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ABSTRACT Electric Vehicles (EVs) are considered among one of the ‘clean’ energy technologies in the
transportation sector because the vehicles themselves do not generate combustion emissions. However,
the substantial environmental footprint associated with the materials needed to create these technologies
(extraction, manufacturing, and solid waste at end of life) calls into question their ‘clean’ label. In addition,
their increasing demand adds to the existing supply risk (SR) through the requirement of critical materials.
To address this, the purpose of this study is to establish a design model for electric traction motors, which
are used in EVs, that will address the SR issues early in the design stage. The design model incorporates a
genetic algorithm with the following objectives: minimum motor mass, minimum energy consumption, and
minimum SR-equivalent. The SR-equivalent objective prioritizes the minimization of materials with high
SR. Using the case study of a surface-mounted permanent magnet synchronous motor, results show how
each objective is related to each other and to the parameters chosen as variables. Further analysis shows the
benefits of minimizing for SR-equivalent of required materials. Future work is needed to improve the design
model in terms of other important metrics such as minimizing environmental impact and cost.

INDEX TERMS Machine design, multi-objective optimization, surface-mounted permanent-magnet
machine, supply risk, sustainable design.

I. INTRODUCTION

DEVELOPING clean energy technologies is one
approach for moving towards sustainability [1]. The

primary benefit of such technologies is that they reduce
the lifecycle environmental footprint of a product, process,
or service by improving energy efficiency, avoiding non-
renewable resources, reducing waste, reusing materials, etc.
These technologies may also help contribute to other eco-
nomic and social needs. In the transportation sector, electric
vehicles (EVs) represent a promising alternative to reduce
greenhouse gas (GHG) emissions from internal combustion
engine vehicles powered by fossil fuels. EVs are known as
‘clean’ energy technologies because they emit zero GHGs at
point of use (of course, the production of electricity that pow-
ers an EVmay have a substantial GHG footprint). Other clean

energy technologies include wind turbines and photovoltaic
solar panels.

While clean energy technologies hold the promise of ben-
efits in terms of GHG reduction, they are not without chal-
lenges. For example, they may incur increased environmental
burdens in other stages of their life cycles; thus, research is
needed to reduce these environmental impacts. In the case
of EVs, the powertrain system requires a powerful electric
traction motor(s) and a high-capacity energy storage system
(e.g., lithium-ion battery pack) for satisfying design specifi-
cations (e.g., lower energy consumption and higher driving
range, respectively). The production of these major compo-
nents and their associated need for critical materials incur new
environmental burdens that did not exist with conventional
vehicles powered by fossil fuels.
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Another consequence of clean energy technologies is the
supply risk (SR) associated with nonfuel mineral commodi-
ties that are needed for their production [2], [3]. According
to a recent publication, the 2022 list of mineral commodities
considered critical to the United States economy and national
security has increased to fifty materials [4]. Not all of these
critical materials are subject to a similar SR level, but have
some level of potential disruption, economic vulnerability,
or trade exposure across the supply chain. It should also be
noted that materials SR, as one of the three dimensions of
materials criticality, is a dynamic characteristic [5].

Among thematerials used in EVs,most of the critical mate-
rials subject to high SRs are in the batteries and motors when
permanent magnets (PMs) are used in the vehicles. Lithium-
ion batteries use lithium, cobalt, graphite, and manganese [6].
Depending on the PMs employed in the motor, varying rare
earth elements (REE) and other critical materials are used.
For example, Nd-Fe-B magnets may use neodymium, dys-
prosium, and praseodymium; Sm-Co magnets use samarium
and cobalt; and Al-Ni-Co magnets use aluminum, nickel,
and cobalt [7], [8]. However, batteries and motors should
not be the only components considered when talking about
SR. Other components such as the EV body is commonly
made of aluminum and frame of the motor can be made of
aluminum, cast iron, or steel [9]. Even though the United
States does not suffer a high disruption potential for alu-
minum, it experiences high economic vulnerability and trade
exposure, and aluminum is the 8th (out of 50) most critical
material [3], [10].

The challenges encountered in clean energy technologies
(new environmental burden and supply risk) when compared
against competitive products found in the market suggests
that there is a need for engineers to address these issues early
at the design stage of a product.

To explore this issue, this research paper studies the design
of electric traction motors applied such as would be used for
an EV. The paper has two main goals. The first goal is to
present a design methodology for optimizing electric traction
motors. The second goal is to define a quantitative method for
calculating an SR-equivalent score of materials and compo-
nents for any target product. To our knowledge, this is the first
paper that proposes a general function for minimizing the SR
for all critical materials and amethod for addressing this issue
at the engineering design stage. Minimizing this function
proved to be useful, because it was seen that minimizing the
mass of the motor is not the same as minimizing the SR. This
paper is organized as follows. First, a brief literature review
describes various strategies for reducing reliance on high SR
materials. Following this brief review, the design framework,
model, and calculations are described. Then the results from
applying the design framework to a case study are discussed.
This section will illustrate the importance of choosing the
proper objective functions. Finally, the paper will summarize,
and conclusions will be offered.

II. DESIGN STRATEGIES FOR ELECTRIC
TRACTION MOTORS
For many applications and over the course of many years,
new technologies have been proposed for products that call
for innovations, e.g., new materials, new processes, and new
methods. When new materials / elements are called for, this
often has an associated increased materials SR. However,
efforts by the research community have proposed design
feedbacks to reduce the demand for these critical materials.
Different strategies to decrease the SR of critical materi-
als have been delineated by the Critical Materials Institute
(CMI), one of the U.S. Department of Energy’s innovation
hubs [2]. In summary, these strategies are 1) diversify the sup-
ply, 2) discover new materials that may substitute completely
or partially, and 3) apply circular economy (reusing, recy-
cling, etc.) principles to close material loops. Specifically,
strategies 2 and 3 seek to reduce the demand for virgin critical
materials. Any technology developed in response to one of
these strategies must be demonstrated to be economically
and environmentally competitive when compared to existing
competitive technologies.

Researchers have proposed either non-rare earth perma-
nent magnets (REPMs) or magnet-free motor topologies in
an effort to improve performance and mitigate SR [9], [11].
Motors that utilize PMs (with REPMs or non-REPMs) may
be configured for use in dc machines, permanent magnet
synchronous motors (PMSMs), or PM-assisted synchronous
reluctance machines (PMa-SynRMs) [9]. Examples of non-
REPMs in development that may be used in these motors
include MnAl, MnBi, Al-Ni-Co with higher energy and oper-
ating temperature, tetrataenite L10-FeNi, L10-FeCo, HfCo,
ZrCo, carbides, and iron nitride. At this phase of devel-
opment, the main challenge for most of these PMs, unlike
REPMs, is that they cannot achieve both high remanent mag-
netization and high coercivity simultaneously (such prop-
erties are desirable for PM motors). The most developed
non-REPMs are MnAl, MnBi, and a’’-Fe16N2 [11].

The two most explored magnet-free traction motors in
industry are the induction motor (IM), and the reluctance
motor (RM). A main reason for EV companies using IMs
is to avoid the PMs due to their high SR and cost. The
main disadvantage of IMs is that they are less efficient than
PMSMs due to power losses in rotor short-circuitedwindings.
There are two types of RMs: switched and synchronous.
Switched reluctance motors (SRMs) and synchronous reluc-
tance motors (SynRMs) are magnet-free alternatives to IMs
for those looking for manufacturing simplicity, and materi-
als with low SR and cost. RMs are notable for their stator
windings configurations; SRMs have concentrated windings
whereas SynRMs have distributed windings. Both RM types
are easier to cool than PMSMs or IMs because the rotor
does not have PMs or windings. All the developed torque in
RMs is generated from the magnetic reluctance of stacking
electric steel plates with a particular geometry consisting of
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flux barriers (holes) and segments structurally constrained
within the rotor.

While some view magnet-free traction motors as a promis-
ing research direction, PMSMs, and PMa-SynRMs with
REPMs are, at present, the most attractive motors for an EV.
This is true because they have the highest power density
and efficiency among the mentioned topologies. Their main
drawbacks are cost and reliance on PMs. In a fair apples-to-
apples comparison, it has been reported that PMa-SynRMs
should have a smaller reliance on REEs whereas PMSMs
should have a better performance in terms of power-density
and efficiency [9].

Given these strategies that consider the SR of critical mate-
rials, a new strategy can be developed by using optimization-
based design methodology. This methodology is comprised
of detailed analysis calculations, the chosen objective func-
tions, and the use of an optimization engine. Firstly, the
detailed analysis is constructed from various models found
in the literature and integrates large amounts of data and
processes to propose a motor design. To decrease complexity
in describing the design model, the detailed design calcu-
lations consider only surface-mounted PMSMs. However,
this methodology can be adapted to other topologies and
motor types. Secondly, the electric traction motors (and other
technologies) may be designed to minimize the mass of
materials by using their corresponding SRs scores as weigh-
ing factors. This will provide the advantage of optimizing
for product transferred SR which can find non-dominated
solutions among competingmaterials and componentmasses,
rather than optimizing for a specific component a priori
(e.g., minimizing REPM mass). The three objectives for this
design methodology are to minimize motor mass, energy
consumption, and motor SR-equivalent (the new proposed
objective). Finally, the optimization engine is a tool to search
for feasible and non-dominated solutions within the design
space. In this case, a genetic algorithm (GA) is used. The fol-
lowing section will detail much more about the calculations
and steps in the optimization-based design methodology.

III. MOTOR OPTIMIZATION-BASED DESIGN MODEL
Fig. 1 shows the design framework for electric traction
motors, which is adapted from Cassimere and Sudhoff [12],
Cassimere et al. [13], and Sudhoff [14]. This framework is
applied to EVs with an electric motor topology of a surface-
mounted PMSM. The general approach used here could be
applied to other PMSM types such as an interior permanent
magnet machine. Indeed, the design method set forth in [15]
could be adapted to this end. However, in order to keep focus,
studies here are limited to surface-mounted machines. The
description of this framework will start with the design space
and move to detailed analysis, then objective functions, and
finally, to the optimization engine.

A. DESIGN SPACE
The design space (or search space) is composed of fixed and
variable design parameters. The fixed parameters constitute

FIGURE 1. Design framework for electric traction motors.

the design specifications, D, i.e., the coefficients, assump-
tions, and specifications that are used in the design model
(see Table S2 in the SI). The variable parameters are managed
separately from the fixed parameters; the ranges for the vari-
able parameters are defined by θ , which provides a delimited
continuous range or allowable discrete values for each vari-
able parameter (see Table S3). An additional variable to be
considered during design is the velocity profile, v(t), which
is obtained from the specified drive cycle (see Fig. S1a). The
velocity profile is used in the sizing of motors and calculating
vehicle energy consumption. The drive cycle may change
over time due to human behavior, weather, transportation
ecosystem, etc.

B. DETAILED ANALYSIS
The first step of the detailed analysis is materials selection.
For each component, allowable material types (e.g., list of
material grades) are specified by the following variables:
conductor windings C, permanent magnets M, stator lami-
nations S, rotor laminations R, and thermal insulation Ins.
Associated with each material type are all the material prop-
erties needed to complete the design (see Table S4-S11 in SI).
Table 1 presents a summary of the motor parts with a simpli-
fied description of the material requirements [16], [17].

The next step is to determine the motor size according to
the design specifications. The 2019 Nissan Leaf S EV will be
used as an example (see Table 2 ) [18]. The EV coefficients
considered in the design model are 0.0083 rolling resistance,
0.28 aerodynamic drag, 96% transmission efficiency, and
7.5 mph headwind air velocity. These EV system proper-
ties are important, because when the design of the motor is
changed, the mass of the motor may be reduced. This may
result in secondary mass savings (SMS).1 We have assumed
that SMS is 0.95 kg for every 1 kg of primary mass saved in

1When less material mass is required for the structural support of a
component because the mass of the component has been reduced, this is
termed secondary mass savings (SMS).

318 VOLUME 10, 2023



Pérez-Cardona et al.: Optimization-Based Design Model for Electric Traction Motors

TABLE 1. Summary of motor parts with description and
materials considered.

comparison to the actual motor of the case study EV [19].
The Nissan motor has a continuous power and torque of
110kW and 320N-m (peak power and torque are 150kW and
436 N-m), and a constant power speed range from 3283 rpm
to 9795 rpm [18], [20], [21]. Given an initial 3 cm shaft
radius and the other parameters as denoted by θ , the motor

dimensions and volumes of the rotor and stator cores, the
PMs, and slot liners are calculated and stored in the geometry
vector G. Later, we will use an iterative process to converge
to the final shaft radius. The windings vectorW includes their
symmetric distribution, the number of conductors per slot,
the end windings design, and the total volume. With these
calculations and the mass estimates of other inactive motor
components, the motor mass is calculated [16], [17]. Once
the mass calculations are complete, the EV mass is updated
according to the defined SMS. Finally, the motor sizing step
calculates the tractive force (Fig. S1b), torque (Fig. S1c), and
power (Fig. S1d) profiles, the rated and maximum torque
and power, the base and maximum speeds, and the power and
torque versus speed characteristic curves (i.e., continuous
and intermittent) (see Fig. 2a-b), as modeled by Akl and
others [21]. Based on the required peak torque, the shaft
radius is recalculated. For more details on motor sizing, refer
to Pseudocode S1 from the SI.

TABLE 2. 2019 Nissan Leaf S EV Specifications.

After sizing the motor, the targeted operating points (OPs)
are selected as shown in Fig. 2b and Pseudocode S2. The
targeted OPs are those for which the constraints will be
evaluated. Three additional constraints can also be checked at
this stage. These are the tooth aspect ratio (ratio less than 10),
the slot opening factor (less than 1.5), and a mass constraint
(mass less than 65 kg). When a constraint is violated during
the process, there is no point in evaluating the remaining
constraints (this iteration is terminated); this serves to reduce
the optimization run time. The program then checks the con-
straints are implemented based on the literature [12], [14].
The number of constraints must be known a priori to deter-
mine if the design satisfies all constraints. The number of
constraints is as follows:

NC = nOP−I + nC per OP n∗
OP (1)

where nOP−I is the number of OP-independent constraints,
nCper OP is the number of constraints per OP, and n∗

OP is the
number of OPs. The structure of the constraint formulations
are such so that when the jth constraint cj is satisfied its
numerical value is 1; otherwise, it takes on a value between
0 and 1 (see SI). An unsatisfied constraint closer to 1 means
that the constraint is closer to being satisfied.

Once these constraints are satisfied, the electrical, ferro-
magnetic, mechanical, and thermal parameters are calculated
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FIGURE 2. Motor (a) power versus speed characteristic curves,
and (b) torque versus speed characteristic curves.

for each targeted OP (see Pseudocode S3 in SI). Before
these calculations take place, a thermal nodal analysis
(TNA) is done using the OP-independent calculations
(Pseudocode S5). The purpose of the TNA is to model the
temperature profile of a representative motor region that
includes the stator and rotor electrical steel laminations, PMs,
electrical windings, impregnation resin between motor frame
and end windings, air gap, and shaft as shown in Fig. 3. This
region represents 2π /P of a revolution for surface-mounted
PMSM, where P is the number of poles contained in that
motor. For image clarity, the figure shows four slots per
pole, but in reality, the model will have six slots per pole
(i.e., the motor has three-phases and the number of slots per
pole per phase is fixed at 2). Since the winding distribution
is symmetric, the temperature profile is assumed to be the
same across any motor region. The TNA creates a thermal
equivalent circuit (TEC) of cuboid elements bounded by the
grid shown in Fig. 3. Solid-to-solid neighbors have thermal
conductance heat transfer while solid-to-air elements have a
convective heat transfer. After the initial TNA, the previously
mentioned parameters are calculated for the first targeted
OP. Subsequently, the rest of the OP-dependent heat transfer
calculations are completed (Pseudocode S6). Then, following
the calculation of electrical parameters E and I, the ferro-
magnetic parameter F, the torque as a mechanical parameter
Tec, and temperature profile and other thermal parameters
Th (Pseudocode S7-S9), an iterative process (see Fig. 1) is
conducted until convergence on the temperature profile is
achieved. If all constraints for this first OP are satisfied, the
same procedure is followed for the next OP. If for any OP,
some of the constraints are not satisfied, then the code stops
and starts over with a new θ vector. If all constraints for all
targeted OPs are satisfied, a feasible motor design is found.

Some preliminary design methods use the maximum cur-
rent density (i.e., maximum current divided by the bare con-
ductor cross-sectional area) as an implicit metric for max-
imum temperature on the windings. However, this method
may not be as accurate as conducting a TNA or equivalent
method. Twomajor drawbacks of considering current density

alone are that the maximum current density may not corre-
spond with the maximum peak temperature on the windings
(since the role of geometry on heat transfer is not considered)
and that it ignores the permissible magnet peak temperature.
A TNA estimates the conductance of each cuboid element, its
interaction with neighbor elements, and how heat is removed
from the windings and the permanent magnets. However, the
main drawback for TNA is that it takes longer to estimate the
temperature profile than to calculate the current density.

FIGURE 3. Developed diagram including top and side views of a
surface-mounted PMSM (inactive components, motor frame,
and jacketed heat removal system not shown).

To summarize, for a given set of parameters an iterative
process is used to obtain temperature convergence. The rest
of the constraints for this specific OP are checked. If they are
satisfied, then the loop continues to the next targeted OP. If all
constraints are satisfied, then a feasible solution is found.
The final steps are related to the calculation of the energy
consumption over the useful life of the product.

The data used to predict the energy consumption through-
out the EV useful life was obtained from the Worldwide
harmonized Light vehicle Test Procedure (WLTP) for a
class 3 vehicle for a typical global driver characteristic
[22], [23], [24]. This drive cycle was adapted to match the
EV specifications for its maximum velocity and acceleration,
as shown in Table 2. 2019 Nissan Leaf S EV Specifica-
tions. A vehicle dynamics model was used to determine the
traction force for the driving cycle [17], [21]. The model
results can then be visualized with the torque versus speed
diagram (as in Fig. 2b). To determine the representative OPs
from the drive cycle, the energy center of gravity (ECG) was
used [25]. The torque-speed diagram is divided into clusters,
and the ECG are localized and estimated for each cluster.
In this paper, these are termed the ECG OPs (see Fig. 2b).
Once they are localized, the targeted OP process calculations
are repeated. There is no need to check constraints because
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the targeted OPs have already been verified. These targeted
OPs are located on the operating region boundary, while the
ECG OPs lie within the region. Thus, the constraints for the
ECG OPs need not be checked. Using the results from this
analysis, power and efficiency calculations are obtained, and
the energy consumption along the useful life of the product is
calculated in terms of kWh/100km (Pseudocode S4).

C. OBJECTIVE FUNCTIONS
As discussed in the previous subsection, the detailed analysis
contains all the calculations needed to evaluate the objective
functions. In this case, it is desired to minimize three per-
formance measures: 1) motor mass, 2) energy consumption,
and 3) SR-eq. score (equivalent supply risk). Reducing the
motor mass will result in energy savings, as well as SMS
throughout the rest of the system (i.e., EV) which may result
in additional energy savings [19], [26]. Minimizing energy
consumption will mean lower energy costs, but also provide
environmental benefits, which is an important variable to con-
sider [17], [27]. Lowering the SR-eq. will reduce the masses
of the critical materials in the motor from the most to the
least critical. The proposed SR-eq. is a new metric that when
optimized reduces future supply disruptions associated with
the manufacturing sector by reducing the material demands
of a product. An increased SR-eq. may lead to price volatility
and component/product shortages and deleteriously impact
the consumer.

According to the latest USGS review and revision of non-
fuel mineral list, fifty materials are considered critical for the
United States. A selected list is shown in Table S1 (please
refer to the SI). Their quantitative assessment for defining SR
for one commodity is based on three factors: the potential of
a foreign supply disruption, the dependency of the targeted
country manufacturing sector on trade exposure with foreign
supply, and the economic vulnerability of the targeted country
manufacturing sector to a supply disruption. The geometric
mean of these three factors gives a SR score. Some minerals
were assessed qualitatively because of either a lack of avail-
able data or the mineral has a domestic single point of failure
(i.e., there is a single domestic producer in the country of
interest). For more details about the SR scoring model, please
refer to the work done by Nassar and Fortier [10].

Now, the SRs associated with single commodities in a
targeted country, in this case the United States, can be used
in combination with the material masses in a product for
calculating an SR score for a product. The proposed score
can be calculated as a weighted mean formula, as follows:

SReq =

∑n
i=1mmfg,iRi∑n
i=1mmfg,i

=

∑n
i=1 simiSRi∑n
i=1 simi

(2)

where n is the number of materials contained in the product,
where the product, which may consist of multiple compo-
nents, has multiple materials. For example, an REPM is
made from multiple material types. In (2), si is the ratio of
the mass required to manufacture a product or component
divided by the final mass of the component for the ith material

(usually, si > 1; this is the so-called buy-to-fly ratio),mi is the
mass of ith material in the product, and SRi is the supply risk
of the ith material. The sum of mass of all materials in the
product is denoted as the design mass md . Note that mmfg,i
is the mass required for ith material to produce one product
and is equal to simi. The variable mi can be calculated from
the product geometry. The variables si can be found from life
cycle inventories and other studies in the literature and SRi
may be found in government reports or may be calculated for
other targeted countries as explained earlier. Since the scope
of this study does not consider any manufacturing data, to use
(2), si will be assumed to equal 1 for all i. The SReq represents
a weighted mean, where the weights are the masses required
for each material and the data elements are the supply risk
scores, and thus has no units. Scores may range from the
lowest to the highest SRi score of materials contained in the
product. SReq may be minimized by minimizing the mass of
specific materials and/or selecting material types that have
smaller supply risks.

D. OPTIMIZATION ENGINE
Different population-based optimization techniques have
been applied to electric motor design [12], [28], [29],
[30], [31]. Their applications have proven to be useful due
to their high dimensional search space capabilities, which
is convenient for solving complex problems such as elec-
tric motor design. For this paper, a genetic algorithm (GA),
i.e., the Genetic Optimization Systems Engineering Tool
(GOSET) – version 2.6, was applied to the described design.
The GOSET algorithm includes the canonical mechanisms of
GAs (selection, crossover, and mutation) and other operators
found in the literature (elitism, migration, random search,
diversity control, scaling, and death). For more details, refer
to the GOSET documentation [32]. Table S3 from the SI
includes all 27 genes and the ranges considered. It is impor-
tant to state that the selection of other genes and ranges can
result in different outcomes. The fitness function is a vector
that contains the three objective functions:

f = [md e/d SReq]T (3)

where md is the designed motor mass, e/d is the energy
consumption per unit of distance across the useful life, and
SReq is the SR-eq. score. This fitness function is used to
find feasible solutions. The non-dominated solutions will be
plotted as a Pareto front. The solutions lying on the front are
considered optimal.

To achieve this, a GA is set to run a population size of 3,000
and will run for 2,000 generations. Two different magnets for
themotor design are considered: Sm-Comagnets and sintered
Nd-Fe-Bmagnets. The results display a matrix of plots where
the ith row and jth column (i ̸= j) plot present the Pareto
front for the ith and jth objective functions. The plots on
the diagonal (i = j) show a frequency histogram of values
for ith objective function for the last generation of the non-
dominated solutions. In addition, the parameters distribution
will show how they relate to the non-dominated solutions.
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FIGURE 4. Pareto fronts for all objective function pairs and density histograms for each objective function (left: Sm-Co, right: Nd-Fe-B).

FIGURE 5. Normalized parameter distributions (left: Sm-Co, right: Nd-Fe-B).

The data points are colored in a rainbow fashion so that
each color corresponds to a non-dominated solution lying
on the Pareto fronts. The colors are consistently sorted in
ascending form in terms of motor SR-eq. (blue = lowest,

and red = highest) across all figures shown in this study. The
results will be analyzed and discussed, specifically regarding
the benefits of the SR-eq. score, the design model, and future
improvements.
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FIGURE 6. The effect of mass composition of main components and rest of components (RoCs) on the three objective functions
(left: Sm-Co, right: Nd-Fe-B).

IV. RESULTS AND DISCUSSION
Fig. 4 shows the final Pareto fronts for the non-dominated
solutions. These points are displayed for each objective func-
tion pair and frequency histograms for each objective func-
tion are also shown. Graphs are presented for both magnet
types: Sm-Co and Nd-Fe-B. The relationships among the
objectives for both magnet types are similar. It is important
to note that for each pair of objectives the three-dimensional
Pareto front is projected onto a plane pair (e.g., objective
1 vs. objective 2). The open and closed points represent
those non-dominated solutions lying on 1 and 2 Pareto front
projections, respectively. It is important to specify that there
were more non-dominated solutions not plotted in the figure.
The reason behind not plotting them is because it would be
more difficult to visualize the results. Those eliminated non-
dominated solutions are the ones not lying on any of the
Pareto front projections. Each axis of each plot is delimited
and normalized from minimum value (equal to 0) to maxi-
mum value (equal to 1). This figure may be proposed to show
the results for multi-objective optimization problems.

In the mass vs SR-eq. graphs of Fig. 4 (for both Sm-Co
and Nd-Fe-B), there are points that align to form multiple
sets (traces) of solutions; along a trace the decision variables
change, and each trace is likely associated with a different
material. Regardless, all these points are non-dominated solu-
tions. Also evident in the figure is that there is a tradeoff
between motor mass and energy consumption per unit of
distance (i.e., the lighter the motor, the worse it performs).
The motor mass and SR-eq. have an inverse relationship
because of the way SR-eq. Finally, the energy consumption

and SR-eq. score also have a tradeoff for motors with high
mass. Further analysis on the variable and other parameters
distributions is needed to understand these phenomena, espe-
cially, the effect of SR-eq.

In Fig. 4, when comparing from one magnet type to the
other, since Sm-Co magnets have a smaller SR-eq. than the
Nd-Fe-B magnets, the SR-eq. for motors (PMSMs) made
with these magnets have similar behavior. Also, one can
observe that PMSMs with Sm-Co perform better in terms of
motor mass and energy consumption. This observation has
been reported in the literature and may be due to multiple
factors despite Nd-Fe-B magnets having a higher maximum
energy density than Sm-Co [33]. These factors may include
the remanent flux density and thermal resistance to demag-
netization.

To explore how changes in the parameters in θ affect the
three objective functions, Fig. 5 was prepared. Six rectangular
boxes are shown (3 objectives × 2 magnet types), and each
box consists of 27 rectangles (one for each parameter). Each
rectangle displays the non-dominated points; the horizontal
position of each point is the normalized parameter value
for that variable and the vertical position is the objective
function value. The color for the displayed points follows
the convention established previously. Each point shown in
Fig. 4, is displayed in Fig. 5 for the corresponding parameter
value.

In Fig. 5, the first six variables are dependent on the
material types selected. Almost all designs use stator steel
type st corresponding to M47, followed by a few designs
with M43 and M19. There is more flexibility in selecting
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the rotor steel type rt than the stator. The conductor type ct
for these runs tend to correspond to aluminum. The material
type mt used varies among three to seven different grades for
each Sm-Co and Nd-Fe-B run. Most designs use the thermal
insulation classification corresponding to the N NEMA class
(200◦ maximum operating temperature), followed by the H
NEMA class (180◦ maximum operating temperature). The
thermal insulation class may be decreased to a lower grade
depending on the heat transfer configuration (e.g., a jacketed
motor frame with water) and changes to improve materials to
increase conductance (e.g., impregnation resins between end
windings and motor frame).

Regarding the l, the peak fundamental conductor density
N ∗

s1, the third harmonic conductor density α∗

3 , the conductors
packing factor apf , and the end winding offset leo have a rel-
atively well defined range that make feasible motor designs.
The rest of the geometric/winding parameters, the depth of
inert region di, the depth of rotor backiron drb, the depth of
tooth base dtb, the depth of magnet dm, the air gap g, the
tooth fraction αt , the depth of stator backiron dsb, the magnet
fraction αpm, the active (or stack) length geometric/winding
parameters show no correlation to any of the objectives.
The only observed correlation with energy performance
is the stator steel selection (less energy consumption for
M43 or M19).

In addition to the effect of changes in the parameters
above on objective function values, the motor outer diameter-
to-active length ratio 2rss/l may be an important factor to
consider. For Sm-Co, this ratio ranges from 2.4 to 4.5 whereas
for Nd-Fe-B it ranges from 3.6 to 4.6. The SI shows the 2rss/l
distribution for all three objective functions (see Fig. S2).
However, there is no clear indication that 2rss/l and the objec-
tive functions are related for the non-dominated solutions.

According to how SR-eq. was defined, one may observe an
inverse linear relationship between motor mass and the SR-
eq. The effect of minimizing for SR-eq. is that for a given
motor mass, the materials masses experiencing a high SR
tend to be exchanged for material masses with a low SR.
This is an important observation and reveals that using SR-
eq. as a design strategy is different than minimizing mass.
In order to better visualize this observation, see Fig. 6. This
figure shows the effect of mass composition of the main
components (stator, rotor, conductor windings, and PMs) and
the agglomeration of the rest of components (RoCs) on all
three objective functions for all non-dominated design solu-
tions. For a complete visualization, please refer to Fig. S3
and S4 from the SI. As seen in the SI, those disturbances
shown in the mass of components sorted by increasing SR-
eq. are due to discrete parameters (e.g., stator material selec-
tion). It is seen that the PMs and conductors (in terms of
mass) do not vary as much as the stator and rotor masses.
Another observation is that the overall motor mass is more
sensitive to rotor and stator component masses. Finally,
among the components listed, the PMs and conductors are the
ones experiencing highest SRs (SRs for Sm-Co is 0.43, for
Nd-Fe-B is 0.24-0.26, and aluminum conductors are 0.60).

This Fig. 6 shows that the reduction in SR-eq. scores is
aligned to those design solutions with reduced PMs and
windings mass. However, despite these solutions reached a
reducedmass of PMs and conductors, the overall motors have
increased mass. This proves that minimizing for mass is not
necessarily an appropriate measure of minimizing the mass
of components experiencing high SR. Therefore, optimizing
for a lighter motor is not the same as optimizing for reduced
SR-eq.

The design code used for the design of the electric machine
is mature and found to be quite accurate. In particular, finite
element analysis (FEA) validation of the design code is given
in [34], [35], and [36]. Generally, there is no guarantee that a
GAwill identify the optimal solution(s). However, the quality
of solutions can be tracked during the GA procedure to assess
whether the algorithm is converging. In the present research,
the median, mean, and best fitness for each generation were
graphed to visually determine if the run was converging
(i.e., the best fitness for each objective function approaches a
constant as the number of generations increases), as explained
by Sudhoff [14] (see Fig. S5). Another way to judge the
quality of the solution is to see how close the solution is to
some of the design constraints (optimal solutions often occur
on constraints). For example, Fig. S6 shows that for the non-
dominated solutions, the largest calculated values of each
ferromagnetic constraint, across all the targeted OPs, are very
close to the constraint limits. These constraints serve to limit
the search for other motor solutions, which are not feasible.

V. SUMMARY AND CONCLUSION
Electric traction motors are a critical component in the new
generations of EVs. In this study, a new design framework has
been proposed to address the SR issues of increasing demands
for critical materials such as neodymium. A design model for
electric traction motors was proposed and used to optimize
motor mass, energy consumption, and SR-equivalent. To our
knowledge, this is the first paper that proposes a general
function for minimizing the supply risk (SR) for all critical
materials and a method for addressing this issue at the engi-
neering design stage.

For the non-dominated solutions obtained with our
method, we examined the relationship among objectives and
variable parameters. Minimizing the SR-eq. proved to be
useful, because it reached the goal of minimizing for those
materials experiencing the highest SRs in order of priority.
It was seen that minimizing for a lighter motor is not the
same as minimizing the SR. This method for minimizing
the SR-eq. can be applied to other applications or products.
Applying this special consideration may help decrease the
risks associated with the supply of these critical materials.
Also, instead of targeting a specific material, the proposed
method may consider the system complexity to minimize
the SRs of all materials needed. Directions for future work
with this optimization-based model may include adding more
motor topologies and exploring new objective functions, e.g.,
minimizing motor cost or lifecycle environmental impact.
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As a final thought, the proposed SR-eq. can be another design
strategy that seeks to reduce future supply disruptions for
the manufacturing sector that may lead to price volatility
and product shortages and deleteriously impact the consumer.
In the case of green energy technologies, these disruptions
also interrupt our efforts to work toward a more sustainable
and cleaner future.
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