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ABSTRACT This paper aims to forecast solar power in very short horizons to assist in real-time distribution
system operations. Popular machine learning methods for time series forecasting are studied, including
recurrent neural networks with Long Short-Term Memory (LSTM). Although LSTM networks perform well
in different applications by accounting for long-term dependencies, they do not consider the frequency domain
patterns, especially the low frequencies in the solar power data compared to the sampling frequency. The
State Frequency Memory (SFM) model in this paper extends LSTM and adds multi-frequency components
into memory states to reveal a variety of frequency patterns from the data streams. To further improve the
forecasting performance, the idea of Fourier Transform is integrated for optimal selection of the frequency
bands by identifying the most dominant frequencies in solar power output. The results show that although
the SFM model with uniform frequency selection does not significantly improve upon the LSTM model, the
proper selection of frequencies yields overall better performances than the LSTM and 27% better than the
persistent forecasts for forecast horizons up to one minute. Furthermore, a predictive voltage control based
on solar forecasts is implemented to demonstrate the superior performance of the proposed model.

INDEXTERMS  Solar forecasting, state frequency model, discrete Fourier transform (DFT), long short term

memory (LSTM), very short term solar forecasting, predictive voltage control.

. INTRODUCTION

HE power system industry has gradually shifted towards

renewable generation in recent years. Specifically, the
installation of solar generation units has been booming for
the last decade. In the United States with the Investment
Tax Credit established in 2006, an average growth rate of
50% annually is observed in the installation of solar power
panels [1]. Although this rapid growth helps reduce genera-
tion cost and pollution compared to conventional fossil fuel
units, the uncertainty associated with renewable generation
introduces new challenges to the operation and control of
power systems [2], [3]. Accurate and reliable forecasts play
a key role in handling the uncertainties associated with solar
generation [4]. Therefore, forecasting solar generation is vital
for systems with high penetration of solar energy [5].

Solar power forecasting horizon can range from a few
seconds to several days and months ahead [6], [7]. The
length of the forecast horizon depends on the application
of the forecast in power systems. Long-term solar forecasts
are critical in power system planning and provide seasonal
and yearly trends in solar power [5]. Solar forecasts with
medium horizons are used for operational decisions such as
unit commitment and day-ahead planning [8], [9], [10], [11].
Short-term solar forecasts are employed for system operation
from minutes to a few hours ahead [12], [13], [14]. For
example, short-term forecasts are utilized to cope with renew-
able power generation uncertainty in real-time economic
dispatch [15]. Lastly, very short-term solar power forecasting
ranges from a few seconds to a few minutes in terms of the
horizon.
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Very short-term forecasting is not given as much attention
in the literature compared to longer forecast horizons. How-
ever, it can be an important asset in power system control such
as voltage and frequency control applications [16], [17]. For
example, solar power forecasts from 1 second up to 1 minute
ahead are used to estimate the voltage changes in a power
system with high penetration of PV for coordinated voltage
regulator control [18], [19]. While other renewable energy
resources such as wind power in general are more uncertain
than solar power generation and exhibit more intermittency
due to weather conditions [20], solar power is more volatile
in small time windows of less than a minute. Our prior study
shows that the PV power output can change more than 50% of
the capacity in less than a minute [21]. Such large changes in
solar power output can present a challenge for power balance
and affect the voltage and frequency quality in the system.
Therefore, solar forecasts with intra-minute horizons are very
important, and in this study, we focus on improving very
short-term solar power forecasting.

Solar forecasting models can be categorized into four
groups in terms of their input type. The first group includes
physical models that employ the underlying physical relation-
ship between solar power generation and variables such as
solar irradiance, zenith angle, temperature, and other weather
data. These models usually depend on numerical weather
predictions or satellite and sky images. Models depending
on numerical weather predictions are generally used for
long-term forecasts, while satellite-based models are mostly
utilized in short-term forecasts [22], [23], [24]. The fore-
cast models that rely on sky images, however, are applied
to short-term and very short-term forecast horizons [25].
The second group consists of statistical models applied to
historical data for generating solar power forecasts. Linear
regression and Auto-Regressive Integrated Moving Average
(ARIMA) models and their variations are examples of statis-
tical models [26], [27], [28]. Statistical forecasting models
are applied to intra-day and intra-hour solar forecasts for
best results [6]. The third group employs machine learning
methods to learn the relation between input and output vari-
ables to forecast solar power, including Random Forecasts
(RF), Support Vector Regression (SVR), Gradient Boosting
(GB), and Artificial Neural Networks (ANN) [24], [29]. The
machine learning models typically outperform other models
in short-term forecasts. The fourth group consists of the
hybrid models that combine the previously mentioned models
for solar power forecasting [30].

One of the important factors in model selection is the fore-
cast horizon. For example, long-term forecasts typically rely
on numerical weather predictions while short-term forecasts
more commonly depend on statistical models and exogenous
data such as cloud movement. However, very short-term fore-
casts with intra-minute horizons cannot rely as much on the
exogenous data and the persistent forecast model usually per-
forms best in such short forecast horizons [6]. The availability
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of exogenous data such as sky images and satellite data is also
limited in many cases.

Many studies have renewed the attention to neural net-
works in recent decades, with overall better performance than
statistical models in solar forecasting literature [31], [32].
Although general neural network models can learn the rela-
tion between input and output arguments, they fail to cap-
ture the dynamic temporal dependencies within the data.
Recurrent Neural Networks (RNNs) tackle this problem by
introducing hidden states and using them alongside the input
data to generate forecasts [33]. However, the hidden state
in RNNs is unable to capture long-term dependencies due
to vanishing gradients in back-propagation. The Long Short-
Term Memory (LSTM) model first introduced in [34] is one
of the commonly used solutions to this problem. The LSTM
model adds several memory gates to the RNN structure which
enables the model to capture long-term dependencies in the
data. The LSTM is considered a state-of-the-art model and
has been used in many studies for solar power forecast-
ing [35], [36], [37]. An example of LSTM deep learning
implementation is [38] which utilizes a deep LSTM-RNN
network for reliable photovoltaic power forecasting. Also,
there are several papers in the literature that apply ensemble-
based methods to LSTM models [39]. For example, [40]
utilizes an aggregation function based on the Choquet integral
to improve forecast reliability by finding the largest consis-
tency among the conflicting forecast results.

While the LSTM model is more capable in time series
forecasting by preserving the trend information contained in
the long-term sequences [37], it only deals with the data pat-
terns in the time domain. The State Frequency Model (SFM)
model introduced by [41] adds a decomposition step to the
LSTM structure that extracts the frequency components with
an additional dimension to the memory state representing
different frequencies. This model has been used for stock
price forecasting in [42] to capture the patterns corresponding
to different frequencies in trading.

In this paper, the SFM model is applied to very short-term
solar power forecasting. Surprisingly, the SFM model does
not improve upon the LSTM model partly due to the fact that
frequency patterns in the solar power data are much smaller
compared to the sampling frequency. In order to optimize the
SFM model, a Discrete Fourier Transform (DFT) is applied
to the historical data, and the SFM frequency band is adjusted
accordingly. This method is applied to solar power forecasts
with horizons ranging from 1 second to 60 seconds. The PV
data from a site in Florida, US is used to generate forecasts.
The results show a significant improvement over the state-of-
the-art LSTM model and the other benchmark models.

An example of a use case for intra-minute forecasts of solar
power is represented in [19] for voltage regulator control. The
predictive voltage regulator control is utilized in this study to
show the benefits of improving the accuracy of very short-
term solar forecasts. The voltage control results based on the
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FIGURE 1. RNN structure.

proposed SFM model show a decrease in voltage deviations
compared to the benchmark forecast models.

The remainder of this paper is organized as follows.
Section II reviews the framework of RNN and LSTM mod-
els. Section III presents the SFM model. Section IV dis-
cusses the shortcoming of the SFM model and describes the
model optimization using Discrete Fourier Transform (DFT).
Section V discusses performance analysisbsphackesphack.
Section VI presents the testing procedure and numerical
results. Section VII provides concluding remarks and future
work.

Il. RELATED WORK

One of the widely used models for solar power forecasting is
ANN. While feed-forward ANNs have good results in general
modeling problems, they do not perform as well in time-
series forecasting because the dynamics in the dataset are
difficult to capture with a feed-forward structure. RNNs are
designed to use past states in the network and the state-of-the-
art LSTMs are successful examples of these efforts that have
proved capable of improving the forecast results using long-
term dependencies with data temporal dynamics in different
applications.

RNNs are a class of neural networks that attempt to capture
temporal dynamic patterns in the data by adding an internal
state h;_; to the feed-forward ANNSs. The internal state acts
as amemory for the model and enables the use of past states in
addition to the inputs of the network at the current time. Fig. 1
presents the structure of a neuron in RNN models. An RNN
model consists of successive layers that use the inputs and the
state from the previous layer to generate the new state and the
output.

RNNSs can adapt to the dynamic patterns in the data but
they fail to capture long-term dependencies due to vanishing
gradients in the back-propagation process. Long Short-term
Memory (LSTM) networks are one of the most effective
solutions to this problem. The LSTM structure receives the
input vector x;, the memory state ¢,_; and hidden state /;_;
from the previous layer then generates the memory state c;
and the hidden state 4; for time ¢ as shown in Fig. 2 [34].
An LSTM neuron consists of a cell that acts as the memory
state of the model and three gates that control the flow of
information. The input gate i controls the amount of new data
going into the cell, the forget gate f controls the information
flow from the previous cell, and the output gate o controls
the extent to which the data in the cell is used to generate the
model output. The memory gates that are incorporated into
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FIGURE 2. LSTM structure.
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FIGURE 3. SFM structure.

the RNN structure control the flow of information and shape
the cell at each layer. The LSTM network is capable of cap-
turing long-term dependencies through the gate mechanism
to resolve the vanishing gradient problem.

lll. STATE FREQUENCY MEMORY (SFM)

The State Frequency Memory (SFM) model is an extension
of LSTM networks that incorporates the data patterns in the
frequency domain. This is particularly useful in very short-
term forecasting where the patterns in the data consist of
much smaller frequencies compared to the forecasting fre-
quency. The long-term patterns (slow dynamics) in the data
compared to the short-term (fast dynamics) of the forecast
increases the number of memory gates that the past data has to
go through. The SFM method is based on the existing LSTM
model and adds the frequency patterns by integrating the
Fourier transform of the inputs in shaping the output. Fig. 3
depicts the structure of an SFM cell.

The overall structure is similar to the LSTM model,
but the state is extended to a matrix rather than a single
value. The state matrix used in the SFM method uses a D x N
matrix S corresponding to each feature and frequency. This
matrix represents the state of the neural network at time .
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The matrix S is updated at each time using the previous state
and the input matrix as described below [41]:

I 10t

It,2it,2

Sl‘ = Ft [¢] Stfl + (ejwlt e‘iwzt eijt)

I: pit.p
(D

where S; represents the state of the network at time #, F;
is the forget gate matrix at time ¢, I; 1, 1; 2, ..., I; p are the
arguments from the input gate corresponding to each dimen-
sion, i 1, ir,2, - . . , iz p are the input modulations which is an
aggregate of the current inputs and the last output as shown
in Eq. (6), &1, /2! . el®N' are the components for the
Fourier transform into N frequencies and o denotes element-
wise multiplication. Each gate is described in detail below.
Forget Gate: The forget gate is a D x N matrix responsible
for the decision that how much of the data from the past state
is used in forming the current state. The forget gate F is
defined as the outer product of two forget gate vectors:

F,=F5 x FF )

where F? is the state forget gate vector and F[ is the fre-
quency forget gate vector.

The state forget gate F’ tS decides how much information
from each dimension of the past state is used in shaping
the current state. F; is defined as an element-wise sigmoid
applied to the linear combination of the current input and the
past output:

S. Sh S
Wlx Xt,1 wy h,,1y1 bl
S ng X2 Wgh hi—12 b‘g
Ft =o( . o . + . o . + D
wiy X1.D W hi—1.p b},
3

where o is an element-wise sigmoid function, WS* and W5"
are input and output weight vectors, x; is the D dimensional
input vector at time ¢, h,_ is the output vector at time t — 1,
and b3 is a bias argument vector.

The frequency forget gate decides how much information
from each frequency of the past state is used in shaping the
current state. The frequency forget gate is similarly defined
as below:

F Fh F
wit Xr,1 w) hi—1,1 by
F Fh F
F W2x Xt,2 W2 ht—l,Z b2
F, =o( : o : + : o . D
whr Xt.D whh hi—1.p bh
4)

where W™ and W*" are input and output weight vectors, and
b is a bias argument vector.

Input Gate: The input gate is used to determine how much
of the input data from the current time is used in shaping the
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current state in the SFM method. The input gate I, used in
Eq. (1) is defined as below:

Wllx Xt,1 W{h ht—l,l b{
Wéx Xt,2 Wéh h[—1,2 bé

Ii=o0(] [ |o . +1 . |o . +1 P
wh Xt.D wih hi—1.p bt

(%)

where I; is the input gate, W™ and W are input and output
weight vectors, and b/ is a bias argument vector.

The input vector is shaped by the application of a hyper-
bolic tangent to the weighted combination of the input argu-
ments and the previous output:

Wl:lx Xt,1 Wl:lh ht—l,l bl:l
Wi X1 2 th hi_1 2 b
. 2 > 2 , 2
i=tann(| T o | 2ol T +]
wh Xt,D wil hi—1.p by,

(0)

where i; is the input vector, W and W are input and output
weight vectors, and b' is the bias argument vector.

Output Gate: The output gate decides how much of the data
from the current state is used for each frequency to calculate
the final output of the model. The output gate is a linear
combination of the current state, the previous output, and the
current input vector. Similar to the input gate, the output gate
is defined below:

0y = o (W2 ISeul + Woxe + WP h_y +59)  (7)

where O; is the output gate, WnO , on,n and an are set
of weights, and b,? is a bias vector. Note that |S; ,| is the

amplitude of the n™” frequency component in the state matrix.
The final output of the SFM model is derived from the sum
of outputs corresponding to each frequency. Furthermore, the
output for each frequency is obtained using an output gate
and an activation function applied to a linear function of the
amplitude of the state matrix for that frequency [41]:

N
hy = Z O1.n 0 foy(Wo|Ss ] + D2) 8)

n=1

where A, is the output vector at time ¢, O; , is the output
gate co-responding to the n’ frequency at time 1, f, is the
output activation function, w9, is a vector of weights, S;  is
the amplitude of the n column of the state matrix and b is
a vector of biases for time ¢ and the n”” frequency.

IV. OPTIMIZING SFM USING DISCRETE

FOURIER TRANSFORM

Although the original SFM model can capture the frequency
patterns in the dataset, the frequencies are uniformly included
from w1 to wy . In this paper, we propose to select frequencies
that are most important to solar power forecasting. Although
including all frequencies may help, it also complicates the
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FIGURE 4. The DFT of historical data from the dataset.

model by adding correlated data corresponding to different
frequencies. Specifically, in very short-term solar power fore-
casting, the frequency elements must reflect the low rate
of change in the solar power output compared to the fast
rate of sampling (every second). If the frequencies are not
selected properly, the SFM model can end up complicat-
ing the LSTM without improvement in the accuracy of the
forecast. Therefore, the paper proposes to select the most
important frequencies based on the amplitude in Discrete
Fourier Transform (DFT). The DFT of a vector consisting
of N numbers (xg, x1, . .., xy—1) which are sampled in equal
spaces in the time domain converts them to another vector of
complex numbers (Xy = Xo, X1, ..., Xy—1) which represent
the data in the frequency domain. The DFT is defined as
below:

N—

X =

1
—j2r
Xy e N )

n=0

Using Euler’s formula the DFT can be expressed as:

X = Nz‘jx,, . [cos(z—nkn) +7j- sin(z—nkn)] (10)
N N
n=0

The application of DFT can guide the frequency selection
towards bandwidths with the most prominent frequencies.
Fig. 4 shows the DFT result of the training data from the
dataset under study in section VI-A. The figure only shows
the frequency components under 0.05 Hz so that the largest
frequency components are visible. The frequency compo-
nents associated with frequencies higher than 0.05 Hz pose
very low amplitudes and therefore are neglected.

It is visible that most of the high amplitudes appear in
very low frequencies compared to the sampling frequency
(1 second). The fact that solar power does not change dramat-
ically in very short periods makes that obvious but the DFT
can help select frequency bands.
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A flowchart is devised to select the optimal frequency band
and the number of frequencies as shown in Fig. 5. It involves
the following steps:

o The DFT is applied to historical data to extract the
amplitude corresponding to different frequencies in the
data.

« Different frequency bands are selected based on the
areas with the highest amplitude in the frequency
domain.

« An SFM model is trained based on each frequency band
selection with a different number of frequencies.

o The models based on different frequency selections are
used for forecasting the validation data and the optimal
model is selected based on the results.

o The selected SFM model is applied to the test dataset to
generate the final forecast results.

V. PERFORMANCE ANALYSIS

Generally, there are two approaches for comparison: a direct
measure of forecast accuracy and a measure of benefit in
the context of an application utilizing the forecasts. For the
second approach, we investigate the benefit of very short-
term solar power forecasting in predictive voltage control in
a distribution network. The two approaches are described in
detail below.

For the first approach, performance metrics are introduced
to compare the forecasts generated using the proposed SFM-
DFT model against benchmark models. We consider the
accuracy of the forecasts as the performance metric utilizing
the Root Mean Square Error (RMSE) compared to the actual
solar power output, as described below:

Z?:tl (yt - );t)z

n

RMSE = (11)
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where y; is the actual output, y; is the forecast for time ¢ and
n is the number of data points between #; and t>. The method
with the smallest RMSE is the most accurate and therefore
the best-performing method.

The second approach applies the forecasts acquired from
different models to a predictive voltage regulator control
algorithm to demonstrate the benefits brought by improved
forecasts. The predictive voltage control algorithm is initially
proposed in our previous study [19]. First, we generate solar
power forecasts for the next 60 seconds. Then, the changes in
the power are used to predict the voltage changes throughout
a distribution system. Given the impedance matrix of the sys-
tem, we can find the voltage changes for each node based on
the changes in solar power injections. The average predicted
voltage changes for the next 60 seconds are then used to
determine voltage deviations from the nominal voltage under
each voltage regulator.

Based on the predicted voltage deviations, the tap changes
of each regulator are decided by prioritizing the voltage regu-
lator with the most severe voltage difference. The signals are
then sent to the voltage regulator to increase or decrease the
taps if needed. The control signals are applied to a time delay
intending to prevent excessive tap changes. More details can
be found in [19].

The voltage deviation in the system is calculated using the
Voltage Deviation Index:

n
VDI =" [1=Vil, if [L= V| >0.0lp.u. (12)

i=1

The VDI results are used to compare the effectiveness
of different forecast models when applied to the predictive
voltage control algorithm.

VI. RESULTS ANALYSIS

In this section, the results of the SFM model with and without
frequency selection are compared to other models to show the
effectiveness of the proposed model in this study.

A. FORECASTING SETTINGS
The dataset used in this study is the solar generation data from
a 50kW PV site at the University of Central Florida operated
by Duke Energy. The dataset contains the solar generation for
8 days (from 17" to 24" of July 2017). The data points are
in 1-second intervals. The power output from the dataset is
shown for one day in Fig. 6. Zooming in on the data shows
the drastic changes within a small time window. The figure
shows that in a 3-minute window the solar power output drops
more than 20 kW and rises back up again. The sudden drops
in solar power output are due to the rapid changes in cloud
coverage. However, compared with the sampling frequency
of one second, this change at the minute level is considered a
slow dynamic.

Several models have been selected in this study as bench-
marks to compare the results against the proposed model.
The LSTM model and the original SFM model with uniform
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FIGURE 6. The solar power generation on 07/17/2017.

frequency selection are used to compare against the SFM
model with frequency selection. The persistent model that
normally performs well in the very short forecasting horizon
is also selected as a benchmark. Since the forecast horizon is
very small, achieving a better performance than the persistent
model is extremely challenging. Data from different days and
different times of the day are selected for this purpose. The
first 80% of the data in each window is used for training and
the remainder has been divided equally between validation
and testing sets, so 10% of the selected data is dedicated
to each one. The data windows are selected throughout the
dataset to represent different patterns in the data without
overlapping.

B. FORECAST RESULT COMPARISON

The RMSE is calculated for each model during the training,
validation, and testing stages to ensure optimized model con-
figuration. The training, validation, and test errors in different
numbers of iterations for the SFM model with frequency
selection are shown in Fig for one of the time windows
selected. 7. We continue the iterations up to 4000 and cal-
culate the error at 20 intervals. While the training error
decreases by increasing the number of iterations, the val-
idation error may be minimized at a lower iteration level.
For example, the minimum validation and test error for an
example time window happen at 280 iterations as shown in
Fig. 7.

The optimal number of inputs to the forecast model (past
instances of solar power) is selected based on the performance
of the validation set.

There are several factors in the forecasting problem that
can affect the performance of the model. To comprehensively
analyze the forecast accuracy, we divide the result evaluation
into three sections. In the first section, different frequency
selections are examined. In the second section, different times
of the day with different solar patterns alongside the overall
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TABLE 1. The RMSE results for different frequencies of the SFM
model.

Number of frequencies ©: I)Fre?uelgg?loir; a (|HZ()0 00D
1 0.026792 | 0.026973 | 0.022758
2 0.027541 | 0.027842 | 0.022687
3 0.028145 | 0.026690 | 0.02414
4 0.027453 | 0.02738 0.02310
5 0.027660 | 0.028264 | 0.02371

results for an entire day are compared. The third section
compares the accuracy for longer forecasting horizons.

1) FREQUENCY SELECTION
The number of frequencies and the frequency band that
are selected for the SFM model are optimized for the best
results based on the DFT of the training data. The frequency
selection starts with a wide selection of frequency areas and
gradually narrows down. Next, an SFM model is developed
based on each of the frequency settings. The optimal area and
number for the frequencies are determined by applying each
individual model to predict the validation set data. Then the
accuracy results from the different forecasts are compared to
find the frequencies associated with the best forecast results.

Table 1 shows the results of the SFM using a different num-
ber of frequencies and different selected areas between zero
and sampling frequency. It is visible that while the number
of frequencies selected has an impact on the results, the most
important factor affecting accuracy is the area from which
the frequencies are selected. Based on the DFT of the data,
the frequencies with the most amplitudes are in the very low-
frequency range. The results with the frequencies selected
from the low bandwidths are more accurate compared to the
others.

The optimal number of frequencies selected for the SFM
model in most cases is just one frequency, and in other cases,

VOLUME 10, 2023

23.65

77777 Actual Output
23.6 [ LSTM
SFM
SFM-DFT
Persistent

23.55

)
N
@
3
T

Solar Power Output (kW
n n
w n w
w 1 »
(5 B (6]
;

N

w

w
T

23.15 — : ‘ :
7:16:40 7:17:00

Time

FIGURE 8. Results of solar forecasting in the morning.

the difference in the accuracy between one frequency and
the optimal model is negligible. Since increasing the num-
ber of frequencies results in a more complicated model and
increases the training time for the SFM model, we select only
one frequency for this dataset. The optimal frequencies based
on the Fourier transform and the results from the validation
sets for different windows in the dataset are between 0 and
0.01 times the sampling frequency (1 Hz).

Note that the frequency area selection does not affect the
model training time, but an additional number of frequency
selections will increase the training time for the SFM model.
Therefore when the accuracy of the model doesn’t improve
noticeably with a higher number of frequencies, the number
of frequencies selected for the model is not increased. For
a 45-minute time period of training window, the average
training time for linear models is about 0.3 seconds while the
LSTM model takes 352 seconds for training. For the SFM
model, it depends on the number of frequencies selected. The
SEFM training time increases by around 10% for each addi-
tional frequency selected. For example, the average training
time of the SFM model with one frequency is 584 seconds,
and using two frequencies the time is increased to 662 sec-
onds. The model training is conducted offline and does not
affect the online forecasting time. The forecast time for all
the models is at millisecond-level and hence all models can
produce forecasts in a timely manner.

2) DIFFERENT TIMES OF THE DAY

The frequency patterns in the data can differ based on the
time of the day and the irradiance level. Therefore the forecast
results are compared in time windows during different peri-
ods of the day. Fig. 8 presents the forecast results for LSTM,
original SFM, and SFM with DFT compared to the actual
output in the morning.
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TABLE 2. The RMSE comparison between Different models
(1-step ahead forecasting) in the morning.

Model | SFM with DFT | SFM [ LSTM | Persistent
RMSE (KW) [ 0.0105 [ 0.0135 [ 0.0117 [ 0.0186
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FIGURE 9. Results of solar forecasting in the afternoon.

TABLE 3. The RMSE comparison between Different models
(1-step ahead forecasting) in the afternoon.

Model | SFM with DFT | SFM [ LSTM | Persistent
RMSE (KW) | 0.0250 [ 0.0595 [ 0.0303 | 0.0223

The performance comparison between the different fore-
casting models in terms of RMSE is presented in Table 2.

The result shows that all the models with memory states
performed better than the Persistent forecast. Although the
SFM model was not able to improve the LSTM model,
the application of DFT and optimized frequency selection
resulted in the best performance for the SFM model with
DFT. The SFM with DFT model during the morning session
performs 43% better than the persistent model, 10% better
than the LSTM model, and 22% better than the SFM model.

The comparison between forecast models during a time
window in the afternoon is shown in Fig. 9. The figure depicts
the solar power output and forecasts from different models.
The performance comparison between the different forecast
models in terms of RMSE is presented in Table 3.

Given the very low volatility during this 1-minute period in
the afternoon, the persistent model generates the best results.
The SFM model without frequency selection has the worst
performance among the forecast models. Although the SFM
model with frequency selection did not perform as well as
the persistent model during this particular time window, the
results are much improved compared to LSTM.
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TABLE 4. The RMSE comparison between Different models
(1-step ahead forecasting).

Model | SFM with DFT | SFM [ LSTM [ Persistent
RMSE (KW) | 0.0228 [ 0.0268 ] 0.0266 | 0.0245
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FIGURE 10. Results of SFM with DFT compared to SFM model
(3-step ahead forecasting).

Despite a slight under-performance compared to the per-
sistent model in the afternoon, SFM with DFT has an overall
improvement in the entire day period. The aggregate results of
forecast models during the entire day are presented in Table 4.

Overall the comparison between the results of forecast
models during the day shows that the SFM model with
frequency selection based on DFT is the only model that
outperforms the persistent forecast. While the SFM model
performed worse than LSTM, frequency selection based on
DFT helped in capturing the underlying frequency patterns in
the data and improving the LSTM model. The proposed SFM
model with DFT compared to the benchmark models Per-
sistent, LSTM, and SFM show 6.94%, 14.29%, and 14.92%
improvement respectively.

3) FORECAST HORIZON

The forecast horizon is another factor that can affect the
performance of different models. To show the effectiveness
of the proposed model in longer forecast horizons, the SFM
model with frequency selection based on DFT is compared
to the benchmark models for 3-second ahead forecasting.
Fig. 10 shows the results of the SFM forecast model with and
without DFT alongside the actual solar power output and the
persistent forecast.

Understandably, the accuracy of the persistent forecast
method is affected by increasing the forecast horizon. In the
3-step ahead forecasting, the SFM model outperforms the
persistent model noticeably, especially during large changes
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TABLE 5. The RMSE results of SFM with DFT compared to SFM
and persistent models (3-step ahead forecasting).

Forecast Model [ Persistent [ LSTM | SFM [ SFM with DFT
RMSE (KW) | 0.143209 | 0.105961 | 0.113703 | _ 0.087254
40.8
77777 Actual Output
SFM with DFT
4061 SFM 1
LSTM
Persistent

Solar Power Output (kW)

39.2 *
11:07:45

11:08:00 11:08:15

Time
FIGURE 11. Results of SFM with DFT compared to other forecast
models (10 seconds ahead forecasting).

TABLE 6. The RMSE results of SFM with DFT compared to other
benchmark forecasts for longer horizons.

Forecast Model [ Persistent [ ANN | MLR | LSTM | SFM | SFM-DFT

10-sec horizon 0.4183 0.3039 | 0.3186 | 0.2790 | 0.2874 0.2443
30-sec horizon 1.0546 1.0206 | 1.0090 | 0.9411 | 0.9267 0.8766
60-sec horizon 1.5168 1.1836 | 1.3035 | 1.0568 | 1.3874 1.0405

in solar power. The SFM model with the application of DFT
however improves the SFM model and has the best forecast
accuracy. The RMSE comparison between the three methods
is presented in Table 5. The overall results show the SFM
model with DFT performs 23% better than the SFM model
and 39% better than the persistent model.

Furthermore, the solar power forecasts are performed for
longer horizons to show the extent of effectiveness of the
proposed SFM model with DFT. We generate forecasts for
10-second, 30-second, and 60-second horizons. The results of
10-second ahead forecasts are shown in Fig. 11. In addition,
two more benchmark models that are commonly used in
the forecasting literature are included: An ordinary Artificial
Neural Network (ANN) and a Multiple Linear Regression
(MLR) model. The results of the forecasts with longer hori-
zons are presented in Table 6.

The results of longer forecast horizons show that the
SFM-DFT outperforms the other benchmark forecasts up
to 60 seconds. The improvement of the SFM-DFT model
compared to the persistent benchmark is 41.6%, 16.88%,
and 31.4% for 10-second, 30-second, and 60-second fore-
cast horizons respectively. Nevertheless, for forecast horizons
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FIGURE 12. The IEEE 123 feeder with the location of voltage
regulators and PV stations.

TABLE 7. The VDI results for voltage control using different
forecast models.

Forecast Model | ANN | MLR | LSTM | SFM | SFM-DFT
average VDI (V) | L.114 | 2.040 | 1514 | 0981 | 02219

longer than 60 seconds, the performance of the proposed
model is on par with the LSTM model. Therefore, the longer
training time for the SFM model with DFT does not constitute
selecting it over the LSTM model for horizons longer than
60 seconds.

While training the SFM model based on historical data
takes time, since the training process is implemented offline
and the forecast generation is very fast (within a few mil-
liseconds), the real-time application of the proposed forecast
model for model predictive control in the power system is
possible.

We should also make a note that the proposed SFM model
with frequency band selection does not outperform the LSTM
model by a significant margin for forecast horizons of several
minutes or longer. Therefore, this model is not recommended
for longer forecast horizons.

C. PREDICTIVE VOLTAGE CONTROL WITH FORECASTS
he predictive voltage regulator control described in section V
is applied to the IEEE 123 node test feeder with 4 voltage
regulators. There are 10 PV stations positioned throughout
the system. The solar power forecasts are generated using
the SFM-DFT model as well as the benchmark models to
compare the overall voltage profiles. The test feeder including
the locations of voltage regulators and PV stations is shown in
Fig. 12. The data from the PV site is scaled to achieve 100%
penetration in the test system.

The VDI for the system is calculated under the predictive
voltage regulator control using different forecasts of solar
power output. The results are presented in Table 7. The
persistent forecast is not included since it does not predict
any changes in the solar output.
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The VDI results from control algorithms based on different
forecasts show significant improvement in the case of the
proposed SFM-DFT forecast model.

VIl. CONCLUSION

This paper applies an SFM recurrent neural network to the
problem of very short-term solar forecasting. It is found that
the SFM model which decomposes the memory state in the
LSTM construction to different frequencies was not able to
outperform the LSTM model due to low frequencies in solar
power data compared to the high sampling frequency. How-
ever, the SFM model with the optimal selection of frequencies
based on the Fourier transform can capture the different
frequency patterns in this dataset and perform dramatically
better than the LSTM model. The simulation results for an
entire day show an improvement of 6.94% compared to the
persistent forecast in 1-second ahead forecasting and a sig-
nificant improvement of 39% for 3-second ahead forecasting.
Additionally, forecasts up to 60 seconds ahead are shown to
be more accurate than the benchmark models. Furthermore,
the proposed forecast model is applied to a predictive volt-
age regulator control algorithm and results in better voltage
profiles compared to the benchmarks, proving the benefit
of accuracy improvement in very short horizons. The future
work will include exogenous data such as sky images and
irradiance to improve the forecast accuracy in longer forecast
horizons.
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