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ABSTRACT Bike sharing schemes can be used both to improve mobility around busy city routes but also
to contribute to the fight against climate change. Optimization of the network in terms of station locations
and routes is a focus for researchers, where usage can highlight the precise times at which bike availability
is high in some areas and low in others. Locations for new stations are important for the expansion of
the network, but spatio-temporal pattern analysis is required to accurately identify those locations. In
other words, one cannot rely on spatial information nor temporal information in isolation, when making
interpretations for the purpose of optimizing or expanding the network. In this research, a solution based
on graph networks was developed to model activity in transport networks by exploiting properties and
functions specific to graph databases. This generic approach adopts a broad series of analyses, comprising
different levels of granularity and complexity, to enable better interpretation of network dynamics at a
suitably granular level to help the optimization of transport networks. A large dataset provided by an
electric bike company is used to address key research questions in both interpreting activity patterns and
supporting network optimization.

INDEX TERMS Spatio-temporal graph analysis, smart city, transport networks.

I. INTRODUCTION

MOBY Move [1] is an electric bike sharing system
operating in multiple countries using a mobile appli-

cation platform to rent a fully electric bike. Customers are
required to scan a QR code on the bike using their phone to
unlock and start riding the bike. Moby Move is a dockless
system, meaning people do not need to park the bikes at a
physical station. In effect, this means that trips can begin
and end at any location in cities where the bike scheme
operates. Bike sharing schemes not only serve as efficient
transport mechanisms, but by studying the dynamics of bike
movements, knowledge can be generated to inform network
expansion, new strategies and policies. For example, in [2],
the authors examine the patterns in bike usage in medium
sized Irish cities while also observing how it compares
to 48 cities worldwide. This particular study focused on
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the influence of factors such as weather conditions, routes,
and distance travelled on usage patterns. Other approaches,
including where vehicles are airborne and unmanned [3] uses
analyses of the network to efficiently plan routes through the
network, offering in effect, an approach to exploiting under
utilized routes in ground based transportation networks.
The study on shared bike usage has significant impli-

cations for improving sustainability in transportation,
including: (1) reduced carbon emissions; (2) traffic conges-
tion alleviation; (3) health benefits; (4) resource efficiency;
(5) integration with public transport; and (6) promotion
of sustainable urban planning. However, existing research
on bike sharing systems lacks systematic methodolo-
gies and construction optimization for complex networks.
Furthermore, there is a gap in exploring networks that
incorporate both spatial and temporal patterns.
Historically, bike sharing systems were designed with

docking stations in fixed locations across the city according
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to a predesigned topology from where customers collect
and drop off bikes. More recently, providers started offering
dockless bike sharing services, where bikes are picked up
and dropped off at more casual locations, often referred to
as virtual stations. Moby Move, as a dockless bike sharing
provider, has designed an initial network of virtual stations.
Considering that virtual stations are easily relocatable, it
is in the best interest of the provider to monitor the bike
usage and determine the optimal network configuration for
such stations. In other words, the problem can be stated
as “how close the currently deployed network of virtual
stations resembles the network that optimizes bike usage?”
Bike sharing systems often make their data available in a
tabular format. However, tabular data is not well suited to
modelling and analyzing this type of problem, and secondly,
data associated with station locations and trips must be
available at different levels of granularity to deliver both a
high level perspective of network activity and more fine-
grained analysis where required. Any solution must consider
that decisions made at a global level may adversely affect
individual stations, while adjustments to network topology to
fix a localized problem may be to the detriment of the global
network. More specific requirements by the organisation can
be stated as follows:

• Requirement 1. A high level visualization is required
to deliver a detailed picture of the busiest stations
and routes, and also to identify little used stations
and routes. Such a visualization is effectively a roll-up
across dimensions of time and space.

• Requirement 2. For a deeper understanding of the pop-
ularity of certain stations and routes, a drill-down using
the time dimension must be supported. In particular,
there is a requirement to analyze any number of sub-
networks over any time interval where these intervals
may or may not, be disjoint.

• Requirement 3. The next requirement is to determine
similarities across stations, using both time and location
dimensions. Spatial similarities can be identified as part of
Requirement 1 and temporal similarities can be observed
as part of Requirement 2. However, the combination of
these dimensions will identify those stations that exhibit
similarities over specified time intervals.

• Requirement 4. A more complex global analysis requires
an understanding of the relationship between each
station and all other stations in terms of activity. Here,
we refer to a pattern of a station as the route activity
with all other stations in the network. This type of
analysis identifies stations with similar travel patterns
to all other stations. Conversely, it will also identify
stations with highly unique travel patterns.

Contribution: Researchers at Dublin City University, in
collaboration with City University of New York, teamed
with Moby Move to develop a single framework approach to
address each of the analytical requirements of the network
provider. However, a parallel goal was to develop a generic

solution to a range of spatio-temporal analyses with the
Moby Move providing a challenging case study. Any solution
must facilitate a better understanding of their transport
network and its usage patterns, while acknowledging that
spatio-temporal analysis is complex, making it easy to make
incorrect inferences. Thus, our approach starts with a purely
spatial analysis, before adding a temporal overlay, and finally
moving to full spatio-temporal analysis.
Our contribution can be articulated as follows:
• the development of a framework that exploits graph
technology to deliver a dimensional analysis of network
traffic, in this case, a bike sharing scheme. By dimen-
sional analysis, we facilitate the construction of high
level graphs together with drill-downs across spatial and
temporal dimensions;

• a temporal graph network which enables a drill-
down over the time dimension which facilitates the
specification and construction of graph subsets for the
purpose of comparative analyses;

• an optimization function to adjust graph densities to
remove low volume graph edges;

• the construction of a correlation matrix of time series
data to create station profiles to model their interactions
with all other stations, creating a mechanism to compare
stations from a different perspective to comparisons
using the temporal graphs.

The remainder of this paper is structured as follows: in
Section II, we present a discussion on related work in this
area; in Section III, the fundamental knowledge, concepts,
and definitions necessary are provided for the subsequent
development of this work; in Section IV, we introduce a
3-step methodology which constructs graphs with increasing
levels of analytical capabilities; in Section V, we provide
the key measures, dataset, and technologies employed for
evaluating and implementing our study; in Section VI,
we present our experiments together with a discussion of
findings; and finally in Section VII, we summarize the paper
and present some conclusions.

II. RELATED WORK
A. NETWORK CONSTRUCTION
Complex network analysis methods have been employed
to investigate bike sharing systems worldwide. In these
investigations, bike sharing records are modelled in network
structures and through the analysis of these constructed
networks, we can unveil the inherent characteristics of the
bike sharing systems. Network modelling varies depending
on the purpose of the analysis. Typically, traffic flows are
investigated where spatial locations are viewed as nodes
while trips form an edge between its starting location and
destination [4], [5], [6], [7], [8], [9], [10].
The majority of the systems under examination are dock-

based, meaning that customers are obliged to rent and return
the bikes at specified stations. Therefore, it is logical to
consider these stations as nodes. In contrast, with dockless
systems users have the freedom to pick up and drop off their
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bikes anywhere, which requires researchers to define novel
ways to describe and model the data. Zhang et al. [4] divided
the area of interest into a grid of squares and treated them as
nodes, while Yang et al. [5] used physical road segments as
nodes. Certain studies adopt an alternative approach, wherein
they group places together and treat each group as a single
point within the network. For instance, Seo and Cho [6]
categorized bike stations based on their surroundings, while
Shi et al. [7] used clustering methods to group stations.

Other approaches to complex network construction have
also been proposed for the analysis of bike-sharing systems.
For instance, Batista et al. [8] built a network where each
node represents a specific region. Within these regions,
vehicles travel at the identical average speed, and nodes in
the network are interconnected if the regions are adjacent to
each other. The network helps to study relationships between
the average distance travelled or travel time and the level of
exhaust emissions along bike paths. Lin et al. [9] trained a
graph convolutional neural network to learn the correlation
among stations and predict station-level hourly demand. The
correlation matrix that is obtained from this training is used to
create an adjacency matrix for a network. By analyzing this
network,moreinsightsaregainedabout thespatial relationships
between different stations. Furthermore, Ghandeharioun and
Kouvelas [10] constructed road networks with pairwise edge
correlation to estimate travel time of a route.
While complex network analysis has found widespread

applications in the study of bike-sharing systems, the papers
above have overlooked the need for a systematic frame-
work for network construction and analysis, particularly in
optimizing networks to enhance their analytical capabilities.
Furthermore, the potential of correlation-based networks for
uncovering spatial-temporal patterns remains underdeveloped
in the context of bike-sharing systems. As a result, we
aim to establish a formal framework for the application of
complex network approaches and advocate for the utilization
of correlation-based networks in bike-sharing data analysis.

B. DYNAMICS OF NETWORKS
In addition to static characteristics of networks, the eval-
uation and dynamics of bike sharing systems are also a
concern. Therefore, constructed networks must be aggregated
into different time intervals and periodicities. The choice
of time interval depends on the analysis goal or is often
determined by a domain expert. For example, [5] quantified
changes in travel flows of a bike sharing system in
Nangchang, China after a new metro line was introduced,
by comparing network structures, five days before and after.
Jia et al. [11] demonstrated the changes in bike-sharing
systems in response to the outbreak and recovery of the
pandemic. This was performed by analyzing networks that
were projected onto different waves of COVID-19. In studies
by Borgnat et al. [12] and Austwick et al. [13], patterns in
bike usage during weekdays versus weekends and at different
times of the day were successfully identified through network
analysis.

In these studies, the choice of time intervals is often
predetermined based on the specific research interests, which
may not always be the ideal approach. Without domain
knowledge, it can be challenging to identify similarities and
anomalies in the time dimension, to select relevant periods for
analysis. Analyzing every time-step would be time-consuming
and inefficient. As a solution, we propose the utilization of a
clustering-based method to aggregate similar time-steps and
analyze the resulting representations instead.

C. NETWORK ANALYSIS
In terms of network analysis, networks for bike sharing
systems have been analyzed through the same methods, i.e.,
network metrics, community detection with the support of
visualization and domain knowledge. Global metrics illus-
trate the overall structure of the networks, while local metrics
show the roles or properties of the nodes in a network. Most
commonly used metrics include the number of nodes, the
number of edges, degree and strength, which indicate the
degree of activity and connectivity at a location [4], [14].
Austwick et al. [13] identified similarities in the strength

and edge weight distribution among networks created
from various bike sharing systems. Yang et al. [5] and
Jia et al. [11] recommended incorporating a diverse set
of network properties to encompass different facets of a
network, including connectivity metrics (degree and node
flux), spatial distribution (clustering coefficient), as well
as measures of interaction (accessibility), network stability
(network connectivity), efficiency (network efficiency), and
equity (Gini coefficient). Other centrality metrics, such as
betweenness and PageRank, as utilized by [5], have also
been employed in the context.
Community analysis, which is a recurring theme in

network research, plays a crucial role in understanding a
network’s structure. Community detection algorithms group
nodes within the network into distinct communities, where
nodes exhibit stronger internal connections than external
ones. The Louvain algorithm in [15] is most commonly
used. However, Shi et al. [7] noted that different algorithms
produced varying community characteristics based on the
measurement criteria. Although network analysis is now
well developed, the methods are mostly applied to networks
where edges are trips. We would like to apply similar
approaches, such as visualization, complex metrics like
strength, closeness, betweenness, local clustering coefficients
and community detection to more complex, correlation-based
networks.

D. SUMMARY
In summary, despite the numerous network-based analyses
of bike sharing systems, several limitations persist in
contemporary studies: (1) existing studies lack systematic
methodologies for applying complex networks in the analysis
of bike sharing systems; (2) the construction of the networks
is often neglected and not optimized, hindering subsequent
network analysis; (3) when studying the dynamics of these
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systems, the choice of the time periods for analysis highly
depends on domain-specific knowledge, such as grouping
hourly data into similar patterns or identifying evolving
station periods; (4) correlation networks have the potential
to reveal not only spatial but also temporal patterns, but their
application in network analysis is under explored.
Motivated by these observations, we propose a systematic

comprehensive method that focuses on integrating complex
network theory into analyzing bike sharing systems. The
method involves building and analyzing 3 types of networks:
spatial graph networks, temporal graph networks and spatio-
temporal graph networks. Spatial graph networks provide
an overview of spatial interactions, while temporal graph
networks capture the dynamics of the systems. Spatio-
temporal graph networks are correlation-based networks that
reveal temporal patterns in the context of spatial relations.
The construction of our three networks is optimized using

a proposed algorithm for selecting an appropriate trimming
threshold. This optimization enhances the analysis of the
networks, particularly with respect to shortest distance-based
centrality metrics and community detection. Finally, we also
suggest an algorithm to assist in the analysis of the dynamic
networks by automatically clustering periods with similar
network structures.

III. PRELIMINARIES
In this section we present the pre-requisite knowledge,
concepts and definitions, that will be used in the development
of this work.

A. SPATIAL GRAPH NETWORK
The Spatial Graph Network (SGN) is the simplest form of
network including notes and edges. Nodes are connected
via undirected edges where an edge between two nodes
is created if there exists at least one trip between the
node representing the origin node (source) and the node
representing the destination node (target). The SGN provides
a complete aggregated view of the network topology as well
as the volume of activities through the network. Each edge
is also associated with a weight describing the number of
trips that occurred on the route between the two connected
nodes over the entire time period of interest. More formally,
the SGN is defined in Def. 1.
Definition 1 (Spatial Graph Network): The SGN is a pair

SGN = 〈S, J〉, where S is a set of vertices (nodes) and J a
set of edges, connecting vertices. A vertex (or node) s ∈ S is
a pair s = 〈lat, lon〉, where lat is the latitude and lon is the
longitude at which the vertex is spatially located. An edge
j ∈ J is a triple j = 〈o, d, a〉, where o, d ∈ S are the origin
and destination vertices of the edge, and a is the activity
between such vertices.

B. TEMPORAL GRAPH NETWORK
The aggregated nature of the SGN can hide nuances and
continual evolution of networks. In order to study network

evolution over time, there is the need to explicitly represent
time as a dimension in the graph. Segmenting data, especially
graph or unstructured data, helps in the analysis of data at a
more granular level and is more efficient in terms of query
response time [16].

For the above reason, we introduce the temporal graph
network (TGN). A TGN is an ordered sequence of graphs
defined over nodes and edges where each graph in the
sequence describes the state of the network at a specific
point in time. More precisely, each graph in the TGN
describes the status of the network as a snapshot of the
SGN taken during a time window, over the course of the
period of interest. The TGN enables both a more fine-grained
analysis of the network and also the ability to compare across
graph projections, thus facilitating analysis of the network’s
evolution. Formally, a TGN is defined in Def. 2.
Definition 2 (Temporal Graph Network): A TGN is a set

TGN = {SGN 1,SGN 2, . . . ,SGN T}, where SGNi is a time-
bounded SGN and represents the status of the network during
a specific interval of time. Each SGNi is a pair SGNi =
〈S,K〉, where S is a set of vertices (nodes) and K a set
of edges, connecting vertices. A vertex (or node) s ∈ S
is a pair s = 〈lat, lon〉, where lat is the latitude and lon
is the longitude at which the station is spatially located.
An edge k ∈ K is a tuple k = 〈o, d, t, δ, a〉 representing
the volume of activity and journeys between two vertices
during an interval of time, where: o, d ∈ S are the origin and
destination vertices of a journey; t is the time at which the
observation period starts; δ is the duration of the interval of
time with origin t and during which the observation occurs;
and a is the activity, defined as number of trips between the
vertices o, d during the observation period starting at time t
through the interval δ of time.

C. SPATIO-TEMPORAL GRAPH NETWORK
The Spatio-Temporal Graph Network (STGN) has an entirely
different structure to the previous graph representations. It
has a network structure where edges model the similarity
between two vertices (nodes) in terms of temporal patterns
in their activities. This enables the treatment of data as
timeseries patterns [17], with the potential to identify trends,
seasonal or cyclical components, irregular components and
potentially, the diversity [18] within the data. The STGN is
defined formally in Def. 3.
Definition 3 (Spatio-Temporal Graph Network): A STGN

is a tuple STGN = 〈S,H,Ts,Te, γ, υ〉, where S is a set of
vertices (nodes) and H a set of edges, connecting vertices,
Ts is the time at which network observation commenced, Te
is the time at which the network observation finished, γ is
the time increment between start times of network activity
observations, and υ is the duration of each observation.
A vertex (node) s ∈ S is a pair s = 〈lat, lon〉, where
lat is the latitude and lon is the longitude at which the
vertex is spatially located. An edge h ∈ H is a triple h =
〈s1, s2, r〉 describing the similarity between nodes s1, s2 ∈ S
in terms of a temporal pattern, where r is the similarity value
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between the two nodes calculated over the series of activity
observations over the time periods.

IV. METHODOLOGY
Networks such as those implemented by bike sharing systems
are time evolving systems that can be characterized via the
following core features: space, time, and volume of activity.
Space and time can be considered dimensions, whereas
activity is a measure whose value depends on how one looks
at the dimensions. Here, we model the bike sharing system as
a graph network that analyzes the measure (trip) according to
one or more dimensions. Specifically, we build three network
types. The first network considers the spatial dimension
only. The second network, although it incorporates spatial
properties, considers only the time dimension for the purpose
of analysis. The third network combines the spatial and
temporal dimensions. Each network increases in complexity
and power compared to the preceding network. However,
simpler networks are easier to construct, and as the cost of
building more complex networks increases, it is important
to understand the capabilities of each network type. We will
now discuss how networks are built, the analyses possible
using each network and finally, discuss the application of
each network.

A. SPATIAL BIKE GRAPH NETWORK
We successfully utilized a graph network to model the
structure of textile patterns [19] and a historical knowledge
base [20]. Consequently, we constructed a Spatial Bike
Graph Network (SBiGN) based on the SGN to describe
the spatial features of the bike sharing usage, including
station connections and trip volumes between stations. This
representation is invaluable for analyzing the traffic flow
of the transportation system. In a straightforward sense,
SBiGN’s nodes represent bike stations, while its edges
describe journeys (trips) between stations. Each edge is also
associated with a weight that quantifies the number of trips
that occurred on the route between the two connected stations
over the entire time period of interest. More formally, the
SBiGN can be found in Def. 4.
Definition 4 (Spatial Bike Graph Network): The SBiGN

is a pair SGN = 〈S, J〉, defined as per Def. 1, where a
vertex and an edge in SGN correspond to a bike station
and a journey (trip) in SBiGN, respectively. Additionally, the
activity a between two stations within a trip can be viewed
as the cardinality of that trip.
We refine the SBiGN by removing statistically insignifi-

cant data which add noise rather than value to the analysis.
First, we identify and remove so-called weak edges, which
are edges with small weight values relative to the aggregated
values in the network. This is a common step in network
optimization [21] where potentially high numbers of insignif-
icant data points can slow network analysis while providing
little new information. The threshold is set to guarantee the
network is strongly connected, ensuring network algorithms

Algorithm 1 find_threshold(edges): Binary Search to Find
the Largest threshold for Strong Connectivity From Edge
Input: edges ← A list of all edges in the network, each

with a weight
Output: threshold: Largest threshold value for strong

connectivity, NULL if there is none.
1: edgeValues ← unique weights extracted from edges

sorted in ascending order
2: low← 0
3: high← length(edgeValues)− 1
4: threshold← NULL
5: while low ≤ high do
6: mid←

⌊
high+low

2

⌋

7: network← build_network(edges, edgeValues[mid])
8: � Removes edges with weight < edgeValues[mid]
9: if is_strongly_connected(network) then

10: threshold← edgeValues[mid]
11: low← mid + 1
12: else
13: high← mid − 1
14: end if
15: end while
16: return threshold

such as closeness and betweenness are well-defined while
minimizing the network size. Thereby, this optimization
enhances the quality as well as the speed of the analysis. A
binary search version of the threshold algorithm is described
in Algorithm 1, where the algorithm (line 5) continually
checks the graph’s strongly connected property, to ensure
it never drops below a specified threshold. Essentially, the
is_strongly_connected function validates that all
nodes remain reachable from any starting node [22].
Second, we remove looping edges, which are defined as

edges where the source and destination are the same node
(i.e., the bike trip originates and ends at the same station),
as they add little information and may cause confusion for
some graph algorithms. Loops may however, be an important
part of the nature of the transportation system so they should
be analyzed in a separate network.
Other than for purposes of analysis, a significant benefit

of the spatial graph is that it can be easily overlayed on
the geographical map where the bike sharing network is
deployed. As part of Requirement 1, the SBiGN in Figure 1
uses data over a 15 month period from June 2020 to August
2021 to easily identify the location of the busiest stations
and the spatial distribution of a set of busy stations. In the
visualization, the size of the node is proportional to the total
number of trips beginning or ending at the station. The top
10 biggest nodes (stations) are depicted as red nodes with
other nodes in blue. Only the top 10% of edges are illustrated
with the most frequent routes in red and the remainder in
blue.
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FIGURE 1. Geographic Map overlaid with SBiGN.

B. TEMPORAL BIKE GRAPH NETWORK
From a practical point of view, we create a Temporal Bike
Graph Network (TBiGN) by constructing a sequence of time-
bounded SBiGNs, as defined in Def. 5. The TBiGN follows
a specified temporal order and a predetermined time scale,
where each SBiGNi captures network activity pertinent to a
particular time interval.
These intervals can have any duration and may or may not

overlap. This is necessary to model the fact that temporally
adjacent networks describe how the system evolves over
time. Defining the length of these intervals determines the
similarity between adjacent networks. Intuitively, a shorter
interval yields to potentially less similar networks, but it
enables capturing the system evolution at a finer level
of granularity, as per Requirement 2 in the introduction.
Conversely, a longer interval yields to potentially more
similar networks, because aggregates over longer periods
may converge to similar values, at the cost of missing
out on some of the system evolution behaviours. Yet they
are necessary to capture properties such as seasonality and
stationarity [18].
Definition 5 (Temporal Bike Graph Network): A TBiGN

is a set TBiGN = {SBiGN1, SBiGN2, . . . , SBiGNT}, where
SBiGNi is a time-bounded SBiGN and is a pair SGNi =
〈S,K〉. This corresponds to Def. 2, where a vertex and an
edge in SGNi corresponds to a bike station and a trip in
SBiGNi, respectively.

Typically, for networks implemented by bike sharing
systems, intervals are defined in the range of hours, days,
weeks etc., in order to analyze periodical and seasonal
factors. As part of the solution to address Requirement 3,
networks are then clustered into groups where their centroids
represent the entire cluster and are used for analysis. This
simplifies the analysis of a wide range of nodes as the
analysis can then focus on a small group of centroid nodes.

C. SPATIO-TEMPORAL BIKE GRAPH NETWORK
The Spatio-Temporal Bike Graph Network (STBiGN) was
designed to use STGNs as a fundamental building block and

is defined in Def. 6. This type of network is used to address
Requirement 4 where a different perspective on station by
station correlation can be explored.
The STBiGN construction comprises three steps:

1) In the first step, a time series is constructed for every
station for a specified timescale. The timescale which
is controlled by the values chosen for γ and υ, has
the following semantics:

• γ = υ: creates contiguous non-overlapping
intervals, over the observation period Ts,Te.

• γ < υ: creates overlapping intervals, where the
same activities may contribute to the activity
volume count in multiple intervals.

• γ > υ: generates intervals that may not account
for all activities that occurred during the observa-
tion time.

Generally, analyses are conducted on contiguous, non-
overlapping intervals, such as hourly, daily, weekly,
monthly, yearly, or a timescale to explore the periodic
nature of the transportation systems, e.g., morning or
evening rush hours. Once the timescale is known, a
station is represented by a time series that is the series
of numbers of trips at every time-step window. This
way the activity of a station can be studied for the
specified timescale.

2) In the second step, a similarity score is computed
for every station pair based on the popular Pearson
correlation coefficient, shown in equation (1). Here,
(xi) and (yi) are two time series of length n, where n =
(Te−Ts)/w is the number of time intervals in which the
activity is measured, and with w = γ = υ; x =∑n

j xj
is the sum of x scores; and y = ∑n

j yj the sum of
y scores. The function measures the linear correlation
between two variables on the range −1 ≤ x ≤ 1. As
most network algorithms work with non-negative edge
weights, we normalize the coefficient to have a value
between 0 and 1 by S(x, y) = (S(x, y)+ 1)/2.

S(x, y) =
∑n

i (xi − x)(yi − y)√∑n
i (xi − x)

√∑n
i (yi − y)

. (1)

3) In the final step, the STBiGN is constructed based on
a correlation matrix of the Pearson coefficients. The
similarity matrix formed by all normalized coefficients
is the adjacency matrix for the network. In the STGN,
nodes represent stations and there always exists an
edge between every pair of stations with the corre-
sponding similarity score as the weight. As network
metrics like closeness, betweenness or local clustering
coefficient only work on unweighted networks and
badly on fully connected networks, weak edges that
are statistically insignificant are removed. The strongly
connected property is ensured when optimizing the
graph (trimming edges).
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Definition 6 (Spatio-Temporal Bike Graph Network): A
STBiGN is a tuple STGN = 〈S,H,Ts,Te, γ, υ〉, correspond-
ing to Def. 3, where a vertex and an edge in STGNi refer
to a bike station and a trip in STBiGNi, respectively.

V. MEASURES AND DATASET
In this section, we first introduce the main metrics to lead to
a quantitative analysis of the model and of the experiments;
then, we describe the dataset used in the analysis; finally,
we briefly mention the technology used to develop the
implementation part of the study.

A. GRAPH METRICS
1) GRAPH METRICS FOR SBIGN AND TBIGN

The key techniques for analyzing the structure of the
SGN/TGN, as well as SBiGN/TBiGN, revolve around the
concept of centrality metrics. These metrics quantitatively
measure the importance of a node in a network [23], [24].
When analyzing centrality metrics, it’s important to pay
attention to nodes with exceptionally high scores, as they
could either be outliers or nodes that play pivotal roles within
the network.
• Strength. Node strength is defined as the sum of
the weights of the edges connecting to immediate
neighbors [25]. In our SBiGN/TBiGN, the weight
represents the volume of activity. Therefore, station
strength represents the total number of trips occurring
at a specific station in either directions to or from all
adjacent stations.

• Degree. The degree of a node is defined as the
number of edges that connect it to its adjacent neighbor
nodes, which are the nodes to which it is directly
connected [26]. In the SBiGN/TBiGN graph, the degree
of a station represents the number of stations with which
it shares at least one trip.

• Closeness. The closeness of a node is one measure of its
centrality in the network, that is how close, on average,
the node is to all other nodes [27], [28]. In this context,
we determine the distance between nodes as the length
of the shortest path between source and destination,
i.e., the minimum number of hops (trips) required.
Therefore, in the SBiGN/TBiGN, the closeness score
quantifies how proximate a station is to all other stations
based on all trips, reflecting the overall movement
within the network.

• Betweenness. The betweenness score of a node indi-
cates how many shortest paths between any two
nodes pass through the specific node under consider-
ation [28], [29]. Indeed, the higher the betweenness
score, the more significant the station is considered
within the SBiGN/TBiGN’s connectivity structure. In
practice, stations with high betweenness scores typically
act as “bridge” points, serving as common waypoints
connecting different sub-networks.

• Local Clustering Coefficient. This metric reflects the
likelihood that the neighboring nodes of a node are

interlinked [30]. In the context of SBiGN/TBiGN, a
high coefficient suggests that individuals departing from
a specific station tend to move to or from only a few
other stations

• Communities. Communities present a metric where
nodes exhibit strong connections within a spe-
cific community of nodes [15], [31]. Essentially, in
SBiGN/TBiGN, a community represents a group of
stations where there are more trips occurring within the
community itself than to or from stations outside of the
community.

2) GRAPH METRICS FOR STBIGN

The same graph functions are used again as metrics.
But due to the difference in nature of STBiGN from
previous networks, graph metrics in such correlation-
based networks [32], [33], [34] have different interpretations
derived from its definitions and network construction:
• Strength. The node strength, which is the total scaled
correlations connected to the node, demonstrates the
degree of similarity between the node with other
stations.

• Degree. In a STGN, the degree is the number of
stations that have similar behavior to the station under
observation.

• Closeness. The distance between two stations in a
STGN is interpreted as the smallest number of signif-
icant similarities which form a path from one station
to another. The more distant the two stations, the less
similar are the temporal patterns in their activities.

• Betweenness. Here, a community is a group of stations
that have similar temporal activity patterns. Therefore,
high scoring stations are usually similar to two or more
groups of stations.

• Local clustering coefficient. High coefficient stations
in a STGN mean their neighbours are likely to also
be similar to each other. Stations with a high local
clustering coefficient form a group that share more or
less the same activity patterns.

• Communities. Hence the connections between nodes
are built upon similarity of their activity timeseries.
Members of a community share common temporal
patterns.

B. DATASET
Our original dataset included data from 86 stations and
covered a total of 52,936 bike rentals spanning the period
between June 2020 and September 2021 as summarized in
Table 1. Additionally, this dataset also contained detailed
information regarding both pick-up and drop-off times and
locations. However, the original dataset has many virtual
pick-up locations, drop-off locations and trips, requiring
cleaning before importing to our graph networks.
Firstly, if the pick-up and drop-off locations do not

correspond to existing stations, we assess their proximity to
nearby bike stations. If these locations are within a 1km
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TABLE 1. Dataset overview.

radius of at least one station, we reassign them to the
nearest station. It’s important to note that a single trip may
involve both pick-up and drop-off locations that belong to the
same station, resulting in what we refer to as a “loop-trip”.
However, if these locations are more than 1km away from
any station, we exclude them from the dataset. In this first
step, there are 654 reassigned trips (approximately 1.2%)
and 6,650 removed trips (approximately 12.5%).
Secondly, certain trips within the original dataset can be

created by system errors or errors made by renters. These
errors can encompass issues like app compatibility problems,
mistakes in app usage, and failures to properly start or end
a trip. Specifically, very short trips are those lasting less
than 10 minutes or covering less than 100 meters, while
very long trips were defined as those lasting more than
1 day. As a result, during the second step, 10,105 trips
(approximately 19%) were removed. It’s important to note
that we have conducted a pre-experiment analysis on the
original dataset to identify suitable values for the parameters
mentioned above.
The cleaned dataset now comprises 36,181 trips and

86 stations in Dublin city, Ireland with summaries shown in
Table 1. On average, there are 2,412 trips monthly across
all stations, with an average of 28 trips per station. The
busiest station recorded 1,936 trips over 15 months which is
equivalent to 129 trips per month, while the least frequented
station had only 82 trips over 15 months, equivalent to 5
trips per month.

C. MATERIALS AND TOOLS
The validation environment included Python with libraries
scipy,1 matplotlib,2 and NetworkX3 all used to run experi-
ments. Pandas4 are used for data processing, data analysis,
and graph construction, with Matplotlib utilized for data
visualization. Graph visualization used Google Maps API5

and NetworkX. The Neo4j graph database6 was used to
manage and store all graphs. Additionally Neo4j’s Graph
Data Science Library7 with built-in centrality metrics and
community detection were used for all network metrics.

1. https://scipy.org/
2. https://matplotlib.org/
3. https://networkx.org/
4. https://pandas.pydata.org/
5. https://developers.google.com/maps
6. https://neo4j.com/
7. https://neo4j.com/docs/graph-data-science/current/

TABLE 2. Node strength in SBiGN.

VI. ANALYSIS AND DISCUSSION
In this section, we validate our approach against the set of
requirements outlined in Section I.

A. OUR SPATIAL BIKE GRAPH NETWORKS
1) SBIGN CONSTRUCTION

As in Def. 4, stations are modelled as nodes in SBiGN, and
they are linked by undirected weighted edges if there is a
single trip between them in the entire 15 months period. The
edge weight is the number of trips, counting both directions.
For improving the clarity, readability, and interpretability of
the graph visualization, we eliminated loop and weak links
in SBiGN.
To pinpoint weak connections, we systematically decrease

the edge weight threshold until the network achieves strong
connectivity. In these experiments, the final threshold is set
at 11 trips, as outlined in Algorithm 1. The ultimate network
density, calculated as the ratio of actual edges to potential
edges, is approximately 19%. Following the removal of 9,544
loop trips and 7,920 trips associated with weak links, our
SBiGN comprises 18,717 trips connected by 686 edges, with
the node count remaining unchanged at 86. The diagram
shown in Figure 1 illustrates the SBiGN with 69 edges,
which account for approximately 10% of the total edges,
and carry the most significant weights.

2) SBIGNS - ANALYSIS AND DISCUSSION.

Basic graph analytics are employed to analyze bike
movement across the entire network. In Table 2, stations are
listed with their respective strength values in descending
order. Notably, the station at Fairview Avenue Lower exhibits
the highest strength at 1,478, closely followed by stations
located near the city centre: Mountjoy Square South (1,385),
Criminal Courts of Justice (1,350), Grand Canal Docks
(1,322) and O’Connell Street (1,272). The decline in station
strength follows a slightly negative-exponential and near
linear pattern. Smaller stations tend to have few trips
over the observation period, often less than several dozen.
Interestingly, many of these smaller stations are located in
close proximity to larger stations, which is a noteworthy
finding even based on these basic graph analytics.
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TABLE 3. Edge weight in SBiGN.

Table 3 presents the edge weights. The most frequently
traveled routes are typically associated with commute trips
or follow the Blackrock-Monkstown coastal line. The edge
weights follow an exponential decrease, with the most
popular routes having nearly double the weight of the third
most popular route. Unsurprisingly, the least traveled routes
have negligible weights. Although certain stations appear at
the top of both node and edge metrics, there are distinct
variations in popularity patterns between routes and stations,
with stations showing a more gradual decline in strength.
Figure 2 highlights important geographical areas using a

station’s node size to signify its individual importance. In
Figure 2(a), degree is strongly correlated with strength,
with the exception of the Monkstown node, which is
geographically isolated from other stations. High degree
nodes, shown in red, are typically located in the center of
residential areas, serving as transportation hubs for people
traveling to and from these areas.
The closeness metric provides additional insight into the

significance of stations within the network. Stations with
high closeness values (depicted in red) mean that stations
are well-connected to a large number of other stations, while
stations with lower scores tend to be isolated. In Figure 2(b),
the top 10 closeness stations are in the center of the city,
indicating that these stations have extensive connections with
numerous other stations throughout Dublin. The network’s
average closeness score is 0.59, implying that, on average, a
station is approximately 1.7 trips away from other stations.
As closeness values do not vary much across stations, this

means that there is no clear standout station that serves as
a central hub for reaching many other stations via existing
trips. This is advantageous, as it means that no single station
closure or removal would significantly disrupt movement
throughout the network.
In Figure 2(c), nodes with high betweenness scores are

represented in red. These high scoring nodes are primarily
situated along the river in the city center or in the Blackrock
area. When a high-betweenness node like Blackrock is
isolated, it suggests that the closure of this station could
potentially divide the network into two separate segments, with
renters and bikes confined within their respective networks.

FIGURE 2. Graph Analytics for Spatial Bike Graph Networks.

The final analysis for SBiGNs identifies communities
using spatial data only where Figure 3 shows nodes with
the same color as belonging to the same group. Four
communities are clearly identified: the north-east (purple),
the north-west (green), the south-city group (yellow) and
the south-suburban (Blackrock and Monkstown) area (red).
It is an interesting observation that three communities exist

VOLUME 5, 2024 123



CUONG et al.: ANALYZING SHARED BIKE USAGE THROUGH GRAPH-BASED SPATIO-TEMPORAL MODELING

FIGURE 3. SBiGN Community Detection.

close to the centre of the city with two on the north side
and a single cluster on the south side. This would indicate
more widespread usage on the north side, perhaps indicating
that more customers use the bikes for work or might be an
indication of socioeconomic properties. The final community
(Blackrock-Monkstown) is quite isolated from the other three
as it is located far from Dublin city center. Trips here are
usually along the coastline or from nearby residential areas
to the coast but rarely cross over to other communities. This
is an interesting finding given there exists communities with
no overlap whereby customers and bikes remain “trapped”
inside that network.

3) SBIGNS: SUMMARY

In SBiGNs, we addressed Requirement 1 by providing a
high-level visualization that crosses both time and space.
Information contained in Tables 2 and 3, as well as
Figures 2 and 3, offer further insights or context into the
visualization provided by the network. These include the
strength, degree, closeness, betweenness, different station
communities, along with the weight of routes over the span
of 15 months.

B. OUR TEMPORAL BIKE GRAPH NETWORKS
TBiGNs are employed to analyze different movement pat-
terns for specific time intervals. In this experiment, daily
and monthly graph projections were constructed to facilitate
both detailed and broader analyses, respectively.

1) DAILY TBIGNS - NETWORK CONSTRUCTION

In this experiment, 7 TBiGNs are generated for each day
of the week, covering a span of 66 weeks within a 15-
month period from June 2020 to August 2021. These 7
TBiGNs have been categorized into two groups: “weekday”,
representing 5 TBiGNs of 5 weekdays, and “weekend”
representing 2 TBiGNs of the 2 days of the weekend. From
36,181 trips of the cleaned dataset, similar to SBiGN, we
have also removed loop and weak links in TBiGNs. However,
in TBiGNs, weak links are identified as edges with fewer

TABLE 4. Node strength: Weekday vs weekend.

TABLE 5. Edge weights: Weekday vs weekend.

than 5 trips. On each day and on average, we have eliminated
approximately 1,364 loop trips, accounting for 26.4% of the
data and 551 trips connected to weak edges, representing
10.6%.

2) DAILY TBIGNS - ANALYSIS AND DISCUSSION

Table 4 presents the 5 most strength stations, categorized by
weekdays and weekend, sorted by weekday strength. We use
station strength to determine popularity, with each station’s
strength normalized to a daily value for comparison between
the 5-day weekday and the 2-day weekend. The table shows
that the 5 busiest weekend stations are also among the top
20 on weekdays. While, the 5 busiest weekday stations
are still within the top 50 on weekends. This indicates a
significant contrast in station usage patterns. However, it’s
worth noting that 3 out of the top 5 weekday stations also
maintain their top 5 positions on weekends. Exceptions to
the general patterns are observed in the cases of Warehouse
and Mountjoy Square, where most trips are concentrated on
weekdays for commuting. Additionally, Dun Laoghaire Dart
(station) and Blackrock Main St. serve as popular weekend
destinations.
When examining the frequently traveled routes, as indi-

cated by their weights in Table 5, the same variance can be
observed. However, it’s worth noting that the top 5 weekend
routes are encompassed within the top 7 weekday routes.
Furthermore, the strength in both weekday and weekend
networks present a similar exponential decline as seen in
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FIGURE 4. Daily Activity Networks. (Representation Networks of Weekend and
Weekday Clusters).

the SBiGN network, although the decline rates are steeper.
Similarly, edge weights in the weekday and weekend TBiGN
networks also demonstrate an exponential decline that is
comparable to the SBiGN network. As is the case with
Table 4, edge weight values are normalized to facilitate a
comparison between a 5-day weekday and a 2-day weekend.
Weekday and weekend networks are illustrated in

Figures 4(a) and 4(b), respectively. These figures show
strength of stations and weight of edges in respective
networks. The main difference is that in weekday networks,
connections between residential areas and office areas are
clearly identified by large red edges, especially on the north
side of Dublin. On weekends, there are more trips between
the centre and the Blackrock-Monkstown area, most likely
leisure trips.
Figure 5 shows the community structure on weekday and

weekendbasic networks from the entire dataset. Subfigure 5(a)
contains all weekday data, while Subfigure 5(b) contains
all weekend data. The weekend network displays four
distinct communities, whereas weekday networks exhibit
spatially mixed communities, particularly around the centre
of Dublin. Larger node sizes and wider edges denote higher
trip volumes. In both weekday and weekend networks,

FIGURE 5. Daily Activity Communities.

Blackrock-Monkstown constitutes an independent commu-
nity, and stations with strong connections in the suburbs
belong to the same community throughout the entire week.
The TBiGN provides an intriguing level of detail, revealing
that weekday networks are divided into a larger number
of communities compared to weekends. This observation
suggests that on weekdays, people tend to follow established
routes supported by a few highly connected edges, which
in turn create many distinct communities. Conversely, on
weekends, users tend to travel over a broader spatial range
in a less predictable manner, resulting in larger and more
interconnected communities.

3) MONTHLY TBIGNS - NETWORK CONSTRUCTION

Monthly TBiGNs are employed to examine variations in
network activity on a monthly timeframe.
Our approach involved defining a rolling window size,

with size = 4 weeks, starting at week 1. This created 63
networks for the 66 week period in question, from the
beginning of June 2020 to the end of August 2021. Nodes
represent stations, and edges are weighted based on the
number of trips occurring within each 4-week window. In
addition to eliminating loop trips, we optimized the network
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FIGURE 6. Rolling Window Monthly Clustering.

by removing edges with fewer than 3 trips, using a weekly
threshold of 0.75. In each TBiGN, around 384 trips were
removed, accounting for a total of 1,628 trips (approximately
23.6%).

4) MONTHLY TBIGNS - ANALYSIS AND DISCUSSION

We used agglomerative hierarchical clustering with
Euclidean distance, as explained in [35], to create a dendro-
gram showing network changes over time. Figure 6 displays
the results of hierarchical clustering on a series of monthly
basic networks, with the x-axis indicating the start date of
each 4-week period. Notably, three clusters emerged. The
first spans from June 2, 2020, to November 15, 2020, the
second from November 2, 2020, to July 4, 2021, and the
third covers the remainder, from June 28 to the end of August
2021. These clusters align with two waves of COVID-19
lockdowns (restrictions, lockdown) and reopening (easing),
revealing how a major event can impact network activity in
monthly temporal graphs.
Figures 7 illustrates the differences among the three

TBiGN clusters over time.

• Restrictions Cluster. In the cluster representing the first
period from June to mid-November 2020 (Figure 7(a)),
most of the activity occurs at only a few stations and
routes, most notably Phoenix Park and Fairview Park
to the city center. However, we find that the biggest
stations and routes are not concentrated on a single
area but are more widespread across central areas, with
activity mainly near the city.

• Lockdown Cluster. In the second period from November
2020 to early July 2021 (Figure 7(b)), the volume
of activity has reduced considerably due to stricter
lockdown. Also, the top stations and routes become
smaller and have changed with the top 10 most active
stations no longer to the west of Dublin.

• Easing Cluster. In the final period in July and August
2021 (Figure 7(c)), activity levels have almost recov-
ered. Trips occur more at the city centre resulting in

FIGURE 7. Geographical Plot of By Month Clusters. (Representation Networks of
the Clusters).

top stations placed around that location. The top routes
connect residential areas to the center.

5) TBIGNS: SUMMARY

In TBiGNs, we addressed Requirement 2 by presenting
daily TBiGNs categorized and normalized into a week-
day TBiGN and a weekend TBiGN. The data found in
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Tables 4 and 5, as well as Figures 4 and 5 provides insights
into various aspects, including strength and communities of
stations, weight of edges, and activity networks (illustrating
strength and weight).

Additionally, this type of graph addressed Requirement
3 by clustering monthly TBiGNs over time. Figure 7 shows
information about strength of stations and weight of edges
in clusters relating the COVID-19 restrictions, lockdown and
easing periods.

C. OUR SPATIO-TEMPORAL BIKE GRAPH NETWORKS
Spatio-Temporal Graphs enabled the analysis of temporal
patterns that occur between spatial locations. Three levels
of granularity, where the similarity between stations can be
analysed across three temporal dimensions are supported in
the system. These are hourly, where each of the 24 hourly
intervals are averaged across the entire dataset, daily, where
each day of the week is averaged, and monthly, where a
single monthly value is calculated for each station over the
15 months of the study.

1) STBIGN CONSTRUCTION

A typical investigation for this type of network involves the
growth of stations in proportion to the similarity between
them. Nodes are stations and an edge connects two stations
depending on the degree of similarity in terms of the number
of trips over the period of time under analysis. The edge
weight is the Pearson correlation coefficient between two
timeseries. The similarity is only considered significant when
the edge formed between 2 nodes has a coefficient value that
exceeds the threshold, T = 0.533. This threshold ensures
the strong connectivity of the network while maintaining
the least possible number of edges, where T = 0.533 is
statistically significant. The density of the network is 0.098,
where density reflects how well connected the graph is,
calculated as #edges÷ #possibleEdges. For STBiGNs, the
higher the value the greater the similarity between 2 stations.
However, lower density values can indicate stations that have
unique travel patterns.

2) MONTHLY STBIGNS - ANALYSIS AND DISCUSSION

It is important to note that large nodes in STBiGNs
do not mean that stations are popular with many trips.
Instead, the meaning is there are more stations that share
the same properties and thus, 2 low activity stations may
have large values. Furthermore, the edges in correlation
networks are less affected by geographical locations and
more by the properties of the station area. In essence,
this graph identifies stations exhibiting analogous temporal
patterns, characterized by similar trip volumes observed at
corresponding time intervals. Figure 8 displays the network
on a Dublin map, where five communities have been
detected.
Overall, the transportation system sees growth until

August 2020, then experiences a decline in the first few
months of 2021. For the rest of the year, the total number of

FIGURE 8. STBiGN Network: Monthly Timescale.

FIGURE 9. Timeseries Communities in Monthly STBiGNs.

trips almost recovers to its previous peak, a trend observed
in TBiGN graphs but with more fine-grained detail here.
Figure 9 plots the averaged monthly timeseries (every month
in the dataset) for the communities identified in Figure 8
and provides insights into why stations (nodes) formed
communities in distinct parts of the city. Community IDs
are simply labels with nothing inferred from label numbers.
In terms of size: community 15 (Purple) has 13 stations;
57 (Light Blue) has 26 stations; 64 (Light Green) has
15 stations; 65 (Orange) has 20 stations; and 69 (Red) has
12 stations. The light blue stations, primarily located in
the south city center and the red stations, encompassing
the surroundings of the city center, show quick growth in the
first few months before experiencing a significant drop in
activity in January 2021. While the red stations almost fully
recover their level of activity, the light blue stations barely
see any increase in the number of trips. The light green
stations, found mainly in the north of the city center, and the
orange stations, which are scattered mostly in the suburbs,
display a steady growth, with a small decrease noticeable
for the light green ones. Lastly, the purple stations, largely
situated in the south where Dublin and Blackrock connect,
initially show a growth in activity but maintain a stable level
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TABLE 6. Node (station) strength in monthly STBiGNs.

for most of the period, with a slight drop in the final few
months.
To obtain more detail, it is necessary to analyse some

of the raw data. Table 6 shows the node strength as well
as the average weights, and the number of stations that are
positively, neutrally and negatively correlated with the node
in the monthly STBiGN. Columns represent the following
values: Strength is the sum of weights to all other stations;
Avg. Cor. is the average weight for that station; #Pos, #Neu,
#Neg are the number of stations that are positive, neutral or
negative to the station. Thresholds were computed as 0.65
and 0.35. A station has a positive relationship to another
station if w > 0.65 is the weight between them, negative
where w ≤ 0.35, and otherwise, the relationship is neutral.

A complete Table 6 would comprise 86 rows but for
the purpose of this discussion, we examine high, low and
neutral strength stations. Highest strength stations such
as DCU Alpha and Rathmines, are regarded as central
nodes, exhibiting similarity to 47% and 42% of stations
respectively. This indicates that they are good stations to
study (perhaps using more detailed networks) to understand
activity patterns of most stations. Interestingly, both of these
stations are clustered into the purple community which has
mixed patterns with all other communities. Neutral stations
with average coefficients close to 0.5, such as Pearse Street
and Sandymount Village, have minimal correlations with
other stations. This may be an indication that they are not
useful for analysis as they are almost equally positively
and negatively correlated with the activity patterns of other
stations. Low strength stations, including Phoenix Park Gate,
Parnell Street and Irishtown Road, demonstrate monthly
temporal similarities with only a few stations (up to 14),
and have no correlations or are negatively correlated with
the majority of the stations. However, this may make these
stations interesting for analysis as they demonstrate unique
activity patterns.

3) DAILY STBIGNS - ANALYSIS AND DISCUSSION

Dimensional modelling and analysis [36] often involves a
hierarchy of analyses, especially when analyzing over time.
Analyzing data at higher levels of abstraction can often

FIGURE 10. Daily Correlation Network.

identify periods that require more detailed scrutiny. A daily
correlation network provides an analysis on a day by day
basis for any period of time where activities are aggregated
per day. Thus, two stations are connected when activities
are similar in terms of daily comparisons. Timeseries in this
network are vectors of length 7 whose entries corresponds
to each day of the week. A timeseries data point is the total
number of trips occurring at a specific day of the week at
each individual station. An edge is retained only when the
Pearson correlation coefficient between the two timeseries
is above a threshold T , where the goal is to maintain a low
threshold while ensuring a strongly connected network. For
these experiments, we have T = 0.609 and a network density
D = 0.238. Figure 10 shows the daily correlation network
for the entire dataset. Only the top 5 percent of the edges are
illustrated in the figure. The node colors represent detected
clusters of the nodes. The top 10 edges are colored red while
others are blue.
Three major communities and one 3-member one are

detected in the day-of-week correlation network. It can be
seen that the communities are slightly affected by their
spatial locations. Cardinalities are: Community purple with
3 stations; light blue with 31 stations; light brown with
34 stations and red with 18 stations. The largest community
(light brown) is mainly in the south of Dublin, including
the entire Blackrock-Monkstown area but also includes some
stations in the Phoenix Park. The light blue stations are
mainly around the river Liffey. The red nodes are distributed
around the centre and the north of Dublin. The light brown
community is well connected with stations scoring high in
strength and also including the highest station (Castleknock).
This identifies all stations that have very common activity
patterns. On the other hand, the light blue community
contains stations with significantly lower strengths and
without strong connections. We can also see that red stations
can be strongly connected, even though they have a lower
number of members.
Figure 11 displays daily timeseries for each community,

where each day is averaged across the entire dataset.
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FIGURE 11. Timeseries Communities in Daily STBiGNs.

TABLE 7. Node (station) strength in daily STBiGNs.

Generally the Moby Move service tends to be more active on
the weekend, especially on Saturday. From analyses using the
simpler networks, it was possible to determine that the light
brown stations in these graphs are weekend stations. These
stations are significantly inactive on weekdays, but starting
from Friday the number of trips increases dramatically and
peaks on Sundays. Similarly, red stations have low activity
on Mondays and Tuesdays, but the rest of the week is steady
except for Saturday where it peaks. As opposed to the other
two communities, light blue stations are weekday stations
where people use the service more on weekdays.
Table 7 uses the same structure as Table 6 to highlight the

strongest stations in terms of daily correlations. The strengths
and average coefficients have greater variance, ranging from
0.31 to 0.74. This indicates that a clearer pattern should
emerge, forming a bigger community in the network. It also
means that the characteristics of these communities are more
distinguishable.

4) HOURLY STBIGNS - ANALYSIS AND DISCUSSION

Hourly correlation networks facilitate analyses of activity
patterns on an hourly basis. Timeseries have a length of 24
points, corresponding to 24 hours. An entry of the timeseries
is the total number of trips that happen at a specific hour at
the station. The same criteria is again used to form edges
between nodes, with T = 0.737 and a network density
D = 0.370. Figure 12 shows the daily correlation network
with just 3 communities and where Community 13 (purple)
has 38 stations; 26 (light green) has 40 stations and 77 (red)

FIGURE 12. Hourly Correlation Network.

FIGURE 13. Timeseries Communities in hourly STBiGNs.

has 8 stations. Node and edge sizes are proportional to the
sum of coefficients of nodes and edges, respectively. Only
the top 5% of edges are shown with node colors representing
their clusters while the top 10 edges are red with all others
being charcoal.
There are two large communities detected along with a

small one. The light green community concentrates at the
center of Dublin, the purple one surrounds the first com-
munity (mainly located in the suburbs) and the very small
red scattered over a wide location. The central (light green)
stations have the highest strength scores indicating a well
connected community, sharing strong similarities. However,
most of the strongest connections (edges) are in the purple
group, even where station strength is small. This indicates
that the activity pattern among them is very clearly defined.
Similar to daily networks, we observe that stations can
be strongly connected even though they are geographically
remote. This indicates that remote stations can share some
underlying characteristics, such as commuting behavior or
activities in their social lives.
Figure 13 plots the averaged timeseries of the 3 com-

munities with the same colors as used in Figure 12. The
light green community is more active in the afternoons and
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TABLE 8. Node (station) strength in hourly STBiGNs.

evenings, especially between 3pm to 7pm, while there are
much less trips during the mornings. In contrast, purple
stations are busier in the mornings and at noon but less
during afternoons. The small red community provides little
information except around 7pm where it peaks.
Similar to monthly and daily analyses, Table 8 displays the

node strength for hourly networks, where here the threshold
T = 0.65. Given that all stations exhibit a similar pattern
with limited activity during the night and increased activity
during day, it is reasonable that even the smallest strength
nodes reach values as high as 55.1 or an equivalent average
edge weight of 0.648, meaning that the station is significantly
correlated with half of the stations. On the other hand, the
highest strength stations such as Grand Canal Docks and
Criminal Courts of Justice, exhibit significant correlations
with almost every other station. These stations are typically
large hubs with high traffic volumes, so it is understand-
able that they have mixed behaviors and shared patterns
with other stations, as observed with fine grained hourly
STBiGNs.
Having now generated all 3 types of STBiGNs using

the entire dataset in each case, the heterogeneity across the
3 graphs is surprising and unexpected. There is no station
that appears in the top 5 of each. Only Irishtown Road
appears in the top 5 of two STBiGNs, occupying the 3rd
place in Daily and 2nd place in Hourly. If we extend our
analysis to the top 10 stations, once again, no station appears
in all 3 graphs. Only the Rathmines station, which occupies
2nd place in Monthly and 6th in Daily and Dun Laoghaire
Dart, which occupies 3rd place in Monthly and 7th in Daily
appear in 2 top 10 rankings. Thus, stations are quite different
when comparing these similarity patterns at different levels
of granularity.

5) STBIGNS: SUMMARY

In STBiGNs, we addressed Requirement 4 by supplying
correlation networks (illustrating strength, weight and com-
munities), and timeseries communities and strength of
stations in Monthly (Figures 8 and 9, and Table 6), Daily
(Figures 10 and 11, and Table 7), Hourly (Figures 12 and 13,
and Table 8). These outputs provide insights regarding: the
relationship between each station and all other stations; in
addition to relationships between each community and all
other communities based on timeseries comparisons.

VII. CONCLUSION
Launched in 2019, Moby Move is a Dublin bike sharing
scheme with an extensive network across Dublin city. A
research collaboration between Dublin City University and
the City University of New York teamed with Moby Move
to analyze network usage patterns with the goal of detecting
areas of improvement in terms of optimizing the overall
network. The organisation behind Moby Move needed to
extract analytics from their trip database to: have a high level
visualization of the levels of activity across the network;
have the ability to examine spatial regions over specified
time intervals; and to identify stations that are similarly
connected in terms of spatio-temporal metrics. As spatio-
temporal analyses can be difficult to interpret, we adopted a
graph-based model as it enables a smoother representation
of spatial data with temporal aspects captured in relationship
between stations. A gradual approach to more deeper
analyses is enabled by 3 different types of graph networks.
Our proposed method is transferable and not limited to Moby
Move. It enables a more precise interpretation of network
dynamics at a granular level, contributing to the optimization
of transportation networks and enhancing sustainability in
shared transportation systems.
Spatial Graph Networks are easiest to construct and

have the additional benefit of fast identification of strong
(many trips) stations but also the closeness metric quickly
identifies popular station-to-station trips. The Betweenness
metric easily identifies a bridge station through which many
paths must cross. This typically means that the removal of
this station could segment the network and suggests the
need for a new station nearby. To drill-down the information
supplied by SBiGNs, the Temporal Graph Networks add the
time dimension across different levels of granularity. Using
monthly networks, trends (academic year) or events (extreme
weather or in the case of this dataset, COVID-19) can be
observed, as discussed in the findings on the activity levels
during COVID-19 restrictions and subsequent easing.
Spatio-Temporal Graph Networks are used to compare

stations in terms of their activity patterns over a specified
time period. This can be useful in observing how 2 stations
that may be in quite different locations, can have the
same levels of activity; or identify a station with quite a
unique activity level; or detect potential anomalies such as
stations which should have very similar activity patterns
but belong to different communities. What was unexpected
from this analysis was the discovery that almost none of
the stations had the same activity patterns across different
time granularities. The uncovered hidden patterns offers
strong evidence for the usage of graph-based systems when
modelling transportation networks.
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