graph for global optimization to obtain the pose, using
the optimized pose and the point cloud collected by the
LiDAR, a global point cloud map can be obtained. The open-
source library GTSAM is selected for optimization solution.

IV. EXPERIMENT VERIFICATIONS
The proposed localization system is verified in two scenarios.
First, the KITTI data is applied. Second, a real vehicle
experiment in campus is employed.

A. KITTI DATASET VALIDATION
1) COMPARISON OF GROUND SEGMENTATION
ALGORITHMS

The SemanticKITTI [36] dataset is selected as the ground
truth, and the KITTI dataset is applied to run the GPF [37],
LineFit [23], CascadedSeg [24] algorithms and the proposed
ground segmentation algorithm (AdaptionBin) for analy-
sis, of which the first three algorithms have open-source
implementations.
Fig. 4 extracts multiple clips of the four algorithms

running the KITTI dataset. The first line is the ground
point segmentation of the 79th LiDAR key frame of the
10 sequence, the second line is the 439th LiDAR key frame
of the 07 sequence, and the third line is the 226th LiDAR
key frame of the 06 sequence, the fourth line is the 60th
LiDAR key frame of the 01 sequence. Among them, the
green points indicate the correctly segmented ground points,
the blue points indicate that the actual ground points are
determined as non-ground points by the algorithm, which is
missed judgment, and the red points indicate that the actual
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FIGURE 4. Ground segmentation effect display.

non-ground points are determined as ground points by the
algorithm, which is a misjudgment.
It can be observed qualitatively from the Fig. 5 that

compared with the proposed AdationBin algorithm, other
algorithms have more missed judgments, which mainly affect
the recall rate of the ground segmentation algorithm, while
the AdationBin algorithm can better extract as much as
possible multiple ground points.
The precision, recall and F1 scores of the four algorithms

running multiple sequences in the KITTI dataset is quantita-
tively shown in Table 1. The precision, recall and F1 scores
are defined as follows

Precision = NTP
NTP + NFP

(23)

Recall = NTP
NTP + NFN

(24)

F1 = 2NTP
2NTP + NFP + NFN

(25)

Among them, NTP represents the number of points that are
actually ground points and are detected by the algorithm as

ground points, NFP represents the number of points that are
actually non-ground points but are detected by the algorithm
as ground points, and NFN represents the number of points
that are actually ground points but are detected as non-ground
points by the algorithm. Among them, the precision rate can
reflect the false detection rate of the algorithm, the recall
rate can reflect the missed detection rate of the algorithm,
and the F1 score is a combination of these two indicators.
The dataset sequences selected for comparison include

urban roads (U), highways (H), rural roads (C), which
can more fully reflect the advantages and disadvantages
of various algorithms. The part marked in red in the
table indicates that the algorithm performs best under this
indicator, and the part marked in blue indicates that the
algorithm performs second best under this indicator. From
the analysis of the accuracy, it can be seen that the
LineFit algorithm and the proposed AdationBin algorithm
occupy the optimal and suboptimal positions respectively,
and the LineFit algorithm is slightly better. From the
analysis of the recall rate, it can be concluded that the
GPF algorithm and the AdationBin algorithm perform best
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TABLE 1. The indicators of the four algorithms running the KITTI dataset.

TABLE 2. Algorithm time-consuming.

TABLE 3. Absolute trajectory error parameter.

FIGURE 5. KITTI_05 sequence absolute error and trajectory comparison chart.

respectively. According to the comprehensive analysis of the
two indicators according to the F1 score, the AdationBin
algorithm performs best.

2) ANALYSIS OF LOCALIZATION RESULTS

According to the analysis of the real-time performance of
the four algorithms in Table 2, the PCA-based algorithm
runs faster than the RANSAC-based algorithm, and the
plane fitting strategy has a lower calculation load than
the straight line fitting strategy. Among them, although the

LineFit algorithm has higher accuracy than the AdationBin
algorithm, the calculation efficiency is very low, so the
proposed AdationBin algorithm has the best performance in
terms of ground segmentation and calculation efficiency.
According to the trajectory comparison in Fig. 5, Fig. 6, and

Fig. 7, it can be seen that the result of LiDAR and IMU tightly
coupled SLAMalgorithmproposed in this paper is closer to the
true value in different environments. In order to compare the
impact of ground constraints on positioning accuracy, ablation
experiments for whether ground constraints are added to the
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FIGURE 6. KITTI_07 sequence absolute error and trajectory comparison chart.

FIGURE 7. KITTI_09 sequence absolute error and trajectory comparison chart.

TABLE 4. Quantitative analysis under test site conditions (Unit: m).

SLAM algorithm are designed, and the absolute translation
error of the positioning results are calculated. Considering that
the promotion effect of ground constraints on positioning is
mainly reflected in relatively flat road surfaces, the SLAM
algorithmonlyaddsgroundconstraintsonrelativelygentle road
sections, and the experimental results are shown in Fig. 5∼7(a)
and 5∼7(b). According to the curve diagram and box diagram,
it can be seen that adding ground constraints on relatively
gentle road sections can improve the positioning accuracy
of the proposed SLAM algorithm, and the robustness is
better.
The impact of ground constraints on SLAM positioning

accuracy can be quantitatively analyzed according to Table 3.
From the error results of the 05 and 07 sequences, it can be
seen that adding ground constraints significantly improves
the accuracy of urban environment positioning. Additionally,
since the distance between the 05 dataset and the 07 dataset
is greater, it can be analyzed that the longer the running
trajectory, the more accuracy improvement can be achieved
by adding ground constraints, provided that there are more
flat road surfaces. As a rural road, the 09 dataset has
significant elevation changes, and adding ground constraints
has a small impact on accuracy improvement.

FIGURE 8. Data collection platform.

FIGURE 9. Satellite map of the test site.

For the same dataset with and without loop detection,
analyzing whether to add ground constraints has an impact
on positioning accuracy. In the 05 and 07 sequences,
adding ground constraints with loop detection has a smaller
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FIGURE 10. Qualitative analysis of GLI-SLAM and LeGO-LOAM.

(a) (b)

FIGURE 11. Quantitative analysis and statistics of automobile test field.

improvement in accuracy compared to not adding loop
detection. This article analyzes that this is because the
introduction of loop detection can eliminate some of the
errors caused by not adding ground constraints, Thus, adding
ground constraints reduces the improvement in accuracy.

B. CAMPUS DATA VERIFICATION
The data collection platform is built based on LYNK&CO
02, as shown in Fig. 8. The sensors of the smart car platform
mainly include 64-line LiDAR, binocular camera, AHRS,
and RTK, and an automatic driving industrial computer is
used for data storage and processing.
A vehicle test field is selected to verify the real vehicle

data of the localization and mapping algorithm. Two typical
environments are selected. One is the open area of the test

site, with a total length of about 501m, and the other is
the flower bed area of the test site, with a total length of
about 942m. The former has less environmental information,
and the point clouds collected by LiDAR are mostly ground
points. Fig. 9 is a satellite image of the vehicle test site,
where the red line is the trajectory projected from the RTK
output data.
During data collection, the experimental vehicle maintains

a speed of 20km/h, and slows down appropriately during
the turning process. Finally, the collected data (rosbag
package) will be played at the same frequency as when it
was collected, so as to run the proposed algorithm called
GLI-SLAM and the open-source LeGO-LOAM algorithm
respectively, and compare the pose output results. The output
trajectory is shown in Fig. 10.
According to the comparative trajectories of the two

algorithms (a) and (b), it can be seen that GLI-SLAM and
LEGO-LOAM can achieve stable pose output in both open
areas and flower beds, with a small difference from the
ground truth of RTK. From the locally enlarged image, it
can be seen that the trajectory output of the proposed GLI-
SLAM is closer to the ground truth. Analyzing the error
comparison diagram of the xyz coordinate in the flower
bed area (c), it can be concluded that GLI-SLAM has a
significant advantage in reducing the z-axis or elevation error
compared to LeGO-LOAM. It is analyzed that this is the
ground constraint module in factor graph optimization that
plays a role.
The absolute trajectory error (APE) is shown in Table 4.

It is shown that the accuracy of the GLI-SLAM algorithm
and the LeGO-LOAM algorithm under different operating
conditions was quantitatively analyzed. After calculation,
compared to the LeGO-LOAM algorithm, the mean square
error of GLI-SLAM in the open area decreased by about
1.75%, and the mean square error in the flower bed area
decreased by about 2.63%. Compared to open areas, the
accuracy improvement effect of GLI-SLAM in the flower
bed area is more significant. From this, it can be seen that the
more complex the environment and the longer the running
time are, the more significant the error reduction effect of
GLI-SLAM is, and the more it can reflect the advantages of
the algorithm proposed in this article.
Fig 11. shows a visual statistics of Table 4, where garden

represents the garden area and open represents the open
area. Since there is a certain jump in solving the RTK pose,
the maximum error is not considered, and it is regarded as
outlier. By using error statistics (a) and box plots (b), it can
be concluded that GLI-SLAM performs better in open areas.

V. CONCLUSION
A LiDAR-inertial localization system based on ground
constraints is proposed to resolve the inaccurate height
positioning. In order to obtain ground points with higher
verticality, the ground segmentation algorithm Patchwork is
improved and is added to the LiDAR-inertial odometry. It
constructs constraints using the current frame ground points
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and the world map ground points, and adds them to the
factor graph optimization to limit elevation errors. At the
same time, advanced SC++descriptors are used to construct
loop constraints to eliminate cumulative errors. Through the
validation of the KITTI dataset, it can be concluded that the
proposed ground segmentation algorithm has high accuracy,
and through ablation experiments, it is found that ground
constraints can effectively limit the elevation error of the
localization system. Finally, by building an intelligent vehicle
data acquisition platform for real vehicle data validation,
compared with existing algorithms, the proposed localization
algorithm has higher accuracy.
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