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ABSTRACT The trend of transforming substations into smart automated facilities has led to their swift
digitalization and automation. To facilitate data exchange among equipment within these substations, the
IEC 61850 standard has become the predominant standard. However, this standardization has inadvertently
made these substations more susceptible to cyberattacks, which is a significant concern given the confidential
information that is transmitted. As a result, cybersecurity in substations is becoming an increasingly critical
topic. IEC 62351 standard provides guidelines and considerations for securing the IEC 61850 messages to
mitigate their vulnerabilities. While securing Generic Object-Oriented Substation Event (GOOSE) messages
has received considerable attention in literature, the same level of scrutiny has not been applied to Sampled
Value (SV) messages despite their susceptibility to cyberattacks and similar frame format. This paper presents
the impact of replay and masquerade attacks on SV messages. It also develops a scheme for securing SV
messages against these attacks. Due to high sampling rate and time critical nature of SV messages, the
time complexity of security scheme is critical for its applicability to SV messages. Hence, in this work,
SV emulators have been developed in order to send these modified secure SV messages and investigate their
timing performance. The results show that the proposed scheme can mitigate replay and masquerade attacks
on SV messages while providing the necessary high sampling rate and stringent timing requirements.

INDEX TERMS  Substation automation, IEC 61850, IEC 62351, cybersecurity, power system communica-
tion, sample values, communication protocols, hardware-in-the-loop testing.

. INTRODUCTION

ITH the introduction of information and communi-

cation technology (ICT) for advanced control and
automation of power grids, traditional power systems are
transforming into smart grids. They provide various benefits
such as higher efficiency, energy savings, improved quality
of service, reliability, and security. Substations are a core
component of grid operation. Under the smart grid paradigm,
existing supervisory control and data acquisition (SCADA)

systems are replaced with advanced digital communication
technologies to realize substation automation [1]. In this
regard, IEC 61850 has emerged as the most widely
accepted communication standard [2]. The object-oriented
information model and interoperable features make it
effective and popular. On the other hand, this standard-
ized communication makes substations more vulnerable to
cyberattacks [3]. In recent years, reports of cyberattacks
on control and automation units of power systems to
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disrupt power supplies and force blackouts are on the
rise [4], [5].

Researchers have been actively investigating the field of
cyberattacks on IEC 61850 substation automation systems
(SAS), which is still emerging and growing [6], [7], [8].
In [6], the authors discussed the impact of cyberattacks
and potential exploits in SAS. In [7], authors developed an
active command mediation defense (A*CMD) solution as
an additional layer of security in gateways. With AxCMD,
all the commands (i.e., messages) are artificially delayed
until each message is scrutinized by some attack detection
system. However, such a system is very complex to
design and depends heavily on external attack detection
systems for identification. Furthermore, such a system is
designed for securing messages coming from outside the
substation.

IEC 61850’s Generic Object-Oriented Substation Event
(GOOSE) and Sampled Value (SV) messages are layer
2 messages. These messages are sent within substations LAN.
Since these messages were initially developed for LANs
behind gateways and firewalls, no security mechanisms were
defined by IEC 61850. It has been noticed that the GOOSE
and SV messages are also vulnerable to cyberattacks and
many attacks have been reported in literature [6], [8].

IEC 62351 standard was developed by the TC57 com-
mittee to provide security recommendations for different
power automation standards including IEC 61850. IEC
62351 standard complements the IEC 61850 standards
by providing the necessary security recommendations for
securing them against cyberattacks. Part 3 and 4 of
IEC 62351 standard provides guidelines for securing the
IEC 61850 Manufacturing Message Specification (MMS)
messages [9]. On the other hand, part 6 provides the security
guidelines for securing GOOSE and SV messages [9].
In literature, a lot of studies focus on securing GOOSE
[10], [11], and MMS messages [12]. Previous studies showed
that a single contaminated GOOSE message can result
in successful maloperation of breakers and have severe
consequences on SAS performance [13]. Due to its quite
evident vulnerability, much research attention was focused
on securing GOOSE messages. GOOSE and SV messages
have similar multicast Ethernet frame format. The impact of
cyberattacks on SV messages has not been investigated in
depth. This paper addresses this gap, by demonstrating the
impact and consequences of replay and masquerade attacks
on SV messages.

Furthermore, in literature very little attention has been
given regarding the design of security mechanisms for SV
messages against replay and masquerade attacks. In [14],
the authors developed neural network forecasters to detect
spoofed SV messages. This detection technique is based
on comparing the measured data values received in the SV
message with the neural network based forecasted values.
In [15], the authors developed network based integrated
anomaly detection system for multicast SV messages.
Anomaly detection system used different parameters of
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SV message, such as sample count (smpCnf), as violation
indicators. However, these works do not discuss any security
mechanism at protocol or data link layer level. In [16],
the work proposed distributed intrusion mechanism utilizing
RSA based digital signatures for SV messages. However,
it has been observed that the processing times required for
generating and verifying RSA based digital signatures is on
the order of few milli seconds and would not be suitable
for both high sampling rate IEC 61850-9-2 LE SV and time
critical GOOSE messages [10]. SV messages have a high
sampling rate and their computational processing times are
even more stringent. The previous works on SV security do
not present the evaluations on computational complexity of
the security schemes and its applicability to time critical SV
messages. Recently, in [17] and [18], the authors presented a
Message Authentication Code (MAC) based security scheme
for SV messages. However, the security scheme proposed in
[17] and [18] does not provide confidentiality of data, and the
security scheme in [17] is prone to replay attacks. In [19],
the authors have proposed use of Advanced Encryption
Standard with Galois/Counter Mode (AES-GCM) algorithm
for securing the GOOSE and SV messages. Furthermore,
in [19], authors presented the performance evaluation of
AES-GCM algorithm over a powerful FPGA platform.
However, the legacy intelligent electronic devices (IEDs)
in substations may have low computational capacities.
Hence, an investigation of the security schemes for SV
messages on low computing platforms is required to test its
applicability.

In this regard, this paper presents a holistic security
scheme based on IEC 62351:2020 recommended MAC and
encryption algorithms to secure SV messages. Furthermore,
a C-language based SV emulator ‘S-SV’ is developed to
publish these secure SV messages. The result of lab tests on
practical processing times for generating SV messages with
proposed security mechanisms on low computing platforms
is presented. The major contributions of this paper are the
following:

1) Investigation of impact and consequence of replay and
masquerade attacks on SV messages through real time
hardware-in-the-loop (HIL) experiments.

2) Proposed a holistic security scheme for SV messages
using authentication value and encryption algorithms
against different security attacks.

3) Open-Source framework °‘S-SV’ for generating SV
messages with proposed security scheme is developed.

4) Experimental evaluation of the computational per-
formance of proposed security scheme to test its
applicability to SV messages.

The rest of the paper is organized as follows. Section II
demonstrates the impact of replay and masquerade attacks
on SV messages. Section III presents proposed security
scheme for securing SV messages. Section IV presents
the performance evaluation and applicability of proposed
security scheme to SV messages. Finally, section V presents
the conclusions.
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Il. THREAT MODEL AND IMPACT OF CYBERATTACK ON
IEC 61850 SV STREAMS

A SAS consists of various IEDs such as merging unit
(MU) IED, protection and control (P&C) IED and breaker
IED. MU is the primary equipment in process level and
receives the voltage and current samples from the instrument
transformer and converts them into a digital data packet
to be communicated to other IEDs. These digital packets
are formed according to the guidelines set forward by IEC
61850-9-2 standard, known as SVs. The SV stream is time-
synchronized and stamped at the MU and is sent to the P&C
IED. The P&C IED is responsible for carrying out control and
protection functions by taking values from the MU IED. The
P&C IED then sends a signal to the breaker IED for isolating
the faulty portion. The breaker IED is a circuit controlling
device that controls and monitors the status of the circuit
breaker.

A. ADVERSARIAL MODEL OF CYBERATTACKS
The threat model of a cyberattack in a SAS is presented in
this section. The engineering and operator workplace of a
SAS is designed using human machine interface (HMI) to
provide a graphical interface to the operating personnel for
monitoring and controlling devices. Although the operator
workplace has restricted access, the engineering workstations
may have remote access facilities to allow access through
corporate offices and control centers [20]. This makes the
substations a soft target for the adversaries to infiltrate
and gain unauthorized access. Also, cyberattacks on the
SAS could originate from operator personnel who have
access to the substation communication network (SCN).
These personnel can infect the substation infrastructure
with malware, intentionally (e.g., disgruntled employee) or
unintentionally (e.g., improper usage of infected devices),
and can compromise the cybersecurity of the substation.
Moreover, cyberattacks can originate from the supply chain
where malware contamination occurs during the production
phase of IEDs [21].

Based on any of the scenarios, the intruders can gain
a foothold in the substation network and can launch
several cyberattacks as in the case of Ukraine’s power grid
attack [22]. After gaining access to the SCN, an intruder
having no login credentials can hijack the valid credentials
of legitimate personnel while they log into their system.
The attack models for IEC 61850 SAS have been developed
in [14], [23], and [24]. Once into the SCN, the intruder
can gain knowledge about topology of substation, and the
IED’s information along with their login credentials. Thus,
the intruder can now launch an attack on any IED of the
SCN. A generalized adversarial model of cyberattack is
shown in Fig. 1. It shows the control diagram of a SAS
system considered in this paper under cyberattack from an
intruder [25].

The test system receives measurements from current
transformer (CT) and potential transformer (PT) which are
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FIGURE 1. Schematic diagram of adversarial model for the
cyberattack.

then used as input to the MU IED, which acts as a sensor.
As illustrated in Fig. 1, the intruder can access the true
observations from the sensor (IEC 61850-9-2 SV from the
MU IED). This access is assumed to be for a finite duration
but for a sufficiently long-time interval and after capturing
these observations, they can be used at a later point in time.
The IEC 61850-9-2 SV stream is received by the P&C IED.
Under the attack, the true values y; are replaced by a stream
of values yx + yr—p, where y;_, are the values at an unknown
but definite time delay. The values y;_, are older observations
captured by the intruder for a finite time interval during
normal or faulty system state. It has been assumed that noise
signals (process and observation) are zero.

Under practical situations, the time instant p depends
on when the system is compromised by the intruder. The
intruder need not have any information about control logic
for launching the cyberattack of the considered adversarial
model. The intruder can read and modify the SVs generated
from the MU IED in the SAS. Based upon the modified
streams to the P&C IED, the decision ‘x;’, whether to trip
or not trip, is transferred to the Breaker IED as per (1)

0, Notri
= , otrip )
1, Trip

The intruder can perform two main types of attacks on SVs,

i.e., replay and masquerade attacks which are examined in the
next subsection.

B. REPLAY AND MMASQUERADE ATTACKS IN SAS

In a replay attack, the intruder eavesdrops on an SCN and
captures an SV message packet with the current and voltage
samples during normal operation. The intruder then replays
the captured packets into the SCN during a fault. This causes
the relay to receive normal values of current and voltage
during the fault. This would make the relay to keep the circuit
breaker closed even though the fault is present. The fault
level could rise tremendously, and the system could even
crash. This would lead to huge equipment damage, service
interruptions and could tamper the system stability.

In a masquerade attack, the intruder gains access to the
SCN by taking a false identity and reads an SV message
packet and intercepts it to change or modify the measured
values. This would result in complete tampering on the
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FIGURE 2. Hardware-in-the-loop (HIL) test setup for cyberattack
tests.

original SV packet. The modification in measured values lead
to distortion in waveform received at the relay. An adversarial
attacker may tamper the SV data such that the relay algorithm
gives unexpected outputs and in turn could lead to detrimental
effects.

The replay and masquerade attacks are carried out on a
test SCN developed in RTDS environment for validating the
attacks and their consequences in the next subsection.

C. VALIDATION OF RESULTS BY RTDS EXPERIMENTS

1) HARDWARE-IN-THE-LOOP (HIL) SETUP

For realizing the cyberattacks on a SAS feeder, an experi-
mental HIL setup has been developed in the laboratory as
shown in Fig. 2. The developed test system represents an
11kV feeder that supports a dynamic load. The substation
feeder setup is developed in RSCAD as shown in Fig. 3. The
simulation is carried out with and without fault for studying
the consequences of different cyberattacks. In one of the
feeders, a CT and PT are connected to acquire the current
and voltage values. The GTNETx2 card is configured to send
and receive SV according to IEC 61850-9-2 LE standard,
henceforth referred as 9-2 LE. To mimic the behavior of a
MU, the GTNET SV card is used in publisher mode which
generates SV according to the current and voltage signals.
MU receives current and voltage values from CT and PT at
a sampling rate of 80 samples per cycle. According to 9-2
LE each SV packet contains one set of values for current and
voltage [26]. Hence, 9-2 LE MU sends 4000/4800 SV packets
per second for 50/60 Hz system. The circuit breaker in the
feeder mimics the operation of Breaker IED.

The P&C IED receives SV stream at 4000/4800 packets
per second. The protection algorithm in commercial P&C
IEDs normally operate with sample rate of 8 to 12 times
a cycle [27]. In RTDS, the protection algorithms in relays
are modeled to operate with sample rate of 10 samples per
cycle [28]. Hence, the P&C IED averages eight consecutive
SV messages to get 10 current and voltage samples per
cycle. The protection algorithm calculates current and voltage
phasors for each cycle using these 10 averaged values. The
P&C IED, then, compares these phasor values of currents
and voltages with the permissible values to detect a fault
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condition. If a fault is detected, it sends a command to the
Breaker IED for isolating the fault. In the test system, the
P&C IED is realized using GTNET SV card in subscriber
mode along with an Overcurrent (OC) relay to send trip signal
as shown in Fig. 3.

2) TESTS FOR REPLAY AND MASQUERADE ATTACKS
To study the implications of cyberattack, fault and non-fault
scenarios are developed in HIL tests. Based on these, there are
various possible scenarios in which an intrusion can occur.

a: FAULTY SV PLAYBACK DURING NORMAL
CONDITIONS

In this scenario, the intruder sends SV streams, recorded
when fault is present, which leads to detection of a fault
by the relay. GTNET uses the destination multicast address
of the SV packets to identify the intended SV stream, and
since the replayed SV message are captured at the same
feeder, the destination multicast address remains unaltered.
The P&C IED reads the replayed or tampered message and
sends the signals in the form of current to the overcurrent
relay.

In order to monitor the consequences of replaying a series
of messages, an intrusion is catried by replaying a single SV
packet from the SV stream. In the HIL setup, the intruder
sends one intruded SV packet to the same relay. Figure 4
shows the Wireshark capture at the P&C IED in RTDS. It can
be noticed that old SV message with smpCnt 3561 (frame
21) is the replayed while current value smpCnt counter is
3743. Since the sampling rate of relay is 10 samples per cycle,
it averages eight SV messages to a single value of current and
voltage [27], [28]. Hence, when a single faulty SV is replayed
no disturbance is noted as shown in Fig. 5(a). The intruded SV
packets are increased from one to twenty-five, a disturbance
is noted as shown in Fig. 5(b). In another scenario, the
intruded SV packets are continuously sent, this resulted in a
continuous disturbance as shown in Fig. 5(c). It is observed
that the P&C IED detected the change when there are more
than nine SV messages as shown in Figs. 5(b) and 5(c). The
intrusion is detrimental if faulty SV messages are replayed at
least for one cycle (i.e. 80 SV messages are replayed). The
OC relay detected the condition as a fault, when more than
eighty fault condition SV streams are intruded during normal
scenario. The consequence can be maloperation of protection
scheme, unnecessary tripping of circuit breakers, unnecessary
isolation of a healthy power system, all of which affect system
stability.

b: NORMAL SV PLAYBACK DURING FAULT CONDITIONS
Generally, once a fault is detected by the relay it opens the
circuit breaker thereby isolating the faulty portion. In this
scenario, maloperation in the system occurs, when circuit
breaker is erroneously closed while the fault is not yet cleared.
The intruder replays the SV stream captured during healthy
operation of feeder (i.e., normal condition) when fault is
still present. Based on this intruded SV stream, relay closes
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FIGURE 4. Wireshark capture at P&C IED in RTDS during replay
attack.

the circuit breaker contacts even though there is still a fault
present in the power system. This is a more serious condition
as compared to the former. Closing a circuit during fault
condition could result in multiple equipment failures and a
blackout. This scenario is realized in the same manner as
discussed in the previous section. The intruder replays more
than eighty SV samples of healthy operation during the LG
fault in the system. The P&C IED sends healthy current and
voltages to OC relay and the circuit breaker is closed on a
fault situation leading to maloperation of protection scheme.

c: MASQUERADE ATTACK DURING NORMAL
OPERATION

On similar lines, masquerade attack is also replicated on the
hardware setup. The captured SV stream by the intruder is
modified and tampered to change its measurement data and
smpCnt values. For implementing masquerade attack, the
modified SV packets with current value equal to five times
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the normal values and high smpCnt value are continuously
sent. This resulted in a continuous disturbance with high
current values at P&C IED as shown in Fig. 6 resulting
in maloperation of relays. Wireshark capture at the P&C
IED during masquerade attack is shown in Fig. 7. It can be
noticed from Fig. 7 that frame 21 is a modified SV packet
having high smpCnt value. The masquerade attack is realized
by sending the tampered packet stream in the SCN by the
intruder. Overall, it is found that the conventional IEC 61850-
9-2 SV is vulnerable to replay and masquerade attacks.

lll. SECURITY SCHEME FOR IEC 61850 SVs

In this section, a cybersecurity solution is proposed to
mitigate the replay and masquerade attacks on SV messages.
In masquerade attack, the attacker can inject packets with
modified contents. Hence, for mitigating the masquerade
attacks the proposed mechanism in this paper employs the
IEC 62351-6 recommended authentication value extension
and encryption of SV APDU in SV messages.

IEC 62351-6:2007 recommends use of RSA based digital
signatures as authentication value. The processing time
(generation and comparison) of RSA based digital signatures
is 2-3 msec. Hence, it is clearly not suitable for SVs.
Alternatively, MAC algorithms can be used for generating
this authentication value as MAC algorithms are lightweight
and have comparatively low computational times [11].
In the proposed mechanism, different MAC algorithms
recommended in the recently published IEC 62351-6:2020
are used for generating the authentication value. These
algorithms and their corresponding sizes of MAC values
are given in Table 1. Furthermore, Advanced Encryption

VOLUME 10, 2023
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FIGURE 7. Wireshark capture at P&C IED in RTDS during
masquerade attack.

TABLE 1. MAC algorithms recommended in IEC 62351-6.

MAC Algorithm Hash MAC value | Initialization
Function (bytes) Vector (bytes)
HMAC-SHA256-80 | SHA-256 10 -
HMAC-SHA256-128 | SHA-256 16 -
HMAC-SHA256-256 | SHA-256 32 -
AES-GMAC-64 - 8 4
AES-GMAC-128 - 16 8

Standard with Galois/Counter Mode 128/256 (AES-GCM-
128/256) algorithm is employed for encrypting the SV
APDU.

The SV APDU is encrypted using the AES-GCM-
128/256 algorithm. The authentication value generated for
SV message is appended to SV PDU as Extension field,
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SV APDU }—»I AES-GCM 128/256

MAC MAC | Ether Reser | Reser [ Encrypted :
Addr Dst/Addr Src| Type |[APPID[Lengthf U qs™ | veqva | svappu |EXtension|FCS
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Version TimeofCurrentKey | TimetoNextKey | Initialization Key ID mAC value
1 byte 4 bytes 2 bytes Vector 4 bytes 8- 32 bytes

FIGURE 8. Extended frame format of SV message with security
extensions.

as shown in Fig. 8. This authentication value (i.e., MAC
value) is calculated for SV PDU starting from Ethertype field
till the end of encrypted SV APDU. The length of Extension
field appended to the SV PDU is added to the 2" byte of
reservedl field of SV PDU. The reserved? field contains the
CRC value of the first 8 bytes of the SV PDU (i.e., Ether-type,
APPID, Length and reserved 1 fields).

At the publisher, while formatting the SV packets, first the
SV APDU is encrypted and then MAC value is generated
and added to the extension field. Any of the algorithms
listed in Table 1 can be used for MAC value generation. The
publisher sends the secure SV packets. Upon receiving the
secure SV packet, the subscriber IED reads the MAC value in
extension field and stores it in m/. Next, the MAC value for
the SV PDU of the received packet is calculated as m2. If m/
matches with m2, the packet is considered to be legitimate,
and the encrypted SV APDU is decrypted and processed
further. Otherwise, the packet is discarded as the MAC value
mismatch indicates that at least one of the received encrypted
SV PDU or MAC value is tampered. The proposed security
mechanism for SVs against masquerade attacks is depicted in
red font in the flowchart as shown in Fig. 9.

The MAC and AES-GCM encryption algorithms require
a secret key to be pre-shared between the subscriber and
publisher. In SAS, the communication network is LAN
and spread over a small distance. Hence, the secret keys
can be physically installed in all IEDs. Alternatively, key
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FIGURE 9. Flowchart for the proposed security mechanism for
SVs.

distribution center (KDC) concept where a trusted center
with authority to allocate and revoke keys for IEDs can be
utilized. The key distribution via KDC is accomplished in two
steps. First, all the subscribers and publishers obtain digital
certificates (X.509) using Secure Certificate Enrollment
Protocol (SCEP) and/or Enrolment over Secure Transport
(EST) protocols from a Certificate Authority (CA). Secondly,
the publisher/subscriber establishes a secure communication
channel with the KDC using Transport Layer Security (TLS).
The publisher/subscriber using its digital certificate (issued
by CA) generates a signature and sends it to KDC along with a
request to share the secret key. The KDC verifies the signature
and certificate used to generate it via Online Certificate Status
Protocol (OCSP) to validate if the certificate is valid and
legitimate. Upon verification, the KDC shares the secret key
to the publisher/subscriber via the same established TLS
channel. Typically, secret symmetric keys used for generating
MAC values may be valid for about 36 hours before they are
changed [29]. The KDC communicates new keys to the IEDs
with additional information about the time till the current
key is valid and time to the next key. Prior to expiry of
current key, IEDs may request KDC to allocate new key
without any hinderance to application traffic. The guidelines
and recommendations for procedures and formats for key
exchanges between KDC and IED are discussed in [29].
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Destination Source Address Priority and Ether-type | FCS (4
Address (6 bytes) (6 bytes) VLAN ID (4 bytes) SV PDU bytes)

Ether-type | APPID | Length | Reserved1

(2bytesiBllizIbytes)| (2 bytes) | @bytes) SY R

seqASDU ASDU 1 ASDU n
(2 bytes) | (46bytes) | ~* | (46 bytes)
sviD smpCnt | confRev | smpSynch
(2 bytes) | (3 bytes) | (2 bytes) | (2 bytes)

FIGURE 10. Frame format of IEC 61850-9-2 SV.

However, the above discussed authentication value exten-
sion and encryption of SV message is still prone to replay
attacks. In GOOSE messages, replay attacks can be easily
identified by comparing the values of stNum and sgNum fields
of current GOOSE message with the last received GOOSE
message. The sgNum value is incremented for every new
GOOSE message. Whereas stNum value is incremented when
there is change in data set information i.e., when a new event
occurs. When the stNum is incremented, the value of sgNum
is reset to 0. Hence, any replay attack in GOOSE messages
can be easily identified by comparing the stNum and sqNum
values of current GOOSE message with previous GOOSE
message. In SV message, the smpCnt field is incremented for
every new SV message and its value is reset to O every second.
The smpCnt value in SV message is like sgNum value of
GOOSE message. However, the SV message doesn’t contain
a value similar to stNum in GOOSE message. As the smpCnt
value resets every second, it is alone not enough to identify
replay attack in SV messages.

The IEC 61850-9-2 SV APDU contains an optional field
Security which is reserved for future definition and use.
Security field is utilized to contain the timestamp, i.e., the
time, at which the SV frame is formatted. The timestamp has a
size of 8 bytes and its value shall be encoded as per RFC 1305.
The frame format of SV with security field of 8 bytes is shown
in Fig. 10. Security field timestamp value along with smpCnt
value is utilized to identify replay attacks in SV messages in
the proposed security scheme.

In the proposed security scheme, each SV packet, now,
contains the time at which the packet is created in the
Security field. The subscriber IED maintains a record of
2 variables ‘last received timestamp’ (lastRcvT) and the
expected delay for next packet (expNxtPkt). The subscriber
IED, upon receiving the first SV packet, sets the value of
‘lastRcvT’ to timestamp value taken from the security field
of the received SV packet. And ‘expNxtPkt’ is calculated as
per (2) with the information of number of ASDU (noASDU)
and sampling rate (smpRate) obtained from the received SV
packet.

expNxtPkt = (noASDU / smpRate) * 2 2)
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TABLE 2. Security requirements of different attacks and
proposed security scheme.

Attacks Security
requirements

Replay -

Proposed Security Scheme

M by adding timestamp to SV
APDU

Unauthorized Message M by employing
tampering Authentication and | authentication value using MAC
(masquerade) integrity algorithms
Unauthorized Message M by employing encryption
access or theft of confidentiality for SV APDU

information
Man-In-The-Middle

M by employing
authentication value using MAC
algorithms

M by employing
authentication value using MAC
algorithms and employing
encryption

Message
Authentication

Spoofing and False
Data Injection
attacks

Message
Authentication and
confidentiality

‘expNxtPkt’ is the time for which the subscriber waits to
receive the next SV packet before assuming that the packet
is dropped or lost. The subscriber discards the packet if it
arrives after ‘expNxtPkt’ has elapsed, deeming the packet
is no longer required. If the packet is received before the
expiry of ‘expNxtPkt’, it is processed further and checked for
a possible replay attack. The timestamp value (i.e., value in
security field) of the received SV packet is compared with
‘lastRevT’ value. If the timestamp value of the received SV
packet is less than or equal to ‘lastRcvT’, replay is detected,
and the packet is discarded. If the value is greater, the SV
packet is processed further and ‘lastRcvT’ value is updated
with timestamp value (i.e. value in security field) of the
current SV packet.

The proposed security scheme against both replay and
masquerade attack in SV messages is depicted in the
flowchart as shown in Fig. 9. The proposed security
mechanism meets message authentication, integrity, and con-
fidentiality requirements. Moreover, the proposed security
mechanism is also effective in providing security against
other attacks such as unauthorized access of information,
spoofing attacks, false data injection attacks, Man-In-The-
Middle attacks, etc. Table 2 describes the security require-
ments for different attacks and how the proposed security
scheme address it.

IV. PERFORMANCE EVALUATION OF THE SECURITY
SCHEME

In this section, experimental evaluations are carried out to
test the applicability of the proposed security scheme to SV
messages.

According to IEC 61850-9-2 LE guidelines, the SAS
protection functions require the current and voltage samples
at the rate of 80 samples/cycle. Each SV packet contains
a set of voltage and current values. Hence, the SV packets
are multicast at 4000/4800 packets per second for 50/60 Hz
systems. The interarrival time between two consecutive SV
packets is 0.25/0.2ms for 50/60 Hz systems, assuming the
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FIGURE 11. lllustration of interarrival time and transmission
delay of SV messages.

jitter in substation communication network is negligible or
zero. This implies that both at publisher and subscriber,
each SV packet must be processed within this time frame.
The additional security mechanisms must also be completed
within this time frame. If each SV packet takes longer than
0.25/0.2ms to process, the maximum number of packets that
the publisher/subscriber can handle per second will drop
below 4000/4800. As a result, the system will process fewer
SV messages per second, which can have a detrimental effect
on the performance of the protection function. Fig. 11 depicts
the interarrival time of an SV stream.

Total End-to-End (ETE) transmission time for SV mes-
sages for implementing protection functions of performance
class P1 and P2/3 is 10 and 3ms, respectively [30]. The
transmission time is the time required to transfer a message
including the processing time at both ends. The transmission
time starts as soon as the publisher puts SV application data
on the protocol stack and ends when the subscriber extracts
data from the protocol stack. Hence, the transmission time
includes processing time delays at both ends, propagation
time delays in communication links, processing, and queuing
time delays in intermediate switches.

The proposed additional security mechanisms on SVs
must adhere to the above discussed timing requirements
for successful practical implementation. In order to evaluate
the performance of proposed security mechanism, SV emu-
lator framework °‘S-SV’ is developed in this paper [31].
‘S-SV’  framework is developed in C-language using
openSSL libraries and is capable of publishing and subscrib-
ing SV packets with proposed security mechanisms.

An experimental setup consisting of two terminals running
‘S-SV’ framework and connected via switch is considered as
shown in Fig. 12. One terminal act as SV publisher while
the other acts as SV subscriber. In this paper, it is assumed
that both the publisher and subscriber already have the secret
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FIGURE 12. Experimental test setup.
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FIGURE 13. Wireshark capture of normal SV packet published
by S-SV.

N

Reservedz

g

Frame 1: 188 bytes on wire (154 bits), 188 bytes captured (1504 bits) on interface e
Ethernet II, Src: RTDSTech_02:92 (7@:b3:d5:54:22:92), Dst: Iec-Tc57_04:00:00 (@1:0c:c(

v

Timeof APPID: @x4000 Reserved1] [Reserved2 [Encrypted SV_APDU|
Next |Length: 118
y

K&y Reserved 1: 0x0038,(56)
L Reserved 2: @xd43a (54330)

o1 oc cd @460 00,70 b3 dS 4 29288ba%
00 76 00 38/[d4 3a]62 2a 2 @e 2b 2c @5 5¢
[7c 94 75 da fd 31 d7 e6 do al d3 4e e 4f 7e|
43 32 00 c@ 98 cd de 48
S5d 4e df fe 1c 25 d3
8b\3a @7 cc ec e8 38

Sequence TL] [Authentication_TL|
Version_TLV

_3}2013(84040000 20 @. 8520a944c267_ﬂ__<—_0_g..MACTLV
28 98 69 Sb @9 9d ab bl 93 c8 fe 80 eb 28 9c f7 (-i[ (
a4 6b 83 fc 26 02 13 83 ea ed fa a6 k&

FIGURE 14. Wireshark capture of secure SV packet published by
S-SV framework.

keys available. The Wireshark capture of normal SV frame
generated by ‘S-SV’ when no security mechanism is applied
is as shown in Fig. 13.

‘S-SV’ generates secure SV frames by encrypting the
APDU and adding the Security and Extension fields at the
SV frame. The current terminal time in NTP format (i.e., as a
64-bit unsigned fixed-point number, in seconds relative to Oh
on 1 January 1900) is added to the Security field. The MAC
value of SV PDU is calculated using any one of the algorithms
listed in Table 1 and added to Extension field. For encryption
of the SV APDU AES-GCM-128/256 algorithm is employed.
Figure 14 shows the Wireshark capture of secure SV frame
with security modifications proposed in section III. It can be
noticed that the secure SV frame has a Security field of 8 bytes
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TABLE 3. Computational processing times for encryption and
decryption of SV APDU.

Algorithm / Computational processing times (ms)
Processor AES-GCM-128 AES-GCM-256
Encryption | Decryption | Encryption | Decryption

Celeron 0.00692 0.00572 0.00800 0.00592
Raspberry pi | 0.02084 0.01992 0.02212 0.02052

004 m Celeron ™ Raspberry Pi
w
2
5 0035
3
2 003
E
= 0.025
@
E 002
E 0.015
2
E 0.01
=4
Q.
£ 0.005
o

0
HMAC-SHA256 AES-GMAC128 AES-GMAC64

FIGURE 15. Computational processing times for different MAC
algorithms.

and Extension field as described in Fig. 10 appended at the
end of SV frame. Also, the SV APDU field is encrypted.

To observe timing performance, the computational times
required for generating SV messages with security extensions
are calculated. This is done by sampling the CPU times at
the start and end of codes in C program using the clock()
functions of sys/time.h header files. In this work, two test
systems are considered, 1. Raspberry Pi 4 Model B platform
with Broadcom BCM2711 Quad core Cortex-A72 (ARM
v8) 64-bit processor and 2. Intel(R) Celeron (R) with 4GB
RAM both running Ubuntu 18.04 LTS operating system
and ‘S-SV’ library with GCC compiler. This slow system
is intentionally selected for experimental analysis as the
latest commercial SV publishers (merging units) and SV
subscribers (protection and control relays) have much higher
processing capabilities [32]. If the proposed scheme can
meet strict timing requirements in the test setup, it can
easily be deployed in these faster units. Figure 15 shows the
computational processing times for generating authentication
values for different MAC algorithms using Raspberry Pi 4 and
Celeron processors. Similarly, the computational processing
times for encrypting and decrypting the SV APDU for AES-
GCM-128/256 algorithms using Raspberry Pi 4 and Celeron
processors are shown in Table 3.

Table 4 lists the computational times obtained for pro-
cessing the SV frames, generating MAC values for different
MAC algorithms, and encrypting the SV APDU at publisher
using Raspberry Pi 4. It also lists the times obtained for
processing the received SV frames, regenerating the MAC
values for different MAC algorithms, and decrypting the
SV APDU at the subscriber side. Furthermore, Table 4
shows the size of secure SV frames obtained from S-SV

VOLUME 10, 2023



Hussain et al.: Effective Security Scheme for Attacks on Sample Value Messages

TABLE 4. Processing and communication delays for Secure SV frames for different MAC algorithms.

MAC Algorithm | Size of | Throu | Commu Processing delays (ms) Total
SV | ghput | nication Publisher Subscriber ETE
frame | in delay | Processi| MAC |Encrypti| Total | Processi| MAC | Decryptio Total delay
(bytes) | Mbps | (ms) | ngstack | value on | processing | ngstack | value n processing | (ms)
generation delay generation delay
No Security 122 4.6848 10.0026 |0.0240 |- - 0.024 0.0230 |- - 0.023 0.0496
HMAC-SHA-256 | 188 7.2192 (0.0037 ]0.0252 [0.0353 0.0221 |0.0826 0.0250 [0.0353 0.0205 0.0808 0.1671
HMAC-SHA-128 |172 6.6048 [0.0034 |0.0248 [0.0353 0.0221 |0.0822 0.0245 [0.0353 0.0205 0.0803 0.1659
HMAC-SHA-80 |166 6.3744 (0.0033 | 0.0241 |0.0353 0.0221 |0.0815 0.0238 [0.0353 0.0205 0.0796 0.1644
AES-GMAC-128 | 182 7.1424 (0.0036 0.0252 [0.0211 0.0221 |0.0684 0.0248 [0.0211 0.0205 0.0664 0.1384
AES-GMAC-64 | 170 6.0648 [0.0034 0.0249 |0.0206 0.0221 |0.0676 0.0245 [0.0206 0.0205 0.0656 0.1366
TABLE 5. Inter-arrival times for different number of SV streams and computational times of proposed security algorithms.
Platform Raspberry pi Celeron
Security | Encryption AES-GCM-256 AES-GCM-256
algorithms MAC HMAC- HMAC- HMAC- AES- AES- HMAC- HMAC- HMAC- AES- AES-
SHA256 | SHA256-128 | SHA256-80 | GMACI28 | GMAC64 | SHA256 | SHA256-128 | SHA256-80 | GMACI128 | GMAC64
Processing time for each | 0.0808 0.0803 0.0796 0.0664 0.0656 0.0169 0.0166 0.0163 0.0117 0.0111
packet (ms)
No. of SV [1(0.2) v v v v v v v v v v
streams 2(0.1) 4 v v v v v v v v v
(inter- 3(0.067) x x x v v v v v v v
arrival 5 (0.04) x x x x x v v v v v
time in ms) [ (0.02) x x x x x v v v v v
15 (0.013) x x x X X x X X v v

* x denotes processor is not capable to support SV streams for given encryption and MAC algorithm. v*  denotes processor can support the SV streams for given

encryption and MAC algorithms.

implementations when different MAC algorithms are applied.
The application of security mechanisms results in almost
50% increase in SV frame length. This also results in a
50% increase in throughput on the communication links.
The throughput in Mbps for secure SV frames generated
by different MAC algorithms is also shown. In order to
calculate the communication delays for secure SV packets,
substation communication network simulation is carried out
in Riverbed Modeler network simulator tool. The process
bus for a bay of typical D2-1 type substation consisting of
a merging unit, protection IED and breaker IED connected
through 100 Mbps ethernet links is simulated in Riverbed
Modeler. SV traffic along with typical background traffic
for a bay of substation communication network is set
in simulation. The communication delays for exchanging
different secure SV messages are obtained. From Table 4,
it can be observed that the highest communication delay is
with HMAC-SHA-256 algorithm while the lowest is with
HMAC-SHA-80 algorithm.

Finally, from Table 4 it can be observed that the processing
time delays at both the publisher and subscriber for process-
ing secure SV frames for different MAC algorithms is less
than the 0.2ms limit. It is also evident that the total ETE
delays including processing and communication time delays
for different MAC algorithms are less than the 3ms limit as
per the IEC 61850 standards.

In practice, the P&C IEDs deployed in substations perform
multiple functions, hence the P&C IEDs are subscribed to
multiple SV streams. When a subscriber receives multiple
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SV streams at the same time, the inter-arrival time of packets
decreases. The processing times for each SV packet, includ-
ing the computational times for security mechanisms must
be less than the inter-arrival time for successful operation.
Otherwise, the processing of incoming packets is delayed
which leads to overflow of buffer and eventually packet
drops. Table 5 shows the computational processing times of
proposed security algorithms using different platforms and
the inter-arrival times for different number of SV streams.
From Table 5 it is observed that proposed security scheme can
be applied to two SV streams using the Raspberry Pi platform.
The Celeron processor can support up to eleven SV streams at
the same time. Hence, it can be concluded that the proposed
security mechanism can be safely applied to two SV streams
on a low computing power IED without any issues.

V. CONCLUSION

Through real-time HIL simulations of SAS, this paper
has demonstrated the impact of replay and masquerade
attack on SV messages used in protection schemes. Towards
mitigating these threats, a MAC and AES-GCM algorithm-
based security mechanism is proposed to secure the SV
messages against replay and masquerade attacks. Necessary
format modifications in SV frame and proposed additional
fields are clearly presented. The security scheme is presented
in conjunction with these novel fields. In order to verify
the applicability of proposed MAC algorithm-based security
scheme on high sampling rate time critical SV messages,
a C-language based framework capable of generating secure
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SV messages is developed. With the help of this framework,
the computational times for processing SV messages are
calculated. From the results, it has been observed that the
proposed MAC algorithms and AES-GCM algorithms can
be applied to SV messages without any issues. Furthermore,
SV emulators are integrated with a co-simulation platform
to obtain realistic communication delays in a SCN. Results
show that the ETE delays for secure SV messages for
different MAC algorithms are within the specified limit of
IEC 61850 standards. These results are useful for researchers
and practitioners in understanding how SV messages can be
secured, what additional fields are needed in the message
frame, and how these schemes impact the message size and
delivery time.
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