
Received 19 April 2023; revised 9 June 2023; accepted 11 December 2023. Date of publication 18 January 2024; date of current version 26 January 2024.

Digital Object Identifier 10.1109/OJITS.2023.3347484

Fault Prediction and Recovery Using Machine
Learning Techniques and the HTM Algorithm

in Vehicular Network Environment
SALAH ZIDI 1,2,3, BECHIR ALAYA1,2,3,4, TAREK MOULAHI 5,6,

AMAL AL-SHARGABI 5, AND SALIM EL KHEDIRI 5,7

1Electrical Department, Gabes University, Gabes 6029, Tunisia

2Higher Institute of Industrial Systems, Gabes University, Gabes 6029, Tunisia

3Hatem Bettaher Laboratory, Gabes University, Gabes 6029, Tunisia

4Department of Management Information Systems and Production Management, College of Business and Economics,
Qassim University, Buraidah 52571, Saudi Arabia

5Department of Information Technology, College of Computer, Qassim University, Buraydah 52571, Saudi Arabia

6FSTSBZ, Kairouan University, Kairouan 3100, Tunisia

7Department of Computer Science Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia

CORRESPONDING AUTHOR: S. EL KHEDIRI (e-mail: salim.el.khediri@gmail.com)

ABSTRACT The amount of data available to vehicles has become very large in the vehicular networks’
environment. Failures that mislead real-time data from vehicle sensors and other devices have become
massive, and the need for automated techniques that can analyze data to detect malicious sources has
become paramount. The application of machine learning techniques in the environment of vehicular ad
hoc networks (VANET) is very promising and is beginning to show results in terms of applications
designed and articles published. These techniques are increasingly accessible and used intensively, as
many researchers are working to detect anomalous data. However, there is no universal, effective technique
so far that can detect all abnormal data and then recover it. This work is an effort in that direction. We
propose a smart model that uses multiple machine-learning classification methods. Our contribution also
relates to a study of the attributes of interest for the algorithm used during the detection phase, namely
the hierarchical temporal memory algorithm (HTM). The packets exchanged by the vehicle are grouped
in instant description windows. These windows are then analyzed to extract a set of attributes. These
are linked to the properties of network traffic such as flow or latency. They are subject to the process
of detecting anomalies and intrusions carried out thanks to the algorithm with HTM. We propose the
performance of fault detection and recovery at the level of the fog layer. The obtained simulation results
demonstrate the efficiency of the learning methods and HTM for the detection of defects and errors in
the IoV.

INDEX TERMS Vehicular network, fault prediction, fault recovery, Internet of Vehicles (IoV), machine
learning, hierarchical temporal memory (HTM), classification.

I. INTRODUCTION

LET’S assume a scenario where, you are sending
information through the vehicular ad hoc networks

(VANET), but you are not getting a satisfactory response

The review of this article was arranged by Associate Editor Anand Paul.

even within the best results. These are called data faults or
communication failures.
VANETs are becoming an important source of preventing

vehicle accidents by improving road safety, traffic control,
and passenger comfort [2], [3]. The reason is that people
are using smart vehicles more frequently than before.

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

132 VOLUME 5, 2024

HTTPS://ORCID.ORG/0000-0002-4330-6072
HTTPS://ORCID.ORG/0000-0002-5173-3656
HTTPS://ORCID.ORG/0000-0002-7312-9003
HTTPS://ORCID.ORG/0000-0002-9765-1605

FIGURE 1. IoV involve five types of communications, Vehicle to Vehicle, Vehicle to
Sensors, Vehicle-to-Roadside, Vehicle to Personal devices, and Vehicle to cellular
networks infrastructure.

Nevertheless, there are still several challenges in VANETs
such as unreliable Internet service, limited processing capac-
ity, incompatibility with personal devices, lack of cloud
computing services, etc.
Internet of Things (IoT) is a technology of connects the

physical and digital worlds. IoT has enabled communications
to be more informative, the processing to be faster, and
devices smarter [10]. This emerging technology has led to
anytime, anywhere, anyway, anything communication. In
intelligent transport systems (ITS), one of the most active
research fields is the Internet of Vehicles (IoV) which
apply IoT in VANETs [11]. IoV involve five types of
communications (see Fig. 6) [11]: (1) Vehicle to Vehicle,
(2) Vehicle to Sensors, (3) Vehicle to Roadside Units,
(4) Vehicle to Personal devices, and (5) Vehicle to cellular
networks infrastructure.
Failures may occur at any type of communication men-

tioned above. The failures that may threaten the IoV can
be arranged into two classes [5]: vehicle-based failures and
infrastructure-based failures. The vehicle-based failures can
be hardware, software, mechanical, communication system,
or failure related to interaction platform failure, e.g., the
system is not able to detect command. Infrastructure-based
failures involve failures related to other road users, failure
due to weather impact, failures due to construction zones,
failures due road conditions like failures related to traffic
signals and signs.
As the Internet of Vehicles (IoV) is mainly based on

Wireless Sensor Networks (WSNs), sensors are usually
installed in an unattended and unfriendly environment, which
in turn may lead to severe faults. To avoid such risky
situations, this study proposes a joint method for fault
detection and recovery with the help of machine learning
approach. In particular, we propose four classification meth-
ods for detection namely, and a recovery method based on

an aggregation approach executed at fog level. To the best
of our knowledge, in our work this is the first study that
combines both detection and recovery in a single study in
the filed of IoV.
Leaving from the hypothesis that modern vehicles are

equipped with a set of sensors and actuators connected by
an internal network. The information that this equipment
generates is processed by electronic control units (ECU)
in order to allow vehicles to make complex decisions
such as detecting and avoiding obstacles. Consequently,
the information is collected mainly by the vehicles which
regularly share the interpretation of its environment as well
as its state with a distant interlocutor.
Data verification is one of the essential aspects of

transportation systems in general and IoV in specific, which
should be primarily focused on. As IoV relies on real-
time information, data needs to be verified and error-free.
Faults and errors in data can cause disastrous scenarios.
In IoV networks, it is very possible that malicious nodes
can exist and change the information sent by the sender.
Thus, frequent data verification is highly required to prevent
data alteration or false information [11]. This research
focuses on data integrity/data trust security requirement by
improving the verification of data generated and transmitted
in IoV. The data verification is accomplished detecting
several types of faults and in early stages. There is a need
to propose an alternative approach to create a more reliable
IoV environment.
The use of machine learning methods tends to be an

attractive approach to detect errors in data generated in
IoV. These learning methods enables automated learning,
recognition of complex models, and intelligent decision
making. There various types of machine learning methods,
however, classification looks the most appropriate and
efficient method for fault and errors detection [12]. It is
used for decision-making assistance and data categorization.
Moreover, this study is motivated by the lack of studies
that combine both fault detection and recovery in a single
study. Besides, the existing studies do not consider the IoV
computation layers, i.e., edge, fog, and cloud and thus we
propose that the performance of detection and recovery of
faults at the fog layer.
In this paper, the main contributions are (i) proposal

of a smart model that uses four classification methods to
detect faults in IoV, (ii) the suggestion of an aggregation-
based method for correcting the IoV fault. and finally
(iii) performing fault detection and recovery at the fog
computing layer which enables early fault discovery and
correction.
The rest of the paper is organized as follow. Section II

outlines a literature review. In Section III, the theoretical base
of the model is given. The proposed model of fault detection
and recovery in IoV is given in Section IV. Section V
presents and discusses the experimental study. Finally, the
conclusion is given in Section VI.

VOLUME 5, 2024 133

ZIDI et al.: FAULT PREDICTION AND RECOVERY

II. RELATED WORK
To fight against DOS attacks in a vehicular network, several
solutions and algorithms have been proposed and studied in
the literature. These solutions present ideas for detecting and
stopping these attacks.
In [40], the authors proposed the RRDA algorithm

(Request Response Detection Algorithm) to detect the DOS
attack (Denial of Service) in the VANET network. The
authors assume that all nodes are equipped with an ORT
(Onboard Radio Transponder) which decides and defines the
vehicles which can form a network according to their trans-
mission range. This is considered a threshold. Vehicles can
make a request to the RSRT (Road Side Radio Transducer)
to join the network created using the APDA (Attack Packet
Detection Algorithm) mechanism. The RSU uses its own
database of requests and responses and provides services
only to those ORTs that are already verified, reducing the
DOS attack. In the study [41], the authors proposed the
APDA algorithm (Attacked Packet Detection Algorithm) to
detect the DOS attack. This algorithm minimizes processing
delay and improves security in the VANET network. Each
vehicle has an OBU and a Tamper Proof Device. These
devices store detailed vehicle information (speed, position,
etc.).
Herrera et al. [42] proposed the RBS protocol model

(Reference Broadcast Synchronization) for the prevention of
DOS attacks in the VANET network. This model is based
on the “Master Chock Filter” concept for filtering packets
while traffic is heavy or during other attacks. RBS protocol
has shown that packet delivery rate, throughput, timing are
improved compared to IP-trackback protocol.
The authors of [43] discuss several cryptographic solu-

tions for several possible attacks on the VANET network,
including two solutions for “Jamming” and DOS attacks on
network availability. For the first solution studied in [44],
the authors propose to change the transmission channel and
to use the FHSS technique (Frequency Hopping Spread
Spectrum) which involves cryptographic algorithms to gen-
erate pseudo-random numbers for the hopping algorithm
(FHSS). The second solution is the same solution proposed
in the study of [45]. The proposal is to use “Signature based
authentication mechanisms” a mechanism to reduce the effect
of the DOS attack.
In the study [46], the authors propose an innovative

probabilistic model based on logistic regression. This method
makes it possible to estimate the appearance of an attack.
The method is based on a database that estimates attack
occurrences. When the regression model is validated, it
is used to estimate the probability of an attack. If this
probability exceeds the threshold defined in advance, the
attack is therefore confirmed.
Muhammed and Shaikh [9] proposed a classification

taxonomy of fault detection techniques in WSNs, which
contains three main categories: centralized, distributed, or
hybrid. In the centralized approaches, there is a single
primary node that analyzes the data coming from the

remaining nodes. The distributed approaches rely on local
analysis in which the analysis is dispersed on all the nodes
in the network. The hybrid approaches combine the aspects
of centralized and distributed techniques. In the context of
this research, the algorithms used in centralized, distributed,
and hybrid approaches techniques can be further identified
to be either statistical-based or machine learning-based.
Traditionally, statistical methods such as Probabilistic-

based [14] and Threshold-based and account-based [15]
are used to detect faults types in WSNs. However, such
methods have some disadvantages, such as the uncertainty
in the selection of the threshold values and how often the
detection procedure should be repeated [15]. Thus, machine
learning methods are promising in detecting the faults that
may exist in WSNs. An overview of the studies performed
for diagnosing faults detection based on the statistical and
machine learning methods are presented with an emphasis
on the latter.

A. STATISTICAL BASED FAULT DETECTION
TECHNIQUES
Panda et al. [16] proposed a wireless sensor network
algorithm for detecting faults based on the z-value method.
In this study, the researchers considered offset and only
gain faults. Using false alarm rates and detection accuracy
performance measures, their simulation results outperformed
the conventional statistical algorithms.
Panda et al. [17] suggested an autoregressive model

to diagnose faults. To validate the proposed model, an
experiment was conducted on various sensor data that
were generated under different conditions. The experimental
results showed that the autoregressive model could success-
fully distinguish between the WSNs normal data and faulty
data.
Hornik et al. [18] proposed a statistical algorithm for the

detection of soft as well as hard faults. This algorithm is
called the modified three-sigma edit test. The experimental
results of this study showed the proposed algorithm outper-
formed the traditional methods in detection accuracy, as well
as for false alarm rate and false-positive rate.
Panda and Khilar [19] suggested a new distributed

detection scheme for sensor networks. The proposed solution
was based on a method known as the error function. The
proposed approach used majority voting, in which the sensor
node takes a decision based on a comparison between its
own sensing data from neighbors’ data. The use of error
function helped to increase the detection accuracy of faults.
Yuan et al. [21] proposed a novel algorithm called

Distributed Bayesian Algorithm (DBA) for faulty nodes
detection. The algorithm consists of 3 steps. Step one is
to calculate the probability of the faults by exchanging
readings between the sensor and neighbor nodes. In the
second step, the probability calculated in the first step is
validated and modified if it was not correct. In the third step,
a warning message is sent to the base station if the sensor
node’s fault probability exceeds the threshold’s probability.

134 VOLUME 5, 2024

The proposed algorithm was compared with the existing
approach using an experiment, and the results showed that
the algorithm outperformed them, especially with a big
number of neighbors, and with a high rate of faults.

B. MACHINE LEARNING-BASED FAULT DETECTION
TECHNIQUES
The use of ML is an attractive approach for fault detection in
WSNs. Many researchers have proposed different machine
learning methods for fault detection in WSNs. Among the
common machine learning methods used are Hidden Markov
Model (HMM) [22], Support Vector Machines [23], [29],
Neural Networks and Deep Learning [16], [24], Naïve
Bayes [25], [26], K-Nearest Neighbors [27].
Warriach and Tei [22] applied the HMM, which is a

supervised learning algorithm for fault diagnosis in WSN.
The considered offset, gain, and stuck-at faults, and they
compared HMMs of faulty and non-faulty environments. The
model was evaluated using real-world data to was able to
detect offset, gain, stuck-at faults with accuracies of 93.47,
94.02, 94.03, respectively.
Karmarkar et al. [23] proposed a support vector machine

model to detect faults The model was tested to be able to
effectively increase positive fault rate, fault alarm rate, and
fault detection accuracy. The SVM features were optimized
by Grey Wolf optimizer, and the model was compared with
existing approaches of fault detection. Also, in a previous
work of ours [29], we proposed an SVM-based model to
detect faults in a dataset that was prepared by us to contain
several types of faults. Our experiment results showed that
the model is useful in predicting faults in the prepared
dataset.
Swain and Khilar [24] have proposed a fault detection

algorithm to distinguish various kinds of faults. Examples
include hard and soft permanent, intermittent, and tran-
sient. More recently, based on deep learning methods,
Panda et al. [16] proposed a model to diagnose the intermit-
tent faults in wireless sensor network. The performance of
the diagnosis method was measured by false-positive rate,
detection accuracy, and false alarm rate. The proposed model
of their study achieved 100% detection accuracy when 30
numbers of data from the sensor used and the intermittent
fault probability are more than 0.25.
Lau et al. [25] proposed a new algorithm, namely,

Centralized Naıve Bayes Detector (CNBD), the is based
on the Naıve Bayes method to detect hardware faults.
In the proposed algorithm, a new attribute, which is the
transmission time of the arrived packet at the sink is analyzed
using the Naıve Bayes method. Also, Warriach and Tei [22],
in their study, classified the sensed data into normal or
outlier. The classification is based on the thermos of
Bayes [28]. The proposed method operates in two levels:
sensor node and cluster-head levels and the Naıve Bayes
classifier is used at the first level. The model performance
was tested on a real and a synthetic dataset and achieve an
accuracy performance of 0.88.

Yadav and Ahamad [27] proposed an approach for outlier
detection using the KNN prediction model. The algorithm
was tested on a real-time dataset generated by volunteers
from the Intel Berkeley lab. The model achieved a detection
accuracy f 0:86. Talking a closer look at the studies
mentioned above, it can be observed that most of the
works have applied a limited number of machine learning
algorithms, mostly one or two, to detect faults. In contrast,
this study proposes the use of multiple machine learning
methods, i.e., five methods, to detect different types of faults
and also recover data in the WSNs.

III. PROPOSED FAULT DETECTION AND RECOVERY
MODEL
The main idea of the proposed model is to apply machine
learning classification methods and the hierarchical tem-
poral memory (HTM) algorithm initially presented in “On
Intelligence” by Hawkins and Blakeslee [47], to detect sev-
eral types of defaults. HTM has already demonstrated good
capacities for learning sequences [48], but also for detect-
ing faults in temporal or sequential data [49], [50], [51].
Classification should be implemented at the fog layer of
IoV. Therefore, in the following subsections, we discuss the
different types of errors detected, the classification methods
used, the HTM algorithm and those many properties that
make it suitable for its use in our context of fault detection
in vehicular networks, and finally a brief description of the
IoV layers with emphasis on the fog layer.

A. TYPES OF FAULTS DETECTED IN THE PROPOSED
MODEL
As mentioned earlier in the introduction section, failures
that may threaten the IoV can be categorized into two
groups: failures related to vehicles and failures related to
infrastructure [5]. These two groups of failures can appear
due to the collected data faults or due to the hardware
faults in the IoV network. In this study, we focus on data-
related faults. In general, collected data from IoV network
can be represented as a triplet d(n, t, f (t)); Where f (t) is
the collected data by the node n throughout t. f (t) can be
represented as the following equation:

α + βx+ η (1)

where α represents the offset, β is the gain, x is the gathered
data by the node n throughout t, and η is the noise that
exists in the collected data [5]. In this study, we consider
five types of data-related faults. These types are explained
below.

1) DATA LOSS FAULT

This type of fault refers to the missing values of gathered
data by a specific node during certain periods or series.
That is, collected data hold null values. Data loss fault is
represented by the following equation:

f (t) = φ, t > τ (2)

VOLUME 5, 2024 135

ZIDI et al.: FAULT PREDICTION AND RECOVERY

τ is representing the most required extreme time to sense
information, and φ is representing a null set.

2) STUCK-AT FAULT

In this type, the variation of the collected data within a period
of time is equal to zero. Stuck-at fault can be represented
as follows:

x′ = α (3)

α is representing the data sensed by the node n at the
time t.

3) SPIKE FAULT

In this type, the change rate of actual time series and
anticipated time arrangement exceeding the normal changing
pattern. Spike fault can be represented as shown below:

|f (t) − f p(t)|
t

> λ (4)

f (t) is representing the actual data, f p(t) is the anticipated
time arrangement at a time t, while λ indicates the actual
changing trend in the gathered information.

4) OUT OF BOUNDS

In this type, the gathered data are beyond the expected
data range. Let’s assume that the expected data range is the
interval [θ1, θ2], a fault is out of bounds when the collected
data x′ ∈ f (t) such that:

x′ < θ1 or x
′ > θ2 (5)

5) GAIN FAULT

In this type, the actual reading of the data may be increased
by a particular value. This may happen when rate of data
change is larger than the familiar reading. Gain fault can be
defined by:

x′ = βx+ η (6)

where β represents the gain value to be multiplied with the
actual reading x.

6) OFFSET FAULT

In this type, the actual reading of the data may be displaced
by a certain value, i.e., offset. This may happen due to a
wrong calibration in the sensor device. This type of fault
can be represented by the following equation:

x′ = α + x+ η (7)

α indicates the offset rate added to the actual measurement x.

B. MACHINE LEARNING CLASSIFICATION METHODS
AND HIERARCHICAL TEMPORAL MEMORY ALGORITHM
USED IN THE PROPOSED MODEL
The model suggests the use of machine learning classi-
fication methods for detecting faults. In the context of
this research, the classification methods are used to predict
whether received data from the IoV sensors are normal
or faulty. Four classifiers are applied and compared in
terms of performance: multilayer perceptron, support vector
machines, decision trees, and random forest. The fault
detection process that we have designed is based on the use
of an unsupervised detection algorithm. Therefore, the choice
of the algorithm was motivated by the following aspects:
the impact on the performance, the load and the nature of
the traffic in real-time, and the diversity in the temporal
properties of the faults that we wish to detect, the autonomy
in learning the algorithm. Various methods are commonly
used for autonomous fault detection in the VANET envi-
ronment [52], [53], [54]. However, these methods all have
one thing in common: when the unsupervised learning phase
of the algorithm ends, it is no longer able to learn new
things. Therefore, if the traffic were to change, the detection
would be less and less reliable and the algorithm would have
to be re-initialized in order to adapt to the new traffic. To
our knowledge, the only unsupervised algorithm capable of
continuously learning and adapting to the evolution of traffic
is the hierarchical temporal memory (HTM) algorithm.

1) PROPERTIES OF HIERARCHICAL TEMPORAL
MEMORY (HTM) ALGORITHM

The unique context of vehicular networks leads us to
consider the use of a detection method by the nature of
the traffic and the entire spectrum of anomalies that the
system must face. This method must respond to the various
constraints that weigh on the execution of such a system
inside a vehicle. Vehicular networks are unique in that they
operate services of two kinds. First, those related to the
use of the vehicle in the context of intelligent transport
systems (ITS) require that the vehicle regularly shares the
interpretation of its environment as well as its state with a
remote interlocutor. Indeed, modern vehicles are equipped
with a set of sensors and actuators connected by an internal
network. The information that this equipment generates is
processed by electronic control units (ECU) to allow vehicles
to make complex decisions such as detecting and avoiding
obstacles. By sharing this knowledge with a centralization
server, other vehicles can be warned of any dangers and
adapt their driving. Similarly, monitoring the wear and tear
of the equipment or the energy consumption of a fleet of
vehicles is thus made possible by these telemetry services.
The HTM algorithm has many properties making it suitable
for use in the context of anomaly detection in vehicular
networks.

1) Noise resistance: In the context of anomaly detection,
noise can be thought of as small variations in attributes of
communications in the VANET environment. For example,

136 VOLUME 5, 2024

FIGURE 2. HTM Operation.

small variations in throughput do not necessarily mean that
an attack is in progress or that a fault has occurred. The same
is true for the loss of a few packets. All of this can simply
be the consequence of benign events due to packet delay on
the VANET network, network congestion, or the quality of
the vehicle’s cellular signal. It is therefore necessary for a
good fault detector not to generate false positives because
of these events. which, from a security point of view, do not
have a significant impact. HTM learning is resistant due to
the structure and organization of the neurons used by the
algorithm.

2) Continuous learning: Unlike other methods like
HMM [22] or LSTM [57], HTM continuously modifies the
structure of the neural network by constantly manipulating
the links between each neuron. These are reinforced or
reduced according to the predictions made by the algorithm.
This plasticity therefore also makes it capable of forgetting
links if they are not often called upon. However, when it is
considered that the traffic of the vehicle is subject to any
change, this property is essential for the proper functioning
of an anomaly detector.

3) Context sensitive predictions: The structure of neurons
in HTM provides a memory to the algorithm that allows it to
base its predictions on the current event as well as events it
may have encountered in the past. The same entry can thus
produce different results depending on the past context and
the algorithm is theoretically able to recognize infrequent
traffic without categorizing it as abnormal.

4) Each prediction detects faults: Each prediction made by
the HTM algorithm indicates whether the current event
was expected or not, which is crucial for fault detection.
The algorithm may not be able to accurately predict the
next event, but the memory modeling of the algorithm

makes it able to predict multiple possible events at the next
instant. Therefore, if he detects that an event is in no way
what he expected, then it is abnormal. Moreover, unlike
classical artificial neural network models, HTM does not
need large amounts of data to obtain good classification
results [55], [56].

2) OPERATION AND OVERVIEW OF HTM APPLIED TO
OUR MODEL

HTM is a set of structures and algorithms, based on the
following components (Fig. 2):

• The encoder of the data presented as input to the
algorithm.

• A neural network composed of a set of mini-columns
in which several pyramidal neurons reside.

• The spatial representation (or Spatial Pooler) and
temporal memory algorithm, which manipulates the
links between the neurons of the network according to
the inputs of the algorithm.

• A classifier responsible for judging whether an input is
abnormal or not.

The operation of the algorithm can be summarized as
follows:

1) At time (t), the encoder converts the inputs presented
to the algorithm into fixed-size binary vectors, also
called Sparse Distributed Representations (SDRs).

2) The spatial representation algorithm, triggers from the
SDR of the input, the activation of a small quantity of
mini-columns of the neural network. The set of mini-
columns of the network is represented in the form of
another SDR, where the active bits represent the active
mini-columns at time (t).

VOLUME 5, 2024 137

ZIDI et al.: FAULT PREDICTION AND RECOVERY

FIGURE 3. Structure of the neuron commonly used in neural networks.

3) The temporal memory algorithm, learns the sequences
of mini-column activation and makes predictions about
the future state of the network. It therefore produces
an SDR representing the mini-columns whose activity
at time (t) has been predicted at time (t-1).

4) These predictions are then presented to the classifier.
In our case, we use a function that calculates the faults
score of an input by comparing the SDR produced
by the spatial representation at time (t) and the SDR
predicted at time (t-1) by l temporal memory algorithm.

The spatial representation and temporal memory are
therefore two algorithmic concepts that together govern the
learning process of HTM by manipulating the links of the
neurons of the network according to the SDRs presented by
the encoder at the input of the network.

3) HTM LEARNING AND THE STRUCTURE OF THE
NEURONS USED

Before detailing the key points of the functioning of HTM
learning, we must first present the neuron model used by the
HTM algorithm, because they differ from more widespread
neural networks in particular by their pyramidal structure.
Classical neural networks are composed of neurons whose
output state (active or inactive) depends on: the weighted sum
of the attributes presented as input, an activation function
and the threshold from which the neuron is considered to
be active or inactive (Fig. 3). The neurons used in HTM
have two types of connections: proximal and distal (Fig. 4)
and 3 possible output states: active by proximal connection,
active by distal connection or inactive. These output states
are directly related to the HTM network structure and the
spatial representation and temporal memory algorithms. The
advantage of the proximal connection is that each mini-
column containing several neurons allows the algorithm
to produce different predictions for the same input. More
precisely, for mini-columns of x neurons and w mini-columns
active per iteration, there are x w different ways to describe
the same input in different contexts [5]. Similarly, the interest
of the distal connection is that it serves as a predictive
mechanism, where each time a neuron is activated by a
proximal segment it has a chance to activate other neurons

FIGURE 4. Pyramidal structure of neurons used by HTM.

via the distal segments to which it is connected. If a neuron in
a predictive state is then activated by a proximal segment at
the next iteration, i.e., by an input presented to the network,
it means that the prediction was good and that the distal
connections must be reinforced. The reinforcement of these
links will result in training the neurons of a mini-column to
recognize a certain number of patterns and allow them to
predict those that are supposed to appear in the following
iterations.

4) EXAMPLE ON THE PREDICTIVE STATE AND
LEARNING FOR FAULT DETECTION

In order to clarify the notion of predictive state and learning
we describe a simplified example in the context of anomaly
detection. To do this, we study the activation of the neurons
of a simplified network as described by Fig. 3. In our
example, the neural network is made up of 16 mini-columns
of 4 neurons each. At the initialization of the algorithm,
each flag presented for the first time to the network triggers
the firing of each neuron of the mini-columns that have
been activated by the different flags, which is illustrated by
the first line of the figure. Now suppose that we submit
a sufficient number of times this same sequence to the
algorithm. The distal links between the neurons of a mini-
column activated by a flag will be reinforced until, on seeing
a flag, the neurons are able to predict the next flag. This
behavior is illustrated by the second line. For example, when
the SYN flag is received, then 3 mini-columns are activated
(in blue) and 3 neurons switch to a predictive state (in
orange). We then notice that when the next flag is received
(SYN/ACK), the same neurons that were in the predictive
state become active at this iteration while three others
predict that the next flag will be ACK. The algorithm was
therefore able to learn the SYN, SYN/ACK, ACK, PSH/ACK
sequence which corresponds to the establishment of the TCP
handshake and then the transmission of a data packet. If now
we are interested in the third line of the figure where we
submit another sequence to this same network, we notice
that the prediction of the last flag (FIN/ACK) is erroneous.
Indeed, the predicted flag was ACK and the neurons that
were in predictive state (in red) are not those active when

138 VOLUME 5, 2024

FIGURE 5. Illustration of HTM neuron learning and prediction process.

FIN/ACK is processed by the algorithm. Thus, the SYN,
SYN/ACK, ACK, FIN/ACK sequence would be considered
abnormal by the algorithm. However, if the sequence were to
be presented a sufficient number of times to the algorithm,
it would be able to get used to this new sequence. This
behavior is illustrated by the last line where when the ACK is
received, 2 predictions are then possible either the PSH/ACK
of sequence 1, or the FIN/ACK of sequence 2. And when the
FIN/ACK is finally received we finds that the neurons assets
match the second prediction (in yellow). Consequently, the
algorithm is then able to adapt continuously to the evolution
of the traffic, thus limiting the probabilities that the algorithm
becomes inefficient. This learning property is crucial because
it allows the recognition of different sequences in the data
observed by the algorithm, which makes it robust to changes
in network behavior while being able to detect faults when
they appear.

C. MODEL ARCHITECTURE
In our model architecture, three layers can be identified:
Edge layer, Fog Layer, and Cloud Layer.

• Edge layer (Things layer): The edge layer is where data
is generated or gathered from the physical world. This
layer involves the connected terminal devices, working
to provide the system with gathered data. Each vehicle
in this layer is having a communication model allowing
the node to transmit the gathered or generated data to
the upper layer (fog layer).

• Fog layer: involving, in each location, numerous
decentralized nodes. This layer examines the primary
measurement, refinement and processing of Edge-
generated data. The main aim of fog nodes is to enhance
the efficiency of IoT services; thus, the fog can decrease
the amount of transmitted data to the upper layer (cloud
layer) in addition to reduce response time for IoV

FIGURE 6. The model architecture contains three levels: The edge layer (Vehicles
layer): is where data is generated or gathered. The fog involves numerous
decentralized local server where that fault is detected and next recovered. The cloud
layer of the IoV architecture enables network access to shared resources, and
performs the “heavy services” of data processing.

services. In our context, this layer is used to discover
and recover faulty measurements.

• Cloud layer: Cloud is the top layer of the IoV
architecture, which enables network access to shared
resources over the IoV network. Thus, Cloud performs
the “heavy services” i.e., data saving and processing that
fog is not able to perform, such as big data processing.

VOLUME 5, 2024 139

ZIDI et al.: FAULT PREDICTION AND RECOVERY

TABLE 1. Features of the prepared dataset.

The model proposed in this article suggests that the fault
detection is to be applied at the fog layer rather than the
cloud layer. By doing so, the Quality of Service is enhanced
as latency is reduced, and network bandwidth is improved.

IV. EXPERIMENTAL STUDY
In this section, the details of the experiment are described,
which is performed in four phases. During phase1, dataset is
selected, in phase2, the faults are injected. Phase 3 consists
in detecting faults using ML. Finally, in phase 4, the fault
recovery process is done at fog level.

A. DATASET SELECTION
The used data set is linked to a temperature measurement
collected by taxi in Rome during February, 2014 [32]. The
vector of data contains: the time stamp, the vehicle Id, the
vehicle GPS location, and the weather temperature. This
dataset has been used earlier in different research areas such
as crowdsensing [33], data processing [34], and resource
allocation [35]. However, and to the best of our knowledge,
this study is the first study that makes use of this dataset in
the context of fault detection research.

B. DATASET MODIFICATION
As mentioned earlier, there are four attributes in the original
dataset which are the vehicle Id, the time stamp, the GPS
location, and the measured temperature. Two modifications
have been applied to the original dataset. First, the dataset
was injected with the six types of faults that we aim to
detect. These include the following:

1) Data loss fault
2) Stuck-at fault
3) Spike fault
4) Out of bounds
5) Gain fault
6) Offset fault

The second modification that was applied to the original
dataset was the addition of a set of temperature data with
were gathered by the neighbors of each vehicles based on
geographic distance. This will help later in the recovery
process. The new dataset is described in Table 1. The dataset
contains 4114 vectors, in the experiment 70% are used for

FIGURE 7. Data distribution in the dataset

training and the rest for testing. In Figure 7 we show the
distribution of our outcomes.
The geographic distance is explained in the following

subsection.

C. GEOGRAPHIC DISTANCE
If ϕ is the latitude, λ is the longitude and R is the earth mean
radius (6371km), the geographic distance [30] between two
vehicle, v1 and v2 with respectively the coordinates (ϕ1, λ1)

and (ϕ2, λ2) can be calculated as follow:

a = hav(
ϕ) + cos(ϕ1) · cos(ϕ2) · hav(
λ) (8)

The haversine function is:

hav(θ) = sin2
(

θ

2

)
(9)

Finally, the distance is:

dist(v1, v2) = 2 · R · arctan
(√

a,
√

1 − a
)
. (10)

D. CLASSIFICATION METHODS’ CONFIGURATIONS AND
EVALUATION
This section presents the parameters’ configurations the were
used to train the four used methods. It also shows the
evaluation metrics used.

1) PARAMETERS’ CONFIGURATIONS

The training dataset was splitted into two parts, one for
training and the second for testing. The four models were
trained on the training dataset and then tested to measure
their performance.

2) EVALUATION METRICS

The list of evaluation metrics used in this paper, are defined
below. These well-known metrics are usually used to evaluate
the results of classification techniques.

140 VOLUME 5, 2024

The precision metric is defined as follow by the equa-
tion (11):

precision = TP

TP+ FP
(11)

The recall is defined as follow by the equation (12):

recall = TP

TP+ FN
(12)

The f1-score is a metric which combine the precision and
the recall as follow by the equation (13):

f1-score = 2 × precision× recall

precision+ recall
(13)

Finally, equation (14) define the accuracy which is
the most important metric to evaluate the outcome of
a classification:

accuracy = TP+ TN

TP+ FP+ FN + TN
(14)

where:

• TP: True positive: True fault which is detected correctly,
• TN: True negative: True fault which is not detected,
• FP: False positive: Correct value which is considered
as fault,

• FN: False negative: Correct value which is not consid-
ered as fault.

E. RECOVERY METHOD
The recovery of the correct measurement is based on mean
value and the standard deviation [31]. Let V the set of
vehicles and k the number of neighbors of the vehicle v with
faulty temperature in a period of time τ , within a geographic
distance that does not exceed δ, so this set of neighbors
vehicle can be represented by the equation (15):

Nτ
1 (v) = {vi ∈ V, dist(v, vi) � δ and |t − ti| � τ } (15)

The average of all measured temperature can be calculated
according to the following by the equation (16):

t =
∑k

i=1 ti(vi)

k
(16)

A standard deviation σt is calculated by the equation (17):

σt = 1

k

√√√√ k∑
i=1

(
ti − t

)2 (17)

All measured temperature exceeding σt will be removed,
i.e., if |ti − t| > σt. The number of the non-retrieved tem-
perature is kcor (with kcor ≤ k), The recovered temperature
will be calculated as follow (18):

tcor =
∑kcor

i=1 ti(vi)

k
(18)

In the experiment we choose the three closed neighbors
in the zone of 1km within the minimum time. Then we
use the three collected temperature in the recovery process

TABLE 2. Fault detection results using RF.

TABLE 3. Fault detection results using DT.

as explained previously. To measure the recovery rate the
following equation is used (19):

difference percentage = |Realvalue − Recovvalue|
Realvalue

. (19)

V. RESULTS
In this section, the results of fault detection as well as
recovery are presented. In this section, the result of fault
detection based on the four classifier are outlined and
discussed. Then, the recovery results are shown.

A. FAULT DETECTION RESULTS
SVM, DT, RF and NN are runned using python on the
dataset. Table 2 shows the results of using RF classifier. If we
analyse by type of fault, we can see out of bounds fault and
data loss fault are detected with good precision. However,
other type like spike faults are not detected because of that
values are very close to normal. The overall results will be
compared next with other classifiers.
In Table 3, results of using DT are given. Best results are

always with out of bounds fault with a precision of more
than 96%. Spike and stuck fault are detected with a precision
better than RF classifier but still not enough.

VOLUME 5, 2024 141

ZIDI et al.: FAULT PREDICTION AND RECOVERY

TABLE 4. Fault detection results using SVM.

TABLE 5. Fault detection results using NN.

SVM results are presented in Table 4. By type of faults,
SVM classifier gives the worst results. Since SVM can’t
detect most of faults. The only detected fault is out of bounds
with acceptable values.
In Table 5, results of using NN are shown. We can see

the NN performs well in detecting faults like gain fault.
However, still problems with spike and stuck fault due to
fact that these faults are close to normal values.
To make an overall comparison of the four classifier

results, Fig. 8 shows the performance of RF, DT, SVM,
and NN in terms of precision, accuracy and recall. Previous
figures show that DT outperforms other methods based on
fault type comparison. Since DT detects all type of faults
even with low success. However, the overall comparison
shows that NN outperforms other with an accuracy more
than 95%, that of RF is 93.93%, 88.83% for DT and only
86.56% for SVM.

B. FAULT RECOVERY RESULTS
Table 5 shows a comparison of the recovery results of the
several types of faults in a scale of percentage. The values in
the table represents the difference between real and recovered
values according to the following equation:

FIGURE 8. Overall fault detection results comparison: despite the fact that DT
outperforms other methods based on fault type comparison. But, the overall
comparison shows that NN outperforms other classifier in term of precision, recall
and accuracy (Accurancy of NN is 95.15%, that of RF is 93.93%, 88.83% for DT and
only 86.56% for SVM.).

FIGURE 9. Best recovery representing the best percentage of difference between
real and recovered value over real value. The best recovery rate is for offset fault and
the worst one is for gain fault.

Fig. 9, 10 and 11 are representing respectively, best,
average and worst recoveries.
The best recovery is representing the best percentage of

difference between real and recovered value over real value.

142 VOLUME 5, 2024

TABLE 6. Set up parameters and recovery results.

FIGURE 10. Average recovery representing the average percentage of difference
between real and recovered value over real value. The best average recovery rate is
for data loss fault and the worst one is for gain fault.

FIGURE 11. Worst recovery representing the worst percentage of difference
between real and recovered value over real value. The worst recovery rate is for data
loss fault and the less worst one is for offset fault.

According to Fig. 9, the best recovery rate is for offset fault
by a percentage of difference of 0.001 for recovered value
over real value. While, the worst one is for gain fault by a
percentage of difference of 0.041 for recovered value over
real.
The average recovery is representing the average percent-

age of difference between real and recovered value over real

value. According to Fig. 10, the best average recovery rate
is for data loss fault by a percentage of difference of 0.199
for recovered value over real value. While, the worst one
is for gain fault by a percentage of difference of 0.648 for
recovered value over real value.
The worst recovery is representing the worst percentage of

difference between real and recovered value over real value.
According to Fig. 11, the worst recovery rate is for data loss
fault by a percentage of difference of 0.991 for recovered
value over real value. While, the less worst one is for offset
fault by a percentage of difference of 0.738 for recovered
value over real value. The recovery rate is depending on the
number of neighbors and the density of vehicles. In general,
the more there neighbors and highest vehicle density the
more the recovery rate is maximized.

VI. CONCLUSION
In VoT, the exchange of message or the collect of data are
very important. These messages are prone to many failures.
In this paper, ML techniques are used to detect if exchanged
data is faulty or not. The process of fault detection and
recovery is done at fog level rather than cloud level. This
fact allows to enhance the Quality of Service as latency is
reduced, and network bandwidth is improved.
The fault detection and recovery is performed into two

phases. At first stage, four classification methods were used
which are SVM, DT, RF and NN. These techniques are
applied in a well known dataset where 6 kinds of faults are
injected. The detection based on type of fault shows that DT
outperforms other classifier. However, an overall comparison
shows that NN gives best results. The second stage consists
in recovering the faulty data by aggregating data coming
from neighborhoods.
We have also proposed the use of the Hierarchical

Temporal Memory (HTM) algorithm which has shown its
ability to adapt continuously to the evolution of VANET
traffic, thus limiting the probability that the algorithm
becomes inefficient. The learning property of HTM is crucial,
as it allows the recognition of different sequences in the data
observed by the algorithm, which makes it robust to changes
in network behavior while being able to detect faults when
they appear.
A shortcoming improvement of this work can be per-

formed by considering malicious intrusion. Indeed IoV is an
open network so that malicious node can easily be part of the
network. Which make the fact of preventing and detecting
attacks as important.
The scope of our study was to adopt only 6 faults (out

of bounds, spike, stuck, offset, gain fault, and data loss)
on the famous Rome taxis dataset. We used only four ML
techniques (DT, RF, NN and SVM). We believe that our
work can be generalized and enhanced by being applied to
other bigger datasets using also other ML techniques, and
with other faults like the random fault which can happen
unexpectedly.

VOLUME 5, 2024 143

ZIDI et al.: FAULT PREDICTION AND RECOVERY

REFERENCES
[1] J. Voelcker. “It’s official: We now have one billion

vehicles on the planet.” 2011. Accessed: Dec. 28, 2019.
[Online]. Available: https://www.greencarreports.com/news/
1065070itsofficialwenowhaveonebillion-vehicles-on-the-planet

[2] A. Mchergui, T. Moulahi, B. Alaya, and S. Nasri, “A survey
and comparative study of QoS aware broadcasting techniques
in VANET,” Telecommun. Syst., vol. 66, no. 2, pp. 253–281,
Oct. 2017.

[3] A. Mchergui, T. Moulahi, and S. Zeadally, “Survey on artificial intelli-
gence (AI) techniques for vehicular ad-hoc networks (VANETs),” Veh.
Commun., vol. 34, Apr. 2022, Art. no. 100403.

[4] R. G. Engoulou, M. Bellaïche, S. Pierre, and A. Quintero, “VANET
security surveys,” Comput. Commun., vol. 44, pp. 1–13, May 2014.
[Online]. Available: https://doi.org/10.1016/j.comcom.2014.02.020

[5] J. Cui, L. S. Liew, G. Sabaliauskaite, and F. Zhou, “A review
on safety failures, security attacks, and available countermeasures
for autonomous vehicles,” Ad Hoc Netw., vol. 90, Jul. 2019,
Art. no. 101823, doi: 10.1016/j.adhoc.2018.12.006.

[6] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici, and
A. Rabuffi, 2014, “CRAWDAD dataset roma/taxi (v.2014-07-
17),” traceset: taxicabs. [Online]. Available: https://crawdad.org/roma/
taxi/20140717/taxicabs

[7] A. M. Malla and R. K. Sahu, “Security attacks with an effective
solution for DOS attacks in VANET,” in Proc. Int. J. Comput. Appl.,
vol. 66, 2013, pp. 45–49.

[8] S. S. Manvi and S. Tangade, “A survey on authentication schemes
in VANETs for secured communication,” Veh. Commun., vol. 9,
pp. 19–30, Jul. 2017. [Online]. Available: https://doi.org/10.1016/j.
vehcom.2017.02.001

[9] T. Muhammed and R. A. Shaikh, “An analysis of fault detection
strategies in wireless sensor networks,” J. Netw. Comput. Appl., vol. 78,
pp. 267–287, Jan. 2017. [Online]. Available: https://doi.org/10.1016/
j.jnca.2016.10.019

[10] P. P. Ray, “A survey on Internet of Things architectures,” J. King Saud
Univ. Comput. Inf. Sci., vol. 30, pp. 291–319, Jul. 2018. [Online].
Available: https://doi.org/10.1016/j.jksuci.2016.10.003

[11] S. Sharma and B. Kaushik, “A survey on Internet of Vehicles:
Applications, security issues & solutions,” Veh. Commun., vol. 20,
Dec. 2019, Art. no. 100182. [Online]. Available: https://doi.org/10.
1016/j.vehcom.2019.100182

[12] B. Alaya, “Payoff-based dynamic segment replication and graph classi-
fication method with attribute vectors adapted to urban VANET,” ACM
Trans. Multimedia Comput., Commun. Appl., vol. 17, no. 3, pp. 1–22,
2021. [Online]. Available: https://doi.org/10.1145/3440018.

[13] F. Yang, J. Li, T. Lei, and S. Wang, “Architecture and key technologies
for Internet of Vehicles: A survey,” J. Commun. Inf. Netw., vol. 2,
no. 2, pp. 1–17, 2017. [Online]. Available: https://doi.org/10.1007/
s41650-017-0018-6

[14] P. M. Khilar and S. Mahapatra, “Intermittent fault diagnosis in
wireless sensor networks,” in Proc. 10th Int. Conf. Inf. Technol. (ICIT),
Apr. 2008, pp. 145–147, doi: 10.1109/icit.2007.15.

[15] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and F. Grandoni,
“Threshold-based mechanisms to discriminate transient from inter-
mittent faults,” IEEE Trans. Comput., vol. 49, no. 3, pp. 230–245,
Mar. 2000, doi: 10.1109/12.841127.

[16] M. Panda, B. S. Gouda, and T. Panigrahi, “Fault diagnosis in
wireless sensor networks using a neural network constructed by deep
learning technique,” in Nature Inspired Computing for Wireless Sensor
Networks (Springer Tracts in Nature-Inspired Computing). Singapore:
Springer, 2020, pp. 77–101.

[17] R. R. Panda, B. S. Gouda, and T. Panigrahi, “Efficient fault
node detection algorithm for wireless sensor networks,” in Proc.
Int. Conf. High Perform. Comput. Appl., Feb. 2015, pp. 1–5,
doi: 10.1109/ICHPCA.2014.7045308.

[18] K. Hornik, M. Stinchcombe, and H. White, “‘Multilayer feedforward
networks are universal approximators,”’ cs.cmu.edu. Accessed: Mar. 2,
2020. [Online]. Available: https://www.cs.cmu.edu/~bhiksha/courses/
deeplearning/Fall.2016/notes/Sonia_Hornik.pdf

[19] M. Panda and P. M. Khilar, “Distributed self fault diagnosis algo-
rithm for large scale wireless sensor networks using modified three
sigma edit test,” Ad Hoc Netw., vol. 25, pp. 170–184, Feb. 2015,
doi: 10.1016/j.adhoc.2014.10.006.

[20] M. Saihi, B. Boussaid, A. Zouinkhi, and M. N. Abdelkrim,
“Decentralized fault detection in wireless sensor network based on
function error,” in Proc. 10th Int. Multi-Conf. Syst., Signals Devices,
2013, pp. 1–5, doi: 10.1109/SSD.2013.6564159.

[21] H. Yuan, X. Zhao, and L. Yu, “A distributed Bayesian algorithm for
data fault detection in wireless sensor networks,” in Proc. Int. Conf.
Inf. Netw., Mar. 2015, pp. 63–68, doi: 10.1109/ICOIN.2015.7057858.

[22] E. U. Warriach and K. Tei, “Fault detection in wireless sen-
sor networks: A machine learning approach,” in Proc. IEEE
16th Int. Conf. Comput. Sci. Eng., Dec. 2013, pp. 758–765,
doi: 10.1109/CSE.2013.116.

[23] A. Karmarkar, P. Chanak, and N. Kumar, “An optimized SVM based
fault diagnosis scheme for wireless sensor networks,” in Proc. IEEE
Int. Students’ Conf. Electr., Electron. Comput. Sci. (SCEECS), 2020,
pp. 1–7. [Online]. Available: https://ieeexplore-ieee-org.sdl.idm.oclc.
org/stamp/stamp.jsp?tp=&arnumber=9087027

[24] R. R. Swain and P. M. Khilar, “composite fault diagnosis
in wireless sensor networks using neural networks,” Wireless
Pers. Commun., vol. 95, no. 3, pp. 2507–2548, Aug. 2017,
doi: 10.1007/s11277-016-3931-3.

[25] B. C. P. Lau, E. W. M. Ma, and T. W. S. Chow, “Probabilistic fault
detector for wireless sensor network,” Expert Syst. Appl., vol. 41,
no. 8, pp. 3703–3711, Jun. 2014, doi: 10.1016/j.eswa.2013.11.034.

[26] C. Titouna, M. Aliouat, and M. Gueroui, “Outlier detection approach
using bayes classifiers in wireless sensor networks,” Wireless
Pers. Commun., vol. 85, no. 3, pp. 1009–1023, 2015,
doi: 10.1007/s11277-015-2822-3.

[27] M. S. Yadav and S. Ahamad, “Outlier detection in wireless sensor
networks data by entropy based K-NN predictor,” Int. J. Innov.
Technol. Explor. Eng., vol. 8, no. 12, pp. 5483–5489, Oct. 2019,
doi: 10.35940/ijitee.K2290.1081219.

[28] H. Zhang, “The optimality of Naïve Bayes,” in Proc. FLAIRS
Conf., 2004, pp. 1–16. Accessed: Jun. 15, 2020. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.483.2183

[29] S. Zidi, T. Moulahi, and B. Alaya, “Fault detection in wireless sensor
networks through SVM classifier,” IEEE Sensors J., vol. 18, no. 1,
pp. 340–347, Jan. 2018.

[30] “Calculate distance between GPS points in Python.” Feb. 24, 2020.
[Online]. Available: https://janakiev.com/blog/gps-points-distance-
python/

[31] M. Lehsaini, M. Feham, and H. Guyennet, “Efficient cluster-based
fault-tolerant schemes for wireless sensor networks,” in Proc. 5th Int.
Conf. New Technol., Mobility Security (NTMS), 2012, pp. 1–5.

[32] R. Amici, M. Bonola, L. Bracciale, A. Rabuffi, P. Loreti, and
G. Bianchi, “Performance assessment of an epidemic protocol
in VANET using real traces,” in Proc. MoWNet, Dec. 2014,
pp. 92–99.

[33] E. Wang, Y. Yang, J. Wu, W. Liu, and X. Wang, “An efficient
prediction-based user recruitment for mobile crowdsensing,” IEEE
Trans. Mobile Comput., vol. 17, no. 1, pp. 16–28, May 2018,
doi: 10.1109/tmc.2017.2702613.

[34] C. Chilipirea, A. C. Petre, L. M. Groza, C. Dobre, and F. Pop, “An
integrated architecture for future studies in data processing for smart
cities,” Microprocess. Microsyst., vol. 52, pp. 335–342, Jul. 2017,
doi: 10.1016/j.micpro.2017.03.004.

[35] L. Wang, L. Jiao, J. Li, and M. Muhlhauser, “Online resource
allocation for arbitrary user mobility in distributed edge clouds,” in
Proc. Int. Conf. Distrib. Comput. Syst., Jul. 2017, pp. 1281–1290,
doi: 10.1109/ICDCS.2017.30.

[36] T.-K. Dao, T.-T. Nguyen, J.-S. Pan, Y. Qiao, and Q.-A. Lai,
“Identification failure data for cluster heads aggregation in WSN
based on improving classification of SVM,” IEEE Access, vol. 8,
pp. 61070–61084, 2020.

[37] S. Woo, H. J. Jo, I. S. Kim, and D. H. Lee, “A practical security
architecture for in-vehicle CAN-FD,” IEEE Trans. Intell. Transp. Syst.,
vol. 17, no. 8, pp. 2248–2261, Aug. 2016.

[38] G. Biau and E. Scornet, “A random forest guided tour,” Test, vol. 25,
no. 2, pp. 197–227, 2016.

[39] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier
methodology,” IEEE Trans. Syst., Man, Cybern., vol. 21, no. 3,
pp. 660–674, May/Jun. 1991.

[40] U. D. Gandhi and R. V. S. M. Keerthana, “Request response detection
algorithm for detecting DoS attack in VANET,” in Proc. Int. Conf.
Rel. Optim. Inf. Technol., 2014, pp. 192–194.

144 VOLUME 5, 2024

http://dx.doi.org/10.1016/j.adhoc.2018.12.006
http://dx.doi.org/10.1109/icit.2007.15
http://dx.doi.org/10.1109/12.841127
http://dx.doi.org/10.1109/ICHPCA.2014.7045308
http://dx.doi.org/10.1016/j.adhoc.2014.10.006
http://dx.doi.org/10.1109/SSD.2013.6564159
http://dx.doi.org/10.1109/ICOIN.2015.7057858
http://dx.doi.org/10.1109/CSE.2013.116
http://dx.doi.org/10.1007/s11277-016-3931-3
http://dx.doi.org/10.1016/j.eswa.2013.11.034
http://dx.doi.org/10.1007/s11277-015-2822-3
http://dx.doi.org/10.35940/ijitee.K2290.1081219
http://dx.doi.org/10.1109/tmc.2017.2702613
http://dx.doi.org/10.1016/j.micpro.2017.03.004
http://dx.doi.org/10.1109/ICDCS.2017.30

[41] S. Roselinmary, M. Maheshwari, and M. Thamaraiselvan, “Early
detection of DOS attacks in VANET using attacked packet detection
algorithm (APDA),” in Proc. Int. Conf. Inf. Commun. Embedded Syst.
(ICICES), Feb. 2013, pp. 237–240.

[42] M. C. Herrera, J. B. Almeida, and C. Iza, “Performance evaluation in
misbehaviour detection techniques for DoS attacks in VANETs,” in
Proc. 18th ACM Symp. Perform. Eval. Wireless Ad Hoc, Sens.,
Ubiquitous Netw., New York, NY, USA, 2021, pp. 73–80.

[43] M. N. Mejri, J. B. Othman, and M. Hamdi, “Survey on VANET secu-
rity challenges and possible cryptographie solutions,” Veh. Commun.,
vol. 1, no. 2, pp. 53–66, 2014.

[44] A. M. Malla and I. V. K. Sahu, “Security attacks with an effective
solution for DOS attacks in VANET,” Int. J. Comput. Appl., vol. 66,
no. 22, pp. 45–49, Mar. 2013.

[45] L. He and W. T. Zhu, “Mitigating DOS attacks against signature-based
authentication in VANETs,” in Proc. IEEE Int. Conf. Comput. Sci.
Autom. Eng. (CSAE), 2012, pp. 261–265.

[46] K. Laroussi, A. B. Boucif, M. Mesfioui, and I. Biskri, “A prob-
abilistic model to corroborate three attacks in vehicular ad hoc
networks,” in Proc. IEEE Symp. Comput. Commun. (ISCC), Jul. 2015,
pp. 70–75.

[47] J. Hawkins and S. Blakeslee, On Intelligence: How a New
Understanding of the Brain Will Lead to the Creation of Truly
Intelligent Machines. New York, NY, USA: Macmillan, 2007.

[48] Y. Cui, S. Ahmad, and J. Hawkins, “Continuous online sequence learn-
ing with an unsupervised neural network model,” Neural Comput.,
vol. 28, no. 11, pp. 2474–2504, 2016.

[49] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time
anomaly detection for streaming data,” Neurocomputing, vol. 262,
pp. 134–147, Nov. 2017.

[50] Z. Hasani, “Robust anomaly detection algorithms for real-time
big data: Comparison of algorithms,” in Proc. 6th Mediterr. Conf.
Embedded Comput. (MECO), 2017, pp. 1–6.

[51] C. Wang, Z. Zhao, L. Gong, L. Zhu, Z. Liu, and X. Cheng, “A
distributed anomaly detection system for in-vehicle network using
HTM,” IEEE Access, vol. 6, pp. 9091–9098, 2018.

[52] Z. Deng, X. Zhu, D. Cheng, M. Zong, and S. Zhang, “Efficient
KNN classification algorithm for big data,” Neurocomputing, vol. 195,
pp. 143–148, Jun. 2016.

[53] N. Kouiroukidis, and G. Evangelidis, “The effects of dimensionality
curse in high dimensional KNN search,” in Proc. 15th Panhellenic
Conf. Informat., 2011, pp. 41–45.

[54] G. Fernandes Jr., L. F. Carvalho, J. J. P. C. Rodrigues, and
M. L. Proença Jr., “Network anomaly detection using IP flows with
principal component analysis and ant colony optimization,” J. Netw.
Comput. Appl., vol. 64, pp. 1–11, Apr. 2016.

[55] J. Wu, W. Zeng, and F. Yan, “Hierarchical temporal memory method
for timeseries-based anomaly detection,” Neurocomputing, vol. 273,
pp. 535–546, Jan. 2018.

[56] Y. Cui, S. Ahmad, and J. Hawkins, “The HTM spatial pooler—A
neocortical algorithm for online sparse distributed coding,” Front.
Comput. Neurosci., vol. 11, p. 111, Nov. 2017.

[57] A. R. Abdellah and A. Koucheryavy, “VANET traffic prediction using
LSTM with deep neural network learning,” in Proc. 20th Int. Conf.
Internet Things, Smart Spaces, Next Gener. Netw. Syst., Aug. 2020,
pp. 281–294. [Online]. Available: https://doi.org/10.1007/978-3-030-
65726-0_25

[58] F. Qu, Q. Jiang, G. Jin, Y. Wei, and Z. Zhang, “Mud pulse signal
demodulation based on support vector machines and particle swarm
optimization,” J. Petrol. Sci. Eng., vol. 193, Oct. 2020, Art. no. 107432.

VOLUME 5, 2024 145

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

