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ABSTRACT In recent years, there has been an increasing need for effective voltage control methods in
power systems due to the growing complexity and dynamic nature of practical power grid operations.
This paper proposes a real-time voltage control method based on deep reinforcement learning (DRL) that
continuously regulates the excitation system in response to system disturbances. Dynamic performance is
considered during control by incorporating the voltage dynamics data that influence the practical power grid
operation. The proposed approach utilizes the deep deterministic policy gradient (DDPG) algorithm, capable
of handling continuous action spaces, to adjust the voltage reference of the generator excitation system in real
time. To analyze the power system dynamic process, a versatile transmission-level power system dynamic
training and simulation platform is developed by integrating the power system simulation software PSS/E and
a user-writtenDRL agent code developed in Python. The platform facilitates the training and testing of various
power system algorithms and power grids in dynamic simulations. The efficacy of the proposed method is
evaluated based on the developed platform through extensive case studies on the IEEE 9-bus system and
the Texas 2000-bus system. The results validate the effectiveness of the approach, highlighting its promising
performance in real-time control with respect to dynamic processes.

INDEX TERMS Voltage control, deep reinforcement learning, DDPG, power system dynamic control, real-
time, excitation control.

I. INTRODUCTION

POWER system voltage stability is critical to the reliable
operation of the system. With the increasing integra-

tion of utility-scale renewable energy and distributed energy
resources, the power system variability has further increased
due to the nonlinearity and unpredictable consumer patterns
of these new types of resources and loads. These factors
enhance the chances of power system dynamic instability and
pose severe challenges to real-time voltage control [1].

Excitation system control is of significant importance
in maintaining generators’ voltages and can impact power
system dynamic stability directly [2]. Excitation control is
considered to be one of the most economical and effective
methods for maintaining voltage and dynamic performance
enhancement [3]. Numerous excitation control methods have
been conducted in terms of voltage regulation considering
system dynamic stability after disturbances. A decentralized
nonlinear voltage controller was proposed in [4] to achieve

both voltage regulation and system stability improvement.
Global control(GC) where a stable controller is used for
the fault period and a voltage controller is activated for
voltage level regulation in [5]. Different controllers need
to be switched at different operating stages to guarantee
a satisfactory voltage level and system dynamic perfor-
mance. Lyapunov-function-based methods can achieve volt-
age regulation and dynamic stability control simultaneously
by designing the excitation control without switching [6].
A Lyapunov-based decentralized control (LBC) was pro-
posed in [7] to enhance power system dynamic performance
by simultaneously controlling the excitation and governor
systems. The time-derivative of the Lyapunov function is
designed by the feedback control of synchronous generators,
and voltage deviation is considered as the feedback variable
to realize voltage regulation as well as dynamic performance
improvement. The majority of these model-based meth-
ods have been claimed to achieve promising performance.
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However, they rely heavily on accurate information of power
system topology and parameters. Furthermore, power sys-
tems are experiencing uncertainties of load changes and
contingencies and it is quite challenging to apply the
above model-based methods. Therefore, a voltage regulation
method that is flexible and scalable to the application and
operational uncertainties needs to be developed.

Artificial intelligence (AI) techniques have matured and
are now being applied to various power system applications
[8], [9], [10], [11], [12], [13]. These data-driven, model-free
methods [14] are particularly well-suited for highly non-
linear and high-dimensional power systems, especially with
the availability of phasor measurement units (PMUs) that
enable the synchronized transfer of dynamic data across the
grid. Advanced control schemes for enhancing power system
stability based on AI methods have been developed, and the
recent success of reinforcement learning (RL) has shown
promise in addressing various power system challenges.
An RL agent can be trained to respond instantaneously to
a range of system operating conditions based on knowledge
obtained by interacting with the power system environment
during the training process. Therefore, a real-time applica-
tion based on RL is possible. Q-learning, a conventional RL
method, has been utilized in [15] and [16] to learn a reactive
power optimal control scheme and keep the voltage within the
normal range. Q-learningwas also adopted in [17] for optimal
tap setting of on-load tap changers of step-down transform-
ers (connecting electric distribution systems with the rest of
the system) to control the distribution system side voltages
under uncertain load dynamics. Reference [18] proposed a
control scheme of active power generations to prevent system
cascading failure based on Q-learning, the controller operates
in the system’s normal state and takes actions in the form of
preventive control to make adjustments in case of cascading
failure when the system suffers large disturbances. How-
ever, conventional RL methods only work in environments
with discrete and finite state and action spaces and thus are
not suitable for large, complex problems, such as real-time
control problems for large-scale power systems. To over-
come this disadvantage, deep reinforcement learning (DRL)
has been developed by researchers, which utilizes power-
ful deep neural networks as function approximators that
enable high-dimensional feature extraction. Reference [19]
proposed a two-time-scale voltage control scheme, includ-
ing fast inverter control and switching of shunt capacitors
at a slower time control based on the Deep Q-Network
(DQN) algorithm. Reference [14] applied DQN and Deep
Deterministic Policy Gradient (DDPG) for subsystem voltage
control and found that DDPG performed better with sufficient
training scenarios. The voltage set point of a STATCOM is
regulated using SARSA to facilitate discrete reactive power
injection for voltage control in [20]. ESS, PV, and SVC
output power levels are managed with the SAC algorithm
to mitigate voltage violations in [21] where predefined dis-
crete power levels are used for voltage control. Active power
security correction control is implemented using TD3 in [22],

while autonomous line flow control is achieved through PPO
[23]. Reference [24] combined multiple types of equipment,
including transformers and switched shunts, to realize volt-
age regulation based on the DDPG algorithm. Reference
[9] adopted multi-agent deep deterministic policy gradient
(MADDPG), which is a multi-agent continuous actor-critic-
based algorithm, to realize voltage regulation among different
regional zones based on power flow data. However, these
works focused on the steady-state performance of the system,
ignoring the influence of the dynamic behaviors in the tran-
sient process when subjected to a disturbance.

References [25] and [26] addressed transient stability
issues to keep the system in synchronism by control-
ling power system components, such as wind turbines and
generators. Approximate Dynamic Programming (ADP) is
used in [25] to optimize the closed-loop performance of
a wind-integrated power grid by providing supplementary
damping control. Another study [26] proposed a wide-area
control architecture that includes a local supervised PSS
control and an RL-based global wide-area control, which
locally damps and inter-area oscillations while prioritizing
local signals. In [27], the authors used DRL methods to
implement dynamic braking and under-voltage load shedding
for power system emergency control. While these meth-
ods have been tested on the IEEE 39-bus system or the
68-bus system, practical regional power grids are larger and
more complex, which need significant information exchange
between RL agents and the power grid environment, espe-
cially considering the dynamic performance and real-time
control application. To address these challenges, this paper
proposes a real-time voltage controlmethod that continuously
regulates the excitation system based on DRL. The dynamic
performance attributes are considered to include dynamic
stability factors that may influence power system operation
in practical power grids. The voltage control function is
achieved by adjusting the generators’ excitation system under
system disturbances. The DDPG algorithm, which deals with
continuous action spaces, is used in this paper to continuously
control the voltage reference of the generator excitation sys-
tem. To focus on the dynamic process, a transmission-level
dynamic power system training and simulation platform is
built based on the commercial power system software pack-
age PSS/E and user-written code in Python. By using DRL,
this paper proposes a controller that allows generators to
change their reactive power output within specified limits in
real time, enabling the system to satisfy operational require-
ments and provide voltage support in response to distur-
bances or load changes. The main contribution of this paper
includes:

1) A novel real-time voltage control method based on
DRL is proposed, which not only regulates and controls
the voltage but also considers the dynamic performance
of the power system after the control implementation.
By leveraging DRL algorithms, the proposed method
achieves improved dynamic performance, addressing
the challenges of practical power grids characterized
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by large size, complexity, and real-time control
requirements.

2) A transmission level power system dynamic training
and testing platform is built in this study using a combi-
nation of a commercial power system software package
PSS/E and a user-written DRL agent code developed
in Python. This platform provides a versatile environ-
ment that enables the training and testing of various
power system algorithms in different power grid envi-
ronments. The platform supports different scenarios
that enable the simulation of various system conditions.

3) A large-scale power system is tested and verified based
on the dynamic training and testing platform to inves-
tigate the control performance for large power grids.
The platform’s ability to handle large and complex
dynamic power system environments further ensures
the practicality and effectiveness of the tested methods
in real-world scenarios.

The paper is organized as follows: Section II formulates the
problem and introduces the relevant analytical background.
In Section III, the proposed DRL-based dynamic voltage
control method is described in detail. The design of different
reward functions is discussed. The power system dynamic
training and simulation platform is discussed in Section IV.
Section V demonstrates the simulation results for the IEEE
9-bus system and the 2000-bus Texas synthetic test system.
Finally, concluding remarks are provided in Section VI.

II. PROBLEM STATEMENT AND DEEP
REINFORCEMENT LEARNING
A. POWER SYSTEM DYNAMIC OPERATION
WITH EXCITATION SYSTEM
A dynamical system is a complex system where the behavior
evolves over time, and the power system is an example of such
a system. It involves interactions between subsystems with
an enormous number of variables that are constantly chang-
ing during operation. Thus, the dynamic process of power
grid operation possesses a highly non-linear characteristic,
which is essentially a process of sequential decision-making.
In the event of a disturbance, it becomes essential to take
appropriate control measures to ensure optimal control while
considering power system stability, control cost, and vari-
ation of the dynamic variables of the power grid. This
decision-making process can be described as a Markov deci-
sion process (MDP) [27] and solved by DRL algorithms,
which will be discussed in more detail in Section III.
As for the action for the control of the excitation system,

numerous parameter setting methods have been discussed
by researchers. However, the parameters are usually set as a
constant before the generators are put into operation, which
results in inflexibility and underutilization of reactive power
[28]. To address this issue, DRL can be implemented to
continuously optimize the excitation system parameters in
real-time during system operation. This allows the DRL
algorithm to interact with the power system environment,

FIGURE 1. Interaction between RL agent and environment.

exchange information, and learn the control policy of highly
non-linear power systems without requiring detailed power
grid model information.

B. REINFORCEMENT LEARNING
RL agent learns by interactingwith the environment andmak-
ing sequential decisions through a trial-and-error process.
During the training process, the learned policy is continu-
ously evaluated to guide the agent toward adjusting its control
policy in the right direction. The RL agent aims to maximize
the value of a reward function that is carefully designed to
capture the objectives of the task. The agent explores different
actions and extracts information about the state representa-
tions of the environment in real-time or through simulation
to achieve this goal. If an action results in an increase in the
reward value, the agent reinforces the trend of the action;
otherwise, the action is attenuated. By adding various event
scenarios to the data set, the RL agent can be fully trained to
learn a behavior that yields maximum rewards.

The environment follows the Markov Decision Process
(MDP). The formulation is defined as a finite MDP [29],M :

M ∈ (S,A,P,R, γ ) (1)

which includes a continuous or discrete state space S and
action space A. The environment transition probability P
maps a state-action pair at time t to a probability distribu-
tion over possible next states. A reward R is given for each
state-action pair and a discount factor γ ∈ [0, 1] is used to
balance immediate and future rewards.

Figure 1 illustrates the interaction between the RL agent
and the environment. At each step t , the agent observes the
current state st from the environment and selects an action
at based on its current policy. The agent obtains a reward
rt based on its action and state, and the environment transi-
tions to a new state st+1. This process is repeated iteratively
with the agent continuously updating its policy based on the
observed states, actions, and rewards until a preset number of
episodes is reached to end the training.

The agent aims to choose the optimal action given the cur-
rent state to achieve the maximum accumulated discounted
reward Rt over time:

Rt =
T∑
i=t

γ i−tri (2)
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where T is the time step. The key concept in searching for the
optimal policy is evaluating the state-value function V and
the action-value function Q, which is also known as the Q-
function. The state-value function evaluates the goodness of
a state for an agent under policy π , as shown in (3)

V π (s) = E[Rt |st = s] (3)

The Q-function Q(s, a) represents the expected cumulative
future discounted reward for an agent under policy π and
estimates the value of performing a certain action at in a given
state st :

Qπ (st , at ) = E[Rt |st = s, at = a] (4)

The Q-function is updated by the recursive relationship in the
Bellman equation [30]:

Qt+1(s, a) = E[R+ γmaxa′Qt (s
′, a′)|s, a] (5)

The Bellman equation will eventually converge to the optimal
solution Q∗(s, a) as the iterations proceed if the states follow
the Markov property.

C. DEEP DETERMINISTIC POLICY GRADIENT
ALGORITHM
DDPG is a reinforcement learning algorithm that is
well-suited for continuous action spaces. It uses an
actor-critic structure that concurrently learns a Q-function
(modeled by the critic neural network) and a policy (modeled
by the actor neural network). To improve the stability of the
approach, DDPG utilizes a copied actor neural network and a
critic neural network to calculate the target values, which are
periodically updated with the weights from the main neural
networks to ensure consistency. In total, DDPG includes four
networks to estimate the policy and value function: actor,
target-actor, critic, and target-critic. Equation (6) is used to
update the critic Q(s, a) value.

Q(s,a)
j+1 = Q(s,a)

j + α[Rj + γmaxQ(s′,a′)
j − Q(s,a)

j ] (6)

where α is the learning rate, γ is the discount rate, andQ(s′,a′)
j

represents the target critic neural network.
The control action is obtained from the actor neural net-

work, which enables DDPG to handle a continuous action
space in a practical large-scale system. The actor neural
network uses a parameterized actor function to determine
a deterministic action based on the system states. During
training, the policy π is updated in the direction suggested
by the critic neural network to maximize the expected reward
by taking steps in the direction of ∇θµJ with respect to the
actor parameters. It is formulated as:

∇θµJ =
1
N

∑
∇aQ(s, a)|s=sj,a=µ(sj)

∇θµµ(s|θµ)|s=sj (7)

where J is the starting distribution, µ(s|θµ) is the parame-
terized actor function, and θµ is the policy neural network
parameter.

The weights of the target neural networks are periodically
updated using a soft update method: θ ′← ρθ + (1− ρ)θ ′,
where ρ is a fraction weight that lies between 0 and 1.

During the action exploration, a decaying noise is added to
the policy to improve the agent’s ability to explore the range
of actions available to solve the environment:

µ′(sj) = µ(sj|θ
µ
j )+ ξj (8)

where ξj+1 = rd ∗ ξj and rd is the decay rate.
Both the critic and actor are approximated with parameter-

ized neural networks. The details of the DDPG algorithm can
be found in Algorithm 1 [30].

Algorithm 1 Deep Deterministic Policy Gradient
algorithm for Real-time Dynamic Voltage Control

input : power system environment states
output: control action applied to the power system

environment

1 Initialize the critic network Q, Q′ and actor network
µ, µ′ with random weights θ , θ ′← θ and φ,
φ′← φ.;

2 Initialize the experience replay buffer D.;
3 for episode 1 to M, do
4 Initialize the environment and obtain initial state

S0;
5 Initialize a random process N for action

exploration;
6 for step 1 to T , do
7 Select action at = µ(st |θ + Nt ) according to

the current policy and exploration noise;
8 Execute action at , observe rt and next state

st+1 ;
9 Store transition ( st , at , rt , st+1) in D;
10 Sample a random minibatch of B transition (

sj, aj, rj, sj+1) from D;
11 Compute the critic target:
12 yj = Rj + γQ′(sj+1, µ′(sj+1|θµ′ )|θ

′

)
13 Update the critic Q-function by gradient

descent using:
14 L = 1/N

∑
j(yj − Q(sj, (aj|θ

Q))2

15 Update the target networks as:
16 ∇θµJ =

1
N

∑
∇aQ(s, a)|s=sj,a=µ(sj)

∇θµµ(s|θµ)|s=sj
17 Update the network parameters:
18 θ

′

← ρθ + (1− ρ)θ
′

,
19 φ

′

← ρφ + (1− ρ)φ
′

;

III. REINFORCEMENT LEARNING-BASED
VOLTAGE CONTROL
A. DEFINITION OF ACTION, STATE AND OBSERVATION
Voltage magnitudes are commonly used to represent the
operating condition of a power system in reactive power
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and voltage control problems, since other electrical sta-
tuses in system operation can be appropriately reflected in
the voltage change [9], [19], [31]. Partial states in DRL
algorithms can still work well for streaming valuable infor-
mation, allowing for flexibility in data measurement and
communication [9]. Thus, this paper adopts bus voltage mag-
nitudes as the observation states in the Markov decision
process.

The control actions are defined as a vector of excitation
system voltage reference values of the controlled generators.
Each element of this vector is updated continuously. The
value of the voltage references of the excitation system is
adjusted within a predefined range of minimum and max-
imum values in considering the reactive power regulation
capacity of each generator.

B. DEFINITION OF REWARD
1) CONSIDER VOLTAGE MAGNITUDE DEVIATION
AND REGULATION COST
The reward function rt is designed to evaluate the effective-
ness of the control actions at each training step. To restore the
voltage level under the control of the DRL agent, the reward
is designed to motivate the agent to reduce the deviation of
the observed bus voltage magnitude from the reference value
Vref . As shown in (9), if the system diverges after applying the
control action, a significant negative reward will be imposed.
Otherwise, with less bus voltage deviation, a smaller neg-
ative value will be added to the reward at each training
step according to the first term of (9) in the case of system
convergence. This results in a larger accumulated reward after
each training episode composed by a predefined amount of
steps. The reward function will gradually guide the agent
to regulate its actions to reach better states. To enhance the
efficiency of the learning process, the second term associated
with the control action is added and aims to direct the agent in
generating excitation control commands around the reference
value aref , especially when the initial random exploratory
actions deviate too far from aref during training, as such
impractical deviations can result in inefficiency. c1 and c2 are
the weights of these two parts, and they are chosen based on
the expert knowledge of the system as well as trial and error
selection [27]. The definition of 1v and 1a can be seen in
(10)-(11).

rt =


Huge penalty, power system diverges

−c1 ∗
∑
i

1vi(t)− c2 ∗
∑
j

1aj(t), otherwise

(9)

1vi(t) =
∣∣vi(t)− Vref ∣∣ (10)

1aj(t) =
∣∣aj(t)− aref ∣∣ (11)

2) CONSIDER VOLTAGE MAGNITUDE DEVIATION,
REGULATION COST AND HISTORICAL VOLTAGE DATA
Power systems possess significant inertia. The dynamic pro-
cess of system operation is sequential, which means the

current state of the system is affected by both the control
actions as well as the previous system states. Significant
information lies in the massive historical state data for an
operating power grid or a given simulation. For voltage
control problems, historical information can be provided by
observing the history of bus voltage magnitudes. Therefore,
the historical voltage magnitude data is added to the input
to help the DRL agent learn a more accurate policy to cope
with system disturbances. The reward function considering
the historical data is formulated as (12):

rt =



Huge penalty, power system diverges

−c1 ∗
∑
i

1vi(t)− c2 ∗
∑
j

1aj(t)−

c3 ∗
t∑

t−ct

∑
i

1vh−i(t), otherwise

(12)

1vh−i(t) =
∣∣vh−i − Vref ∣∣ (13)

where 1vh−i is the historical voltage magnitude difference
of bus i with bus reference value Vref , ct is the historical
time range considered for a certain past time during system
operation, and c3 is the weight related to the historical data in
the reward function.

3) CONSIDER VOLTAGE MAGNITUDE DEVIATION,
REGULATION COST, HISTORICAL VOLTAGE DATA,
AND VOLTAGE RATE OF CHANGE
During the system’s dynamic evolution and control imple-
mentation after a disturbance or load change, the dynamic
performance is also of significant importance. In order to
avoid system oscillations and voltage fluctuations so as to
facilitate the system voltage recovery in a more stable fash-
ion, both the rates of voltage changes and their historical
values are considered in the reward function (14) to guide
the agent to generate a control policy that is able to aid
in the recovery of the system voltage with more desirable
dynamic performance. The reward function considering both
voltage historical data and voltage rate of change is shown
as (14):

rt =



Huge penalty, power flow diverges

−c1 ∗
∑
i

1vi(t)− c2 ∗
∑
j

1aj(t)−

c3 ∗
t∑

t−ct

∑
i

1vh−i(t)−

c4 ∗
t−1t∑
t−ct

∑
i

vh−i(t)− vh−i(t −1t)
1t

, otherwise

(14)

where c4 is the weight related to the rate of voltage change in
the reward function, 1t is the time interval of every learning
step in the training process. When applied to a practical
power system, 1t could be the data sampling time step of
the measurement device.
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FIGURE 2. Simulation platform for training DRL algorithm in
power system environment.

IV. SIMULATION PLATFORM DEVELOPMENT
AND IMPLEMENTATION
A transmission-level power system dynamic simulation and
training platform is developed for the training and implemen-
tation of the DRL algorithm in the power system dynamic
simulation environment. The time-domain simulation soft-
ware Siemens-PTI PSS/E is used as the power system
simulator to conduct power system dynamic simulations and
emulate the power grid environment. PSS/E provides applica-
tion programming interfaces (APIs) with Python, which can
communicate the power system simulation environment with
the DRL agent in real time to exchange information.

Figure 2 shows the training procedure and the data inter-
action between the power system simulator and DRL agent
in the training platform. The blue and purple blocks represent
the actions conducted in PSS/E and Python, respectively.
The two software elements constantly exchange information
using API in training. The green arrows show the interaction
data flow between them. Power flow and dynamic model files
are prepared to perform power system dynamic simulation.
At the start of the training process, four neural networks with
different sets of randomweights and the replay buffer size are
initialized. For each episode, the power flow is solved, and
dynamic simulation is initialized based on the selected study
case. The disturbance is randomly introduced, and the initial
states are obtained for each training episode, in which one
round of dynamic simulation begins. A loop for a predefined
number of steps per episode starts with the action generated
by the DRL agent. The action then will be sent to the power
system simulator and implemented in PSS/E by adjusting the
voltage reference input of the excitation system. Then, the
dynamic simulation will be run for one training step interval
to update the states of the power system environment, and
the most updated states are sent back to the DRL agent. The
reward will be calculated based on the system observation
to evaluate the performance of the learned policy. The data

will be collected and stored after each round of interaction
between the power system simulator with the objective of
further training. The DRL agent will then learn and update
the parameters of the neural networks based on the obser-
vation data. Another round of learning begins until reaching
the predefined number of steps, and then another episode is
initiated. The agent learns from this repetitive process and
keeps updating the parameters of the critic and actor neural
networks by maximizing the accumulated reward that was
designed to adjust the policy of the action generation until
the maximum limit on the episodes is reached.

For each training time step interval in the platform, the
dynamic simulation will run for one time step to update the
system states, and there will be one round of interaction
between the power system simulator (PSS/E) and DRL agent
(Python), during which data exchange happens.

This training platform is based on power system dynamic
simulation (both power flow data and dynamic data are
required) and is used for the emulation of real-time power
system operation environment. Dynamic characteristics of
systems can be observed by continued interaction and data
exchange during detailed time-domain simulations. Different
power system control problems can be addressed by applying
and testing various state-of-the-art DRL algorithms based on
this platform across a range of power grid simulations varying
in scale.

V. SIMULATIONS AND RESULTS
The IEEE 9-bus system [32] and the 2000-bus Texas synthetic
grid systems [33], [34], [35] are used as the test systems,
based on which time-domain simulations are conducted and
interfaced with the DDPG controller. All the case stud-
ies, including training and testing, were performed in the
simulation environment based on the platform described in
Section IV.

A. SIMULATION PARAMETERS
The training hyperparameters parameters are crucial to the
efficiency of the algorithm. With careful tuning by trial and
error, the learning rates for both the actor and critic are set as
0.001 with a 0.9 discount rate. The batch size, which indicates
the number of sampled training data utilized from the reply
buffer in one iteration, is set as 128 in considering the number
of states and actions space in this study. A value of 10,000
memory capacity is adopted to adapt for a 128-batch size.
Exploration noise is set as 1.6 to introduce explorations that
can enrich the data set.

Both actor and critic neural networks have two hidden lay-
ers, which are connected with activation functions. The actor
neural networks adopt Relu and Tanh activation functions,
and critic networks adopt Relu as the activation function.
Each layer includes 32 units to store and update the data.

The training step interval is set as 1 second, which means
the power grid environment will exchange information with
the DDPG agent, send current states, and get action com-
mands every 1 second. The maximum step number, which
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FIGURE 3. Case 1 of IEEE 9-bus system: Average reward.

indicates the maximum iteration count of each episode during
training, is set to 50. The dynamic simulation will first run for
5 seconds to provide the initial states to start the training in
each episode. Then, the disturbance is added at 5s. Therefore,
each round of dynamic simulation will run for 55 seconds in
total in every episode.

B. IEEE 9-BUS SYSTEM
The IEEE 9-bus system includes three generators and nine
buses. Generator 1, a hydraulic unit with the salient-pole
generator model GENSAL, is connected to slack bus 1.
Generators 2 and 3 are steam turbines with the round-rotor
synchronous generator model GENROU, they are controlled
by the DDPG agent to participate in voltage control. All
three generators are equipped with an IEEE type 1 exci-
tation system model (IEEET1, the detailed model can be
found in [36] of type DC1A excitation system model) and
an IEEE standard governor model (IEESGO). The maxi-
mum action output is set as 1.3. The system loads include
an active power component of constant current load and a
reactive power component of constant impedance load. The
reactive power load is randomly perturbed as the disturbance,
which results in around 3% - 5% voltage fluctuations. The
desired voltage normal range is conservatively considered as
0.98-1.02pu in this study, so the voltage reference in (10)
and (13) is set as 1.00 pu to guide the DRL agent to control
the voltage within the set range. Three cases with different
training reward functions are discussed and analyzed below.

1) CONSIDERING VOLTAGE MAGNITUDE DEVIATION
The agent is trained with the reward function of (9) that
considers bus voltage magnitude deviation. Figure 3 shows
the moving average reward finally reaches a satisfactory level
after 2000 episodes of training. The DDPG agent is applied
to the system after being well-trained for testing by adding
load disturbance at 5s to induce voltage changes. The test
results, depicting the response to a 90 MVar reactive power
load increase, are illustrated in Figure 4 and Figure 5.

Under generator control with constant exciter parameters,
the system bus voltage magnitudes are significantly impacted
and keep decreasing after the disturbance, which puts the
system at high risk of losing stability. With the DDPG agent
participating in the voltage control, bus voltages can be

FIGURE 4. Case 1 of IEEE 9-bus system: Voltage of bus 8 and
bus 5 with and without DRL agent.

FIGURE 5. Case 1 of IEEE 9-bus system: Generator voltage
reference commands from DRL agent.

regulated to normal levels. The change of the excitation sys-
tem voltage reference value of the two controlled generators
can be seen in Figure 5. Generator 3 provides full voltage
support after detecting the disturbance, and generator 2 is
responsible for the voltage regulation in real time according to
the system operating. The two generators cooperate under the
control of the DDPG agent to help the system restore voltage.

2) CONSIDER VOLTAGE DEVIATION AND
HISTORICAL VOLTAGE DATA
To further analyze the impact of historical data on agent
control performance, we trained the DDPG agent with the
reward function (12) that considers historical voltage data and
bus voltage magnitude. ct in (12) is set as 5, meaning the
past 5 seconds of data are considered. After 2000 episodes
of training, the moving average reward shown in Figure 6
reached and maintained a high level. After the training con-
verges, the DDPG controller is implemented in the dynamic
simulation of the system. This test simulation involves intro-
ducing the same 90 MVar reactive load change, enabling a
comparison with case 1. The results of Figure 7 show that the
DDPG agent’s control policy considering historical voltage
data can provide support to the system, helping it recover
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FIGURE 6. Case 2 of IEEE 9-bus system: Average reward.

FIGURE 7. Case 2 of IEEE 9-bus system: Voltage of bus 8 and
bus 5 with and without DRL agent.

to a normal voltage level. It’s worth noting that in case 2,
the bus voltage recovered faster with fewer oscillations,
which demonstrated better dynamic performance compared
to case 1. This provides evidence that historical data can
provide valuable information to the DDPG agent, improving
its policy accuracy in managing voltage oscillations and fluc-
tuations during system operation.

3) CONSIDER VOLTAGE DEVIATION, HISTORICAL
VOLTAGE DATA AND RATE OF CHANGE OF VOLTAGE
To explore the impact of the rate of voltage change data on
the DDPG agent’s performance, further training using the
reward function in (14) is conducted. This function considers
the rate of voltage change in historical data, which is calcu-
lated using the previous and present voltage values. For the
preceding 5 seconds of historical data, there are four rates
of voltage change data for each controlled bus. Following
the completion of training, which is shown in Figure 8, the
DDPG controller is tested with a reactive power load increase
of 90 MVar as well. As shown in Figure 9, the results demon-
strate that the agent can effectively support the system voltage
recovery to the desired range in a more stable manner.

FIGURE 8. Case 3 of IEEE 9-bus system: Average reward.

In the analysis of the DDPG agent’s dynamic control
performance, different types of information in the reward
functions are analyzed in Case 1 through Case 3. Figure 10
shows a comparison of the voltage control performance when
theDDPG agent is testedwith the same disturbance. The solid
curve of Case 3, which considers both historical voltage data
and voltage rate of changes, exhibits the smoothest voltage
curvewith the least fluctuation under the control of the DDPG
controller. Additionally, Case 3 is capable of regulating and
recovering the voltage faster due to the controller’s ability to
more accurately predict voltage changes based on dynamic
features learned during training. The agent provided with
extra information on the rate of voltage change can generate
more effective actions to not only control the voltage level but
also achieve better dynamic control performance.

4) WITH TIME-VARYING LOAD CHANGES
For a more comprehensive assessment of control perfor-
mance under time-varying load fluctuations, varying load
changes are introduced subsequent to the initial disturbance
during the dynamic simulation. The reward function of (14) is
used in this scenario, which incorporates the information on
voltage deviation, the historical voltage data, and the voltage
rate of changes. Specifically, after the initial 50MVar load
change, an additional 30MVar load change at 20s and a
20MVar load change at 35s are introduced. The test results
for bus voltage are depicted in Figure 11. Compared to bus
voltage without the DRL controller, the voltage levels show
significant improvement and ultimately return to approxi-
mately 1 pu. The smooth and satisfactory voltage recovery
process underscores the effectiveness of the proposed control
method in successfully addressing time-varying disturbances
and effectively managing cascading failures.

C. TEXAS 2000-BUS SYNTHETIC TEST SYSTEM
To evaluate the effectiveness of the proposed DRL-based
dynamic voltage control method on a more realistic system,
simulations are conducted on the Texas 2000-bus synthetic
power system, which is a large-scale representation of an
actual power grid. This serves as a crucial step to test the
proposed control method and the training platform.

In Figure 12, the structure of the Texas 2000-bus synthetic
power system is depicted, where disturbances are introduced
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FIGURE 9. Case 3 of IEEE 9-bus system: Voltage of bus 8 and
bus 5 with and without DRL agent.

FIGURE 10. Case 1 to Case 3 comparison of IEEE 9-bus system:
Voltage of bus 8 and bus 5.

in the heavily loaded Houston area (highlighted in red) to
simulate scenarios with voltage issues. Among the genera-
tors, 7098 and 7099 are well-suited as controlled generators
due to their large capacity and ample reactive power capa-
bility. As generator 7098 is connected to the swing bus
of the system, generator 7099 is selected as the controlled
generator, along with generator 7310, which is located at a
short electrical distance from the Houston area, these two
generators are chosen as the controlled generators for this
case study. Generator 7099 and 7310 are both represented
with theGENROUgeneratormodel. Generator 7099 employs
an IEEET1 exciter model and IEEE type 1 speed-governing
model (IEEEG1). While generator 7310 utilizes the ESST4B
exciter model(the detailed model can be found in [36] of
type ST4B excitation system model) and a general turbine-
governor model(GGOV1). The system includes the same

FIGURE 11. Case 4 of IEEE 9-bus system: Voltage of bus 8 and
bus 5 with and without DRL agent.

FIGURE 12. Diagram of disturbance area of 2000-bus system.

FIGURE 13. Case 1 of 2000-bus system: Average reward.

load model as the 9-bus system. To train and evaluate the
controller’s response to voltage changes, system disturbances
are induced by altering the reactive power loads.

1) CONSIDERING VOLTAGE MAGNITUDE DEVIATION
AND REGULATION COST
The simulation beginswith the base case that utilizes equation
(9) as the reward function, which considers voltage mag-
nitude and regulation cost. After training the DDPG agent,
as shown in Figure 13, where the reward reaches a high level,
the agent is tested and the results are shown in Figure 14 to
Figure 15. The results indicate that the agent can improve the
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FIGURE 14. Case 1 of 2000-bus system: Voltage of bus 7068 with
and without DRL agent.

FIGURE 15. Case 1 of 2000-bus system: Generator voltage
reference commands from DRL agent.

FIGURE 16. Comparison of 2000-bus system test results.

voltage to a satisfactory level compared to the conventional
control mode. When a 230 MVar reactive load increases at
5s, the agent can detect the voltage change and generate
commands to improve the generators’ output immediately.
The voltage of bus 7068 is shown in Figure 14 and Figure 15
as the voltage level representative for analysis. The voltage
is restored to a normal level in about 2 seconds after the
disturbance, and the generators can continuously regulate
the excitation systems to achieve real-time voltage control
in the recovery process. The two generators can respond
quickly to voltage fluctuations under the control of the DDPG
agent, which performs well in both situations of quick voltage

control during sudden disturbances and minor voltage regu-
lation in the process of system recovery.

2) CONSIDER VOLTAGE DEVIATION, REGULATION
COST, HISTORICAL VOLTAGE DATA AND RATE OF
CHANGE OF VOLTAGE
Various reward functions are employed for the DDPG con-
troller in the Texas 2000-bus system, including considering
historical voltage deviation and adding voltage rate of change
in addition to the base case. The simulation results with the
same load disturbance as case 1 are presented in Figure 16.
The addition of voltage rate of change in the reward function
leads to voltage recovery with a smoother curve, compared
to the basic case and the case that includes historical voltage
deviation. These two cases exhibit minor voltage oscillations
and deviations, which do not exhibit satisfactory dynamic
performance, though the voltage level has recovered to the
normal level. The reward function which includes the voltage
rate of change can guide the agent to achieve a maximum
reward value and mitigate the oscillations, which improves
the system’s dynamic performance during control.

VI. CONCLUSION AND FUTURE WORK
This paper proposes a DRL-based data-driven excitation
control scheme to realize real-time voltage regulations. The
voltage control problem is formulated as a Markov Decision
Process considers historical voltage data and the voltage
rate of change information besides the voltage deviation and
regulation cost, which leads to better dynamic performance
during voltage recovery after disturbances. The develop-
ment of a dynamic simulation training and test platform
provides a reliable environment for the training and test-
ing of different scales of systems regarding various control
problems based on DRL algorithms. The results show that
the proposed DRL-based dynamic voltage control method
outperforms conventional voltage control methods in terms
of faster and more accurate voltage control without rely-
ing on complex system models. The method demonstrates
promising dynamic performance and can be readily gener-
alized to large-scale power systems, which has the potential
to be applied in practical power systems for real-time voltage
control.

DDPG exhibits strengths in managing continuous action
spaces, promoting sample efficiency, and demonstrating
effectiveness in solving problems that require deep neural
networks. Nevertheless, it does exhibit sensitivity to hyperpa-
rameter configurations and relies on a straightforward noise
injection policy for exploration. It is worth considering more
advanced algorithms that offer stable performance and can
effectively address the uncertainties inherent in power sys-
tems.
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