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ABSTRACT The security-constrained unit commitment (SCUC) challenge is solved repeatedly several
times every day, for operations in a limited time. Typical mixed-integer linear programming (MILP)
formulations are intertemporal in nature and have complex and discrete solution spaces that exponentially
increase with system size. Improvements in the SCUC formulation and/or solution method that yield a faster
solution hold immense economic value, as less time can be spent finding the best-known solution. Most
machine learning (ML) methods in the literature either provide a warm start or convert the MILP-SCUC
formulation to a continuous formulation, possibly leading to sub-optimality and/or infeasibility. In this paper,
we propose a novel ML-based variables reduction method that accurately determines the optimal schedule
for a subset of trusted generators, shrinking the MILP-SCUC formulation and dramatically reducing the
search space. ML indicators sets are created to shrink the MILP-SCUC model, leading to improvement in the
solution quality. Test results on IEEE systems with 14, 118, and 300 busses, the Ontario system, and Polish
systems with 2383 and 3012 busses report significant reductions in solution times in the range of 48% to
98%. This is a promising tool for system operators to solve the MILP-SCUC with a lower optimality gap in
a limited-time operation, leading to economic benefits.

INDEX TERMS  Machine learning, mixed-integer linear programming, UC variables reduction, unit com-
mitment.

NOMENCLATURE B. SETS
A. ACRONYMS SG  Set of generators (for unit index g € SG,
SCUC Security-Constrained Unit SG ={1,...,NG}).
Commitment. SB Set of bus numbers (for bus indices, i, j € SB,
MLVR Machine learning-based variables SB=1{l,...,NB)).
re(.lucti(.)n. _ _ SM  Set of the number of segments, m € SM,
MILP Mixed-integer linear programming. SM = {1 NM)}
MILP-SCUC ?/II)ILP(_ZS;:UC formulation SK  Set of the transmission lines, k € SK,
ML indicators sets Machine learning indicators SK'={l,...,NL}.
sets (28) — (34). ST Set of the number of hours, ¢t € ST,
MLVR-MILP-SCUC ~ MILP-SCUC with machine ST ={l,...,NT}.
learning-based variables reduction ST1 Set of the number of hours except for the last
method (57). hour,t € ST1,ST1 ={1,...,NT — 1}.
TGS Trusted-generators set o. SD Set of the number of load scenarios, s € SD,
IGF Intelligence generators factor. SD ={1,...,NS}.
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Set of trusted generators;

a=[o, 0] € Z(ZIXNG), g =1 (trusted),
ag =0 (untrusted).

Set of ML on indicators (28).

Set of ML off indicators (29).

Set of unknown generation decisions (30).

Set of ML startup indicators (31).

Set of ML shutdown indicators (32).

Set of unknown startup decisions (33).

Set of unknown shutdown decisions (34).

C. PARAMETERS

P, /P, Maximum/minimum capacity of
o generator g.
Pon/Pgn  Maximum/minimum capacity of
o generator g in segment m.

PLy The capacity of transmission line k.

Csy/Cd,  Costs of startup/shutdown for unit g.

Cag, Cbgy,  Fuel cost coefficients.

Crg Cost of the reserve requirement.

Xp Transmission line inductive impedance.

A Factor for the online spinning reserve
requirement for each hour.

D, Net hourly demand which is the
difference between the load forecast d{ ;
and the renewable generation at
bus i, w/ .

B Power network susceptance matrix.

RG;,O Spinning reserve capacity for unit g
in 10 minutes.

RGgO Generating unit ramp up/down limit
in 60-minutes.

ur, Minimum uptime for generator g.

DT, Minimum downtime for generator g.

IT, The initial condition for generator g at
starting dispatch time r = 1
(i.e., IT; = +6 means unit g was
working for 6 hours).

Wt Forecasted renewable energy output at
bus i at time t.

B Time-wise power distribution factor.

Bi Bus-wise load power distribution factor.

D. VARIABLES AND VECTORS

Dg.t Hourly generation power of the unit g.

PI Matrix of the active hourly bus-wise power

injection.

ug,,  Unit g decisions (On/Off) at period 7, ug,, € {0, 1}.

uug;  Unit g startup status at period 7, uug € {0, 1}.

udg,  Unit g shutdown status at period ¢, udg € {0, 1}.

ST, The system spinning reserve requirement for

each hour.

Ptgm Power dispatch of unit g at period t for segment m.

Iio Spinning reserve of unit g in each period t.

246

PL;; Power flow in transmission line k at period t.

Bt Hourly voltage angle at each bus i.

Df The hourly bus net load data vector for scenario s,
D = [Di,l t 'D}YVT,NB:I'

C* The daily generation cost curve data
=i, by |-

ug’ The optimal generation decisions vector.

uu’ The optimal startup vector.

ud® The optimal shutdown vector.

q ML output vector for a particular scenario s.

e Prediction error vector for scenario s.

. INTRODUCTION

ECURITY-CONSTRAINED Unit Commitment (SCUC)
S is an essential tool for power systems generation schedul-
ing from the day-ahead planning to the real-time operation
day. In the Day-Ahead deregulated energy market, Indepen-
dent System Operators (ISOs) solve the SCUC challenge to
determine the least-known operating cost of the power system
that satisfies the demand bids, operating reserve, system relia-
bility constraints, etc. This process is performed several times
a day before clearing the electricity market to ensure the safe
operation of the power grid and the best possible economic
outcome for market participants as a whole [1].

In this work, we aim to improve the solution quality (Opti-
mality Gap and Computation Time) of the SCUC problem,
which is usually formulated as a mixed-integer linear pro-
gramming (MILP) problem, using the state of the art of
machine learning (ML) techniques. To fathom the SCUC
problem dimension, Midcontinent Independent System Oper-
ator (MISO), one of the largest ISOs in North America,
has a power system network capacity of 175GW, with over
45,000 buses and 1.400 generation units. MISO has solved
the SCUC using a commercial MILP solver CPLEX for
market clearing since 2009. The Day-Ahead (DA) MILP-
SCUC formulation for MISO’s network is characterized
by over 55,000 binary variables and about 400,000 con-
tinuous variables. The constraint matrix has 650,000 rows,
800,000 columns, and about 5 million non-zero elements
before the pre-solve process [2]. The solver time for this
formulation is about 20 minutes for each running scenario,
which leads to several hours to settle the market. For practical
purposes, a higher optimality gap is used whereby the best
possible integer solution is not found. This causes economic
loss [3]. Moreover, many other ISOs (e.g., IESO, ISO New
England, and PIM) require about 3 to 5 hours to solve the
DA-SCUC process and post the market-clearing prices for the
next day [4], [5].

To put this DA-SCUC in context, New England’s 32 GW
system transacts energy worth $10 billion/year. A $100 mil-
lion annual benefit would be achieved for only a 1% improve-
ment in solving the DA-SCUC formulation. This is a huge
economic implication for only one ISO in the US, show-
ing the great potential of opening the door to improving
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the SCUC process and finding efficiencies that benefit all
stakeholders [6].

A. MATHEMATICAL FORMULATION

SCUC is characterized as a nonconvex and discrete opti-
mization challenge. It includes a large number of binary
variables that represent the hourly power station operation
status such as ON/OFF status, startup and shutdown, and
numerous continuous variables comprising generation, ramp,
and reserve power. Many optimization methods have been
utilized to solve the SCUC challenge. The most widely
applied methods are Lagrangian relaxation (LR) [7], [8], [9]
and MILP [10], [11], [12], [13], [14], [15].

Using LR to solve the SCUC challenge, the objective func-
tion (the cost function) is the sum of terms, each involving a
set of constraints describing a single unit and a set of coupling
constraints (the generation and reserve requirements). The
LR model is solved for every single unit, with the set of these
solutions providing a lower bound on the optimal value. Then,
the dual function is assigned this optimal value to find the best
convex lower bound. LR is one of the methods used by ISOs
to settle the Day-Ahead market, like PJM before transitioning
to the MILP method in 2005 [10]. Recently, some efforts
have been exerted to overcome the computational complexity
of the large-scale LR-based SCUC problem [7], [8]. In [7],
the LR method has been improved using Linear Program-
ming (LP) to solve many single-period SCUC problems. The
optimal multipliers of these single-period UC solutions have
been used to create a criterion to fix some binary variables,
helping to speed up the solution time for the full-scale SCUC
problem. In [8], the LR technique is improved to solve the
SCUC by replacing the dual optimal solutions by adding
quadratic penalties for violating constraints. However, the LR
technique still provides a slow convergence time and heavy
computational burden for the complex mixed-integer SCUC
challenge [9].

Due to the development of state-of-the-art MILP solvers
such as CPLEX and GUROBI, the ISOs started to utilize
the MILP technique to obtain the best-known mixed-integer
DA-SCUC solutions. These solvers first relax integer
variables to determine an LP solution. Then, using the branch-
and-cut technique, determine the best possible MILP solu-
tion, such that the optimality gap (OG) with respect to the LP
solution is the least. OG is the difference between the MILP
solution and LP solution expressed as a percentage of the LP
solution.

For MILP, the DA-SCUC objective function is linearized
using the piece-wise linearization method. In addition, the
constraints are formulated in the mixed-integer form to
obtain the best solution without developing specific heuris-
tics, which will accelerate the development of a program and
facilitate its applications to large-scale power systems. How-
ever, the MILP-SCUC’s solution quality challenges are: 1) an
enormous number of binary variables that introduce discrete
solution spaces; and 2) a large-scale system of constraints
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(binary and mixed-binary constraints) [2]. For a complex
SCUC challenge as in current power systems, commercial
solvers take a large computation time to obtain a MILP
solution for a low OG and may not converge.

B. LITERATURE ON IMPROVEMENT IN MILP METHODS
In [11], [12], [13], [14], and [15], improvements to MILP-
SCUC formulations considering hydropower generation are
reported. In [11], Hydro unit commitment (HUC) has been
updated in order to consider a multi-unit pump-storage
hydropower station in a practical system. The authors have
derived a linear model for the hydropower generation and
the corresponding water flow from the reservoir. Then, this
model has been added to the main MILP-SCUC formulation.
In [12], variable separation and piecewise linearization are
used in parallel to linearize the hydro unit power generation
with the net head to be adopted in the MILP UC problem.
Some other challenges in HUC have been solved, such as
vibrating zones, where changes to hydro unit power output
have to be permanently avoided as in [13], and the matter
of forbidden zones [14]. In [15], a preprocessing phase to
calculate the total hydro output based on the limits of the
plant volume, downstream flow, and operating zones for each
unit, ahead of the UC solution, has been proposed. Due to
the traditional MILP-SCUC formulation requiring significant
computational time to reach the best-known mixed-integer
solution for the large-scale SCUC challenge, researchers have
tightened the MILP formulation to overcome the compu-
tational complexity [16], [17], [18], [19]. In [16], a piece-
wise method for tightening the objective function is proposed
which is a fundamentally quadratic equation. Startup, shut-
down, and ramp constraints have been tightened to reduce
the computation time for large scale systems as in [17], [18],
[19], and [20].

C. LITERATURE ON USING ML IN UC AND POWER
SYSTEMS

In the last decades, due to a lack of data and computa-
tional resources, ML has not been used extensively in power
systems. Recently, ISOs have made considerable amounts
of historical data available in the public domain that can
be used for the SCUC challenge. In addition, ML has
become a powerful tool that can map vast nonlinear input-
output data and predict outputs efficiently and accurately
[21], [22], [23], [24], [25], [26], [27]. In [21], ML has been
utilized in order to discard the redundant constraints in the
transmission-constrained UC challenge, using the historical
data. However, the method has not been tested in a complex
large scale multi-period SCUC challenge. While in [22],
ML has been used to classify the transmission constraints into
two sets, hard and easy to be reduced in SCUC problem size.
However, this method provides inaccuracies as mentioned
by the authors. Data-driven decisions have been extracted
from the trained ML to act as an expert system to solve
the UC problem [23]. In [24], the authors have presented
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different ML techniques to enhance the SCUC formulation.
The closest approach for our work is called ML affine sub-
spaces. This method uses the ML model to predict a portion
of generators’ binary variables, then a hyperplane method is
applied to the ML output to create the predictor which fixes
generators’ binary variables to their best values. Since this
method depends on a heuristic tuning parameter to obtain the
best value for the binary variables, the possibilities of infea-
sibility and suboptimality still exist. In [25], ML output has
been used as a warm start to speed up the solution of SCUC.
Currently, commercial solvers (e.g., Gurobi and CPLEX)
provide robust feasible pre-solve processes to warm start the
MILP solution process [28]. In [26], ML has been used to
predict the uncertainty of line outages due to hurricanes and
used as input in solving the stochastic UC challenge. In [27],
the ML has been trained to predict the generation binary
schedules. The ML full output (100%) has been used directly
to fix the binary variables of MILP-SCUC formulation if they
are feasible to minimize up and down constraints; otherwise,
the ML output should be updated to adequately cover these
constraints. However, the ML full output cannot be trusted
because the ML output may carry error decisions and be
feasible at the same time, which may cause infeasibility and
sub-optimality.

D. CONTRIBUTIONS OF THIS PAPER
ML output cannot replace the conventional MILP-SCUC
solution with 100% accuracy. In the literature, ML is used
to predict a solution (binary or continuous) to warm start the
SCUC problem. However, commercial solvers use a pre-solve
process to remove redundant constraints [2]. These pre-solve
processes may discard user-provided starting solutions and
hence render warm start approaches using ML techniques
useless. Many works in the literature use full ML output as
in [27] or heuristic-based tuning methods as in [24] to fix
the binary variables of the SCUC problem. However, they
may cause infeasibility or suboptimality. Instead, we pro-
vide an ML-based binary variables reduction method using a
trusted-generators set to reduce the complexity of the MILP-
SCUC formulation that may directly be used with commer-
cial solvers. Reduction of the binary variables yields lesser
Mixed-Binary (MB) constraints, decreasing the search space,
which reduces the computational time and complexity of the
large-scale DA-SCUC problem.

The main contributions of this work are summarized
below:

1) A novel ML-based variables reduction (MLVR)
method is developed based on the creation of a Trusted-
Generators Set (TGS), an offline process. The status
of TSG generators can be determined using the trained
ML module.

2) Using TGS, ML indicators sets are created on the day-
ahead to shrink the MILP-SCUC formulation. That
leads to a significant reduction in the search space.
The MLVR-MILP-SCUC method offers significant
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improvement in the solution quality in terms of com-
putation time reduction and optimality gap reduction.

3) The proposed method provides the same optimal solu-
tion faster for small-scale systems and with a lower
optimality gap for the large-scale systems, such as Pol-
ish systems of 2383-bus and 3012-bus, bringing a lower
best-known solution that provides economic benefits
for the stakeholders.

Il. MILP-SCUC PROBLEM FORMULATION

In this section, we present the main MILP-SCUC formula-
tion, which uses three binary variables (unit status, startup,
and shutdown).

The optimal solution of the SCUC problem achieves the
minimum total operation cost subject to a set of the system
security constraints. The objective function (1) includes the
shutdown, startup, fuel cost, no-load cost, and reserve power
cost. The tensive formulations can be found in [1] and [19].
The fuel cost is a fundamentally quadratic equation, and it is
linearized using the piece-wise method to be compatible with
MILP formulation.

The SCUC’s constraints are classified into three types:

A. CONTINUOUS CONSTRAINTS (2) — (10)

These constraints are dependent only on the continuous vari-
ables. Constraint (2) defines the generation power at each
period, which is a summation of generating powers in each
segment. The generation power at each segment is limited by
its maximum as in (3). Constraint (4) ensures the generation,
injected powers from transmission lines, and demand are
balanced at each bus, where D; ; presents the hourly net load
at each node and it includes the bus-wise distribution factor
(more details are provided in Section III-A). Node-injected
power is created using the DC load flow as in (5). Transmis-
sion power flow is calculated and limited as in (6) and (7).
Constraint (8) represents the online spinning reserve require-
ment. The parameter A characterizes the necessary ratio of the
reserve when the system is interconnected with other power
grids, as is the case in Ontario where the Northeast Power
Coordinating Council requires it to equal 0.25 [29]. Generator
ramp rates and bus-voltage angles are limited as in (9) and
(10) respectively.

B. MIXED-BINARY CONSTRAINTS (11) — (13)

These constraints depend on binary commitment variables
and continuous variables. Constraint (11) ensures the dis-
patched power of each online generator is within the gen-
eration limits. The spinning reserve of each unit is limited
by its reserve requirements as in (12) and available power as
presented in constraint (13). Spinning reserve capacity at each
period equals the capacity of the maximum online generator
as enforced in constraint (14).

C. BINARY CONSTRAINTS (14) - (23)
These constraints depend only on the generators’ decisions
(startup, shutdown, and status variables). Constraint (15)
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illustrates the shutdown and startup decisions. The startup
and shutdown decisions cannot be made at the same time
as enforced by constraint (16). The minimum up and down
time of each generator is achieved as in constraints (17) and
(18) respectively. Further, the status of the generators for the
previous day is considered in (19), (20). Finally, the binary
variables (unit status, startup, and shutdown) are constrained
in (21) — (23) respectively.
The objective function is defined as:

NI NG [ Cdg-ud; g+ Csg-uur g+ Crg -1 g
M. . . : NM
inimize Z Z +Cag - ug; o + 2. Cbgm - Prgm
m=1

()
Subject to :
1) Continuous constraints (2) — (10)
NM
Prg =D Prgm V(.8 €{ST.SG} )
m

0 <prem<Pem; YI(t,gm) e{ST,SG,SM} 3)

Prg —Dii=Pl;;; Vg ei, (t,i) € (ST, SB} 4

Pl,; =B -8 V(,i) € (ST, SB) 5)

81i — &y ..

PLTk = 5 V(lvj) € ka (ta k) € {STs SK} (6)

—PLy < PL;y < PLy; V(t.k) € {ST, SK} (7

NG

Zrt,g > A.sry; Yt e ST 8)

4
60 60.

_RGg fpt,g_pt—l,g SRGg ) V(t7 g) € {ST,SG}

)
T 4 .
-7 = 8i < 7 V(i) € {ST, SB} (10)

2) Mixed-binary constraints (11) — (14)
Ug, Py <prg <ug g Py Y(t,8) € (ST, SG} (11)
rig < ug, - RGY: V(t,g) € (ST, SG) (12)
NM
rig < O (Pomttgse — pigm) i ¥ (t.8) € {ST, SG} (13)
m
sr, = ffé?é {ug,y - Pg}: V1 eST (14)

3) Binary constraints (15) — (23)

Uiyl — U8 = Ullry1,g — Udry] g

v (¢, g) € {ST1, SG} (15)
0<uuo+ud g <1; V(t, g €{ST1,SG} (16)
min{NT ,t4+UT g}
usi1,g.UT g — Z 77
v=t+2
<max {1, UTy — NT +1};
v (¢, g) € {ST1, SG} a7

min{NT ,t+DT g}
(I—udejrg) ST = D ugy,:
v=t+1
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Y (t,g) € {ST1, SG} (18)
If ITy > 0 && UT, > ITy :
UTg—IT,
Z ug, o > UTy —ITy; Vg e SG (19)

=1
If IT, < 0&& DTy > —IT, :

DTo—IT,
> ug,<0; VgeSG (20)
=1

uge €{0,1}; V(t,g) € {ST, SG} (21)

ugg € {0,1}; V (1, &) € {ST, SG} (22)

udy €{0,1}; Y (t, g) € (ST, SG} (23)

When the above-mentioned MILP-SCUC formulation
(1) — (23) is used for a large-scale power system network,
the number of variables and constraints becomes extremely
large. Notably, the binary variables introduce non-convexity
in addition to numerous mixed-binary constraints. Due to this,
the solver’s computational time exponentially increases with
the problem size. However, ISOs terminate the solver at a
large optimality gap to obtain the solution within a limited
time. As a result, stakeholders miss economic benefits.

lll. SYSTEM MODEL OF MLVR-MILP-SCUC METHOD
This paper aims to create a trusted set of generators using the
ML model. This set is used to accurately predict scheduling
decisions. These sets are used to reduce the MILP-SCUC
problem size.

A. ALGORITHM #1 — ML MODEL TRAINING AND
TRUSTED GENERATORS SET CREATION [OFF-LINE]

A unit’s startup and shutdown optimal vectors, uu and ud, are
dependent variables that are obtainable from the unit’s status
vector ug. As aresult, the primary binary optimal solution for
MILP-SCUC (1) is only ug.

In this paper, the ML model is trained by the net hourly
load data at each bus and the generation cost curve data as
an input vector, and the status of generators at each period
as the target output. The net hourly load is defined as the
difference between the forecasted demand d[t and renewable

energy source w;, at each bus as in (24).
Dii=d,—w,; V(ti)elST.SB}  (24)

Thereafter, we propose a trusted-generators set (TGS).
In the DA-SCUC process, considering load and generation
cost curve data and using the ML model, the decisions of
the TGS can be determined. It reduces the variable map as
shown in Fig. 1 that illustrates the main concept of using the
proposed ML model. Thus, the search space of the SCUC
formulation is reduced, and therefore the computation quality
is improved. It allows the MILP solver to explore solutions
with a lower OG within the available time and hence pro-
vides a lower-costing solution, benefiting all. Algorithm #1
[off-line] details the procedures to train the ML model
(Stage 1) and create the TGS (Stage 2).
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Binary  Continuous Binary  Continuous
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SCUC without Variables Reduction SCUC with Variables Reduction
=) ML Determined Variables (removed from formulation)

CJ To be Determined Variables

FIGURE 1. MLVR concept.

Algorithm 1 MLVR Method [Off-Line]
Stage 1: ML-Training Model (off-line)
1 Use [D, C] and ug from the historical data if
available. If not, Solve the MILP-SCUC (1) — (23)
for the net forecasted D scenarios and create ug.

Stage 2: Create Trusted-Generators Set, o

2 Use (25) on the ML-output ¢ to obtain the error
matrix e for all data sets.
Use (26) to determine TGS, a.
Calculate 7 using (27)
5 if n # 0, then
Create o
else
Retrain the ML model with larger data and different
training methods.

A~ W

Hidden Output
Input Output
57519 7848
80 1508

FIGURE 2. Three layers neural network architecture for the
2383-bus system.

Stage 1 — The premise is that most ISOs have SCUC
data comprised of input (net hourly demand at each bus and
the generation cost curve data) and output (generator status
and power output) for more than 10 years, for example at
MISO [30]. Using this data, the net hourly bus demand, gen-
eration cost curve data, and corresponding SCUC schedules
of generators can be collated and used to create an ML model.

In this paper, the ML model is trained using a three-
layers feedforward backpropagation Artificial Neural Net-
work (ANN), a powerful supervised learning tool that maps
the non-linear input-output relationship. Fig. 2 shows the
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fully connected ANN architecture. Hyperbolic tangent sig-
moid is the activation function used in the hidden layers.
Furthermore, the Robust backpropagation algorithm (Rprop)
is used for the training process to combat system scala-
bility. Rprop is the fastest method for pattern recognition.
Unlike Levenberg—Marquardt, it needs less memory to train
well [31].

The ANN tuning parameters must be well-tuned to mini-
mize Mean Squared Error (MSE). These parameters include
the number of layers, epochs, learning data, optimizer, batch
size, neurons, and activation function. These metrics are
essentially empirical and tuned until the best performance is
achieved.

The ML model is trained using the hourly bus net load data

vector D° = [DS1 1 Dyr NB] and piecewise linear genera-

tion cost curve data C* = [Cbsl 1 Chyg NM] as input and

the generating unit decisions ug® = [ug‘iﬁl o UgNT NG | 3
output for hundreds of available scenarios s € SD. Although
the ML model would map input and output, there would be
errors in the output. In [27], it is similarly pointed out that
this mapping might not be accurate. However, a subset of
generators — the TGS — would be predicted perfectly by the
well-trained ML model. Hence, in this paper, we introduce
the concept of a TGS.

Stage 2 — We analytically determine a set of generators,
TGS, that predicts the status of generators with 100% accu-
racy (without prediction errors) in all tested data. This process
is performed in the off-line mode once the ML model is well
trained.

Accordingly, the trained ML model uses the net demand
data and generation cost curve data and accurately predicts
the status of a TGS.

In stage 2, the ML output error for each trained load
scenario ‘s’ is defined as e® € Z(JfT'SG) and it can be computed
as the absolute difference between the actual SCUC schedules

ug® and the ML output ¢* = [qsl L AN NG] € Z;NTXNG)
as in (25).
¢ = |ug* — ¢, e 2O (25)

This error is analyzed for each generator in the system
to create the TGS that discards any generator that provides
false predictions in the error matrix. TGS is defined as & =
[m .- -ozg] € Z(21XNG) where «y is a binary that defines the
trusted or untrusted generator as in (26).

1, (Trusted) if z Zefg =0
N t

0, (Untrusted) otherwise

g = (26)

This set defines the intelligence generators factor (IGF) of
the power system, as below in (27).

n=(1/NG)- > ey 27)

Further, IGF 7 is used as a performance factor for the ML
training model. Hence, a lower IGF indicates the training data
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is not enough to create the TGS. Consequently, using the ML
output of TGS, the MLVR method is created by introducing
ML variables indicators, as in the following subsection, that
shrink the MILP-SCUC variable map and mixed binary con-
straints. Hence, both the problem size and the search space
are decreased.

In summary, as shown in Algorithm #1 [off-line] the
MLVR method trains the ML model in off-line mode using
this vast amount of data (net hourly bus-wise load and gen-
eration cost curve data as input and corresponding SCUC
schedules of generators as output), checks the output for
errors, and determines a TGS as outlined in this section.

B. ML-VARIABLES REDUCTION METHOD -
DEVELOPMENT OF THE ML INDICATORS

SETS [DAY-AHEAD]

In the Day-Ahead Unit Commitment Process, the ML model
considers day-ahead net demand and the generation cost
curve data (Ds ,CS ) It generates an output schedule for gen-
erators ¢°. Only statuses corresponding to the TGS « are to
be retained and used in the MILP-based SCUC formulation
(1) — (23). To filter the ML output ¢°, we define A = [A?" U
A% as a set of decisions (on and off sets) corresponding to
TSG as declared in (28) and (29) respectively. This set is part
of the optimal binary solution (A C ug®) and the unknown
binary part can be defined as A** in (30).

A" = {{Al,...,A,’g}, Ag=1l1qg=10a,= l}
(28)

AT = {{A1, ..., Arg), Arg=0:q,, =00, =1}
29)

AN = {{A’l‘”,...,At”,’;}, Vorg =0, eST} (30)

Since the startup/shutdown variables are dependent on the
unit status, two more indicator sets {W, I1} are produced.
These sets are part of the optimal startup and shutdown
vectors (uu®, ud®). Each element in {W, IT} is obtained as
in (31) and (32) respectively. Further, the sets of unknown
startup and shutdown decisions are created in (33) and (34)
respectively.

17
‘Dt,g = 0

1’
Ht,g = O

v = Hwm,

if qit+1,g — qtg = 1
Otherwise,

Va, =1, teSTl

(3D

if qt,g — qr+1,g = 1

] Vo, =1, t € ST1
Otherwise,

(32)
vl Vg =0,resT1] (33
me =y o) vee =0resT1) G4

These four sets (A", A°T W, IT) have to undergo a fea-
sibility check (35) to make sure each trusted generator in
TGS is feasible for the binary constraints (15) — (23), i.e.,
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the minimum up and down constraints. If a generator in TGS
violates, its decisions should be discarded, and all sets have to
be updated accordingly. Finally, these four ML indicators sets
form the ML binary variables reduction method that shrinks
the MILP-SCUC problem (1) — (23).

for eachunitg =1: NG, g € a do
if o, = 1, then

L Cdg - udg + Cs,-
Minimize : Zt: |:bng + Cay - ugs, , (35a)

Subject to: (15) — (23), (35b)

if (35) is infeasible
Remove all decisions corresponding to g in
L all predicted set (A°", A g, IT).
end if

Export the updated decisions sets (A°", A°T W IT) and
update the unknown decision sets (A", W4 T14")
accordingly.

IV. PROPOSED MLVR-MILP-SCUC METHOD -
COMPLETE REAL-TIME MODEL

A. EFFECT OF ML INDICATOR SETS ON THE

SCUC PROBLEM SIZE

In this subsection, we present the theory of the effect of using
ML sets on the MILP-SCUC problem size. These sets as
discussed predict only binary variables for TGS, thus the total
binary variables in the main formulation will be decreased.
In addition, if the predicted status is off, some of the contin-
uous variables (i.e., pyg, 71¢) Will be reduced. As a result, the
size of the constraints (mixed-binary, and binary constraints)
will be decreased, while the continuous constraints will be
changed based on the total number of the off/on statuses as
shown in the following subsections.

1) UPDATED CONTINUOUS CONSTRAINTS
The constraints in (2), (3), and (9) are replaced by (36) — (39)
respectively as below:

NM

DPtg = th‘g’m; V(t,g) c {Aon’ Aun} (36)
m

Pe=0; V(g elal} (37)

0 <pigm <Pgm; YVt g,m) e {AUA" SM} (38
_RGSO =Dtg—Pr-l,g = RGgo; V(g e {A"" U A“”}
(39)

2) UPDATED MIXED-BINARY CONSTRAINTS (11) — (14)

Part of the MB constraint (11) will be transformed into a
continuous constraint as in (40) and the remaining part will
be a reduced MB constraint as in (41). Consequently, con-
straints (12) — (14) are updated as in (42) — (47) respectively.
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As shown, the constraints in (42) — (44) are continuous
constraints.

Py <prg < Pg; V(1,8 € {A”) (40)
Uy g Py < Prg <ug o Py V(t, 8 € {a™} (41)
re =0 V(t.g) e {A”ﬁ‘} 42)
rg <RGY: V(1,8 € {A”"} (43)

NM
rig < O (Pom — Pigm) s V(1. 8) € (A"} (44)

rig <ug, - RGY: V(t,g) € {4} (45)

NM
rig = D (Pom - ugig = Prgn) s ¥ (1,9) € {A™)
m

(46)

sr; = max {I_Jv, Uzg -ﬁg}, Ve ST (47)

{veAon ge Avn}

3) UPDATED BINARY CONSTRAINTS (15) — (23)
The constraints in (15) — (23) are replaced by (48) — (56)
respectively as below:

UBr41,g — U8ty = Uls+1,g — udt-‘rl,g; Vit g8 € {qjun}

(43)
0 <uupg+ud g <1; V(g e {1} (49)
min{NT,t+UT,}
usiy1,g.UT g — Z Ug, o
v=t+2

<max{l,UTy — NT +1t}; V(1,8 € {¥""} (50)
min{NT ,t+DT 4}
(I—udiirg) ST = D ugy:
v=t+1
v, g e {n1""} (51)
IfIT, > 0 && UTy > ITy :
UT,—IT,
Z ug o > UTy —ITy: V(t,8) € A (52)
t=1

If IT; < 0&& DTy > —IT :

DT,—IT,
> ug <0 V(g € A" (53)
t=1

ug, €{0.1}; V@, g e {A"} (54)

uug € {0,1};  V(t,8) € {¥""} (55)

udig €{0,1}; V(1,8 € {1""} (56)

Now the complete MILP-SCUC method with ML variables
reduction is formulated below in (57). The new formulation
is to be solved for undetermined continuous variables and
unknown binary variables that equal the original binary vari-
ables minus ML binary indicators.

Minimize (1) (57a)
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Subject to:
1. Updated continuous constraints (57b)

(4)—(8), (10), (36)—(40), (42)—(44) (57b)
2. Updated MB constraints (57c)
(41), (45)—(47) (587¢)
3. Updated binary constraints (57d)
(48)—(56) (57d)

Solve (57) to get the decisions of A", W** T1*" and the
remaining continuous variables.

Note that the original problem (1) - (23) has
3 x NG x NT binary variables and continuous variables
Dt,g.m> T1g» ST1,g, 0t n. The effect of the MLVR method is
illustrated in the following knowledge matrices. The main
objective of the MLVR reduces the binary variables by
[3NG x NT — size(A°", A°™, ¥, T1)] as shown in the knowl-
edge matrix (A). When the trusted generator predicts off sta-
tus, continuous variables as shown in knowledge matrix (B)
will be reduced. As a result, the size of the MILP-SCUC
formulation is shrunk, the solution space is reduced, and the
solution speed is increased without a degradation in quality.

A. Knowledge Matrix of 24 hours
V(t,g) € {ST,SG}
Condition | a, 1 0
Outcome | Uzg | Known | Unknown

IB. Knowledge Matrix of each hour

Condition| a, 1 1
Condition| Usy 1 0
Exists [Doesn’t]
(Unknown)| exist
Exists [Doesn’t]
(Unknown)| exist
Exists [Doesn’t]
(Unknown)| exist

Outcome |us;; | Known | Unknown Outcome | Peg

Outcome [Pegm

Outcome  [ud;; | Known | Unknown

Outcome | 7¢g

B. ALGORITHM #2 - MILP-SCUC WITH MLVR

METHOD [DAY-AHEAD]

The full MILP-SCUC with MLVR method is shown in
Algorithm #2 and Fig. 3. As in Algorithm #1, the off-line
ML training model aims to train massive data comprising the
hourly bus-wise loads and corresponding generation sched-
ules. By analyzing the ML model in the off-line stage, a TGS
a is created. The trained ML model and TGS a are used in
the day-ahead Algorithm #2. In the day ahead, with a day-
ahead of hourly bus-wise net demand, output from the trained
ML model is obtained. ML indicators are created as shown
in (28) — (34) to form the shrunk MLVR-MILP-SCUC
formulation (57).

Fig. 3 illustrates the complete framework given in this
paper for the MLVR-MILP-SCUC challenge. It is imperative
to note that the ML model provides feasible generation sched-
ules to the standard MILP-SCUC formulation. The MILP-
SCUC with the MLVR method (57) can be efficiently solved
using any commercial MILP solver.

V. CASE STUDIES RESULTS
Cases for the IEEE 14-bus (5 generators), 118-bus
(54 generators), 300-bus (69 generators), Polish 2383-bus
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Algorithm 2 MILP-SCUC Formulation With MLVR
Method [Day-Ahead]

Stage 1: Development of the ML indicators sets

1 Collate the day-ahead hourly bus-wise net
loading data and the generation cost curve data
(D*, C%).
2 Use the trained ML model to determine the
predicted generation schedule ¢°.
3 Use TGS (@) to create the sets of indicators as
in (28) — (34),
3a Check the feasibility (35) for each generator
g € a using ML indicators (A°", A @, I1).
3b If infeasible, then delete predicted decisions
of g from ML indicator sets.
4 Export the updated (A°", A°T W, IT).
Stage 2: Enhance MILP-DAUC Formulation with
MLVR method

1 Create the MLVR-MILP-SCUC formulation as
shown in (57a) — (57d).

2 Solve the complete MLVR-MILP-SCUC
formulation (57) with a standard MILP solver and
issue commitment schedules plus
dispatch results.

Algorithm #1 [off-line] Processed once a month.

Training data -
(Hourly demand, Algorithm #1 Algorithm #1
Daily generation cost E)| (Stage 1) (Stage 2)
& Generation ML Model Create TGS
schedule)
[ 24-hour bus- - \
| wise load and Trained ML A;ggg:gllf |
i |
: gener;;c;n cost vilzEel, ML indicator sets| |
I
: Reduced - |
| ug’,uu’ud® Algorithm 72 Variable Map | |
| Report (Stage #2) :
I optimal Solve MLVR-MILP-
| Schedules SCUC (57) I
\ (Aon‘ Aoff' p, n) 1
AN /
~— - Y —

Algorithm #2 [Day-ahead] Processed multiple times daily.

FIGURE 3. Complete framework for the MILP-SCUC with MLVR
method.

(327 generators), Polish 3012-bus (502 generators), and the
10-zone Ontario (131 generators —15 node) are used to
test the proposed MLVR-MILP-SCUC method. The tests
are implemented in MATLAB V. 9.7.012 (R2021A) with
the commercial solver Gurobi V 10.0 on a PC with an 17,
3.60 GHz Intel™ processor, and 8 GB of memory.
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FIGURE 4. Generated load scenario (118-bus) rescaled for each
tested system.

A. DATA AVAILABILITY AND PREPARATION

The proposed method is applied to a wide range of sys-
tem sizes using massive data for training. The data for the
benchmark systems are collected from the Matpower Repos-
itory [32] and we have created the Ontario Zonal system
from the available online available data of the IESO, the
Ontario system operator [33], and the Ontario Zonal Network
is shown in [34]. The load profiles are created to fulfill all
possible load variations in the systems using two realistic
factors: the time-wise power distribution factor of total peak
load, B; and bus-wise load power distribution factor, B;.
We examined hourly demand data from IESO to create a
realistic distribution for these factors [33]. §; presents the
load change along the 24-hour. By investigation, we found
B is changing from 0.8 to 0.93 of the day peak, and the
peak system load in the original cases is always below 71%
of the total generation capacity. Thus, §; = d; /i,-, where d;
and L; present the average load and the peak load at bus i
respectively.

The load profile for each scenario is defined as in (58).
Fig. 4 presents one of the generated load scenarios for
118-bus systems. Loads of other systems are rescaled and
generated by the same concept.

L (E & 5-0.71
dy =\ D_PG,+| D PG, - PG, ) TS
n

n

B - Bi
(58)

where s is the scenario number and NS is the total number of
load scenarios.

The cost of generation is considered to meet the variations
in fuel prices. To illustrate how the price is created, first, the
generating units are classified into three categories: a) base
generation (i.e., hydro and nuclear); b) middle-peak units;
and c) peak units. We assumed the base generation capacity
is 60% of the largest generation units, then 20% for each
middle-peak and peak units. Second, we considered the prices
mentioned in [32] and [33] as the average for each tested case.
Then, we assumed the base generation cost is the average,
and the prices of the middle-peak and peak units are chang-
ing. The total generation cost change for the load scenarios
of the 118-bus is plotted as a probability distribution function
as shown in Fig. 5 and rescaled for the other systems.
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FIGURE 5. Probability distribution function for the generation
cost of 118-bus rescaled for each tested system.

TABLE 1. Tested systems data, ML training parameters, and
accuracy.

System IEEE | IEEE | IEEE |Ontario| Polish | Polish
14-bus|1 18-bus300-bus|System[2383-bus3012-bus|

# Generators 5 54 69 131 327 502

# Transmission Lines 20 186 411 19 2,896 | 3,572

# Of Segments NM 3 3 3 1 1 1

# NN layers / # neurons 3/60 | 3/80 | 3/80 | 3/80 | 3/80 3/80
IML input vector [D, C] size | 351 | 2,994 | 7,407 | 491 | 57,519 | 72,790
IML output vector ug size | 120 | 1,296 | 1,656 | 3,144 | 7,848 | 12,048
INumber of Samples 500 | 148 299 | 208 198 185
# epochs (x1000)/ Perf. goal|10.5/0{ 10.5/0 | 10.5/0 | 10.5/0| 10.5/0 | 10.5/0
IMin performance gradient [1e-60| 1e-60 | 1e-60 | 1e-60 | le-60 | 1e-60
IMax validation failures 3000 | 3000 | 3000 | 3000 | 3000 | 3000
ILearning rate 0.01 | 0.01 | 0.01 | 0.01 0.01 0.01
Weight increment 1.2 1.2 1.2 1.2 1.2 1.2
IML Training Accuracy (%) | 99.9 | 99.8 95 98.7 | 97.2 97.4
IML Testing Accuracy (%) | 99 | 97.8 93 98 96.4 96.2

ML training time (s) 350 | 1,300 | 1,100 | 850 | 3,500 | 4,000

10°F T T T T T T T T 3
Train

— Validation

7 Test

= Best

o 107 3

g -

3 Best Validation Performance is

2 0.0092619 at epoch 673

S

ER 3

S Best Training Performance is j

0.00035 at epoch10500

L L L L L I L I L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10500 Epochs

FIGURE 6. ANN Training performance loss curve for Ontario
system.

B. ML TRAINING MODEL AND DEVELOPMENT OF ML
TGS («) - OFF-LINE ALGORITHM #1
To illustrate the training process, for the Polish 2383-bus
hourly example, the ML model is trained using 198 bus-
wise demand data, forming the hourly bus vector D = [57,
192 x 198], and the generation prices C = [327 x 198].
Both are used as the ML input vector, with the generation
commitment schedules ug = [7, 848 x 198] used as a target
vector. The target vector ug is created using the solutions of
MILP-SCUC formulation in (1) — (23) for load scenarios D
and the generation prices C. For all systems, the stop time is
set as 1800 s, with different optimality gap settings relative to
the systems’ scale.

The ML training process is performed similarly for all
other systems. ML model tuning parameters and training
accuracy results are reported in Table 1. Fig. 6 shows the ANN

254

Polish Polish
2383-bus  3012-bus

IEEE 118- IEEE 300- Ontario
bus bus
Tested Systems

600
L, 500 1 Number of System Generators
S 400 m# of ML Trusted Generators
s i 52%
g 300 58% ’
& 200
£ 1001  44% 39% 29%
Z,
v
G
o
I+

FIGURE 7. Size of ML trusted generators set and the intelligence
factor for the tested systems.

training performance loss curve for the Ontario system as a
training sample result. The training data set is divided into
70% for training and 15% each for testing and validation.

The input-output ratio can affect the training time of the
ML model. A larger input-output ratio can lead to longer
training times because the network has more weights and
biases to adjust during training, and each weight and bias
must be updated for the network to learn. Additionally,
a larger input-output ratio can also increase the complexity
of the network, which can also contribute to longer training
times as shown in Table 1.

The development of the power network, the load increase,
price changes of fuels, and the units all will be captured in this
training stage. In addition, we recommend continuous offline
training once a month or every couple of weeks if further
changes are happening in the power network.

Inspired by the well-trained ML model for each tested
system in Stage #1 of Algorithm #1, the TGS « is created
as per Stage #2 of Algorithm #1. TGS provides a set of
generators that is perfectly determined by a trained ML model
without errors. For the IEEE-14 bus system, the ML model
perfectly predicts the behavior of three generators out of the
total five generators (60%). This percentage is termed as the
Intelligence Generators

Factor (IGF) (n). As illustrated in Fig. 7, IGF is higher for
systems with a larger number of generators. For Polish 2383-
bus, and Polish 3012-bus systems, IGF () is consistently
larger than 52%.

C. TESTING THE MILP-SCUC FORMULATION WITH MLVR
METHOD — DAY-AHEAD ALGORITHM 2

The ML reduced variable map is created using ML indi-
cator sets, which are presented in Stage #1 of Algorithm
#2. All indicators sets have passed the feasibility condition
(35) and have then been used to shrink the MILP-SCUC
formulation as in (57). In the following Table 2, randomly
selected data sets are used to study the effectiveness of the
proposed method. In addition, the effect of the MLVR method
on the problem size is tabulated. Consequently, these ML
indicators sets decrease the number of binary variables and
marginally decrease the continuous variables of the turned-off
units for each tested system. As a result, the mixed-binary and
binary constraints are decreased by significant percentages
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TABLE 2. Effect of MLVR method on the MILP-SCUC problem
size.

I[EEE IEEE | IEEE | Ontario | Polish Polish
14-bus |118-bus|300-bus| system |[2383-bus|3012-bus

TABLE 3. Performance of the proposed MLVR-MILP-SCUC
method with comparisons with the MILP-SCUC Method [27]*.

IEEE | IEEE IEEE | Ontario | Polish Polish
14-bus|118-bus| 300-bus | system | 2383-bus | 3012-bus

Testing data size 500 148 299 208 198 185 Search Space 2120 | 129 21656 23144 27848 212048
3 24 27 38 190 261 Search Space
o 48 720 1008 2232 3288 5784
TGS (%) (60%) | (44%) | (39%) | (29%) | (58%) | (52%) Change 2 2 2 2 2 2
# ML ON (OFF) 72 216 192 888 504 1.248 Avg. Solver
reduced variables (0) (360) | (456) (24) (4,056) | (5,016) Time (s) 0.13 34 100 2.94 300 373
# ML Startup Time reduction | -60% | -89% | -60% -98% -48% -49%
72 576 648 912 4,560 6,264
(Shutdown) ’ ’ OQG Setting (%) | 0.0 0.0 0.0001 0.0 0.01 0.03
. 2 4 12 4 264
variables 72) (576) | (648) O12) | (4,560) | (6,264) Avg. converged
# Binary 144 2,160 | 3,024 6,696 9,864 17,352 OG MILP- 0.0 0.0 0.0001 0.0 0.01 0.024
Variables (-60%) | (-44%) [(-39.1%)| (-29%) | (-58.1%)| (-52%) SCUC (%)

s Cont. Variables | 890 | 6744 [ 12,480 [ 6,624 | 68.856 | 91,392

: (0%) 1(-16.1%)] (-9.9%) | (-0.36%) | (-5.56%) | (-5.2%)
% Continuous 2,016 | 14,976 | 30,048 | 10,104 | 193,008 | 248,136
Constraints Q1.7%) | (:2.3%) | (:2.8%)| (34.9%) | (-3.3%) | (:2.5%)
% Mixed-binary 216 | 2,376 | 3,216 | 7,584 | 10,368 | 18,600
Constraints (-40%) |(-38.9%)|(-35.3%)| (-19.6%) | (-56%) |(-48.5%)
% Binary 263 | 4470 | 6423 | 14,767 | 18,403 | 34,204
Constraints (-68.9%)| (-51%) |(-44.9%)| (-33.3%)| (-60%) | (-39.7%)

for all systems, while the continuous constraints are increased
in some systems, depending on the ratios between reduced
on/off statuses as in Table 2.

For the 14-bus system using the MLVR method, the MILP-
SCUC binary constraints are reduced by 68.9%, and the
binary variables are reduced by 60%. For the IEEE 118-bus
system, the ML indicators’ sets decrease the binary variables
by 44%. As a result, a significant shrinking of the MILP-
SCUC problem size is achieved and the problem complexity
is improved by reducing the mixed-binary constraints and
binary constraints by 38.9% and 51% respectively.

For the IEEE 300-bus system, the ML model perfectly
predicts 39% of the output; thus, the mixed-binary and binary
constraints decrease by —35.3% and —44.9% respectively.

For the Ontario and Polish systems, the mixed-binary con-
straints decrease by 19.6%, 56%, and 48.5% respectively.
Clearly, when the ML model has a high intelligence factor,
MLVR-MILP-SCUC is extremely efficient. Therefore, the
MLVR-MILP-SCUC complexity is significantly reduced.

As illustrated in Table 3, the effectiveness of the proposed
method is demonstrated by comparing its average solution
quality (average of cost, computation time, and solver opti-
mality gap) for all random tested data with that of the conven-
tional MILP-SCUC method (1) — (23) mentioned in [1], [19],
and [27]. In Stage #2 of Algorithm #2, the MLVR-MILP-
SCUC formulation (57) is shrunk by the ML variables reduc-
tion method and solved by Gurobi, a MILP commercial
solver.

IEEE systems results of the MLVR-MILP-SCUC method
present significant benefits in the solution quality without
degradation in the average best-known mixed binary solu-
tion obtained by the MILP-SCUC method and equal 60 %,
89%, and 60% reductions in the solution time, respectively.
From the average cost perspective, the MLVR-MILP-SCUC
method introduces the same best-known solution of the
MILP-SCUC method with the same average 0% converged
OG for IEEE 14-bus and 118-bus and 0.0001% converged
OG for IEEE 300-bus.
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Avg. converged
OG MLVR- 0.0 0.0 0.0001 0.0 0.007 0.022
SCUC (%)
Avg. Cost of

MILP-SCUC | 1.47 | 1.201 [9.898948(28.5714 | 27.168953|67.460026
(M$)
Avg. Cost of
MLVR-SCUC | 1.47 | 1.201 |9.898948|28.5714 |27.167587 | 67.459020
(M$)

Ave. Reduction |, 600.10.00% | 0.00% | 0.00% | 0.005% | 0.0014%
in Cost (%)

Avg. benefits ($)] 0 0 0 0 1366 1006

Note (*): Objective function benefits are derived from numerical efficiency of

the MILP solver, due to reduced size of the proposed MLVR-SCUC method.

Table 3 illustrates the benefits of using the MLVR-MILP-
SCUC method (57) over the MILP-SCUC method (1) — (23).
Results demonstrate the effectiveness of the proposed method
in terms of the computation complexity and economic bene-
fits. In terms of the computation time for Ontario, the average
computation time is decreased by 98% with the same average
optimal cost. For the Polish 2383-bus and 3012-bus systems,
the ML model predicts 58% and 52% of the generation
schedules respectively, leading to a significant reduction in
binary variables, binary constraints, and MB constraints, and
therefore a reduction in the search space. As a result, the
average computation time is improved to 1.92 and 1.96 times
faster respectively. Regarding the effect of the MLVR-MILP-
SCUC method on system optimality, as shown in Table 3, the
average optimality gap is improved to 0.007% and 0.022%
respectively, with a very minor average operating cost change
of —0.005% and —0.0014% respectively.

The demonstrated results effectively illustrate the supe-
riority of using the MLVR method to reformulate the
MILP-SCUC, as the MLVR-MILP-SCUC method offers a
much-improved solution quality for all tested systems, from
small to large scale systems. As shown from the series of the
tested systems, from small scale to large scale, the benefits
of using the MLVR-MILP-SCUC method are not limited
to the improvements in computation time. There are also
improvements in the optimality gap which are very essential
for the ISOs to gain economic advantage for all stakeholders.

VI. SOLUTION QUALITY FACTORS AND COMPARISON
A. INTELLIGENCE GENERATORS AND SOLUTION

TIME FACTORS

It is important to inspect the impact of ML indicator sets.
They update the MILP-SCUC formulation by reducing the
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binary variables and system constraints. Therefore, the solu-
tion space is decreased, and solution complexity improves
without creating infeasibility or deterioration of the best-
known mixed integer solution. Energized by the results
presented in Table 3, we create Fig. 8 to show the corre-
lation between the IGF of the MLVR-MILP-SCUC method
and the computation time for small-scale systems and large-
scale systems. As shown, the IGF leads to more than 60%
time reduction for small-scale systems and more than 48%
for large systems. Thus, the increase of IGF leads to a
greater computation time reduction, establishing a positive
correlation.

80% Reduction in Time % ™ Intellegence Factor %

50%. I
] [] H B =

-10%

e
Q
X

IS
Q
=N

Percentage (%)

-70%
-100%

Polish Polish
2383-bus 3012-bus

FIGURE 8. Correlation between IGF of MLVR-MILP-SCUC method
and computation time reduction.

14-bus 118-bus 300-bus Ontario

B. OPTIMALITY GAP, SOLUTION TIME, AND

OPTIMAL SOLUTION

Practically, for a large-scale system, it is hard to obtain a
MILP-SCUC solution with a zero-optimality gap for all days,
and it requires much computational burden. Solvers’ OG
might reach 0%, because the MILP solvers can update the
lower bound based on LP relaxation at branching nodes,
resulting in a higher lower bound for minimization problems.
However, the actual OG is calculated by using the lower
bound of the original MILP formulation. Therefore, it is
higher than the solver OG.
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FIGURE 9. Optimality gap convergence evolution for Polish
2383-bus system using MLVR-MILP-SCUC and MILP-SCUC
methods.

Fig. 9 shows the convergence effect of the solver and
actual OG in the case of using the MLVR-MILP-SCUC and
MILP-SCUC methods for a particular scenario for the Pol-
ish 2383-bus system, considering a large enough maximum
running time (8000s). As shown, at a 0.5% OG setting, the
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MILP-SCUC method converges at a larger solver-OG
(0.014%) and actual OG (0.217%). However, for the pro-
posed model, the system converges early at a lower solver-
OG (0.0036%) and actual-OG (0.212%). Due to that, there
is a negative marginal change in the operating cost of
(0.00045%), as shown in Fig. 10, with a time reduction of
69%. In the case of a 0% OG setting, both methods converge
with no cost difference and a time reduction of 80% for the
proposed method.
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FIGURE 10. Solution quality evolution of the proposed
MLVR-MILP-SCUC and conventional SCUC methods for Polish
2383-bus system.

Clearly, from Fig. 9 and Fig. 10, the proposed method
provides only a very marginal cost reduction for large-scale
tested systems that are solved at greater than 0% OG, and it
provides time reductions for all OG cases as a result of the
numerical efficiency of the MILP solver.

Fig. 11 illustrates the change in the operating cost for the
large Polish 2383-bus for all tested scenarios at a practical OG
value of 0.01%. It shows that the proposed method provides
a very marginally lower solution for 25% of the tested data
and the same solution as the MILP-SCUC method for 72%
of the tested data, while 3% of the tested data provides a
very marginal increase of 0.00025%. The reason for a very
marginally lower or higher solution is attributed to the com-
putational aspects of the solver in such large problems.
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FIGURE 11. Operating cost change of the proposed
MLVR-MILP-SCUC for all tested data of Polish 2383-bus System
at OG = 0.01%.

C. COMPARISON WITH RECENT ML-SCUC WORKS

To show the effectiveness of the proposed method in com-
parison with recent ML-SCUC methods, we compare our
methodology with the most related works in [24] and [27].
For a fair comparison, the hourly net demand at each bus has
been used as input for the ML model. Table 4 provides these
results. In this comparison, we used 50 random samples for
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testing the IEEE 118-bus and Polish 3012-bus systems. It is
noted that [24] and [27] provide results that are infeasible for
a few samples. Considering the execution time for infeasible
samples as 1500 s, the average time is computed and com-
pared. Obviously, it is seen that the proposed method provides
superior performance in terms of execution time and consis-
tently provides a feasible and optimal solution, in contrast
to [24] and [27] which remain infeasible sometimes.

To sum up, the proposed MLVR method provides a reduc-
tion in the variables map, and therefore the problem size is
reduced. This effect is reflected in the improvement of the
system search space and solution quality compared with the
MILP-SCUC method. The benefits of the proposed method
for all tested data are tabulated in Table 3. The tested systems’
results demonstrate that the MLVR method can play a vital
role in enhancing the MILP-SCUC formulation to achieve
significant improvements in solution quality in terms of the
computation time reduction and lower optimality gap that
results in lower optimal operation costs and hence, economic
benefits.

TABLE 4. Comparison with recent ML-SCUC methodologies.

ML- Avg. |Reduction |Prediction| Variables |Infeasibility | Feasible
SCUC | Solution | in Cost Error |Reduction| Ratio Samples
Methods | Time
118-bus

[27] -47%* | 0.00% 3.47% 100% 64% 18

[24] -61%* | 0.00% | 0.045% 74% 0.02% 49
Proposed | -73% 0.00% 0.00% 44% 0.00% 50
Method

3012-system

[27] - - 3.25% 100% 100% 0

[24] -28%* | 0.00% | 0.66% 86% 0.04 % 48
Proposed | -49% | -0.01% | 0.00% 52% 0.00% 50
Method

Note (*): Solution time for infeasible samples is considered as 1500 s.

D. PRACTICAL IMPLICATIONS AND CONTINUOUS
OFFLINE TRAINING

The ML training process could be performed continually
(i.e., monthly or weekly) to cover the changes in the system
topology, prices, and generation outages. If the fuel price
of a generator changes and has been seen before by the
ANN model, the ML should be able to predict that change.
Finally, the proposed method is independent of MILP-UC
formulation. It can work with any MILP-UC formulation.

VIl. CONCLUSION

In this paper, a novel machine learning variables reduction
method is created to enhance the MILP-SCUC formulation.
The proposed method is implemented in two off-line stages
in Algorithm #1. In the first stage, the ML model is trained
to map the 24-hourly generation decisions with 24-hourly
bus-wise net demands and the piecewise linear generation
cost curve data. Using Algorithm #1 stage 2, the well-trained
ML model is utilized to accurately predict outputs for a set
of intelligence generators. This set is defined as TGS («),
and the percentage of intelligence generators (IGF) is used
as a performance factor for the effectiveness of the proposed
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method. For the tested cases IEEE-14, IEEE-118, 300-bus,
Ontario, Polish-2383, and Polish 3012-bus systems, the IGF
equals 60%, 44%, 39%, 29%, 58%, and 52% respectively.
In real-time, for a day-ahead bus hourly load and the genera-
tion prices, the corresponding ML output is obtained using the
ML model created in Algorithm #1. Using Algorithm #2, The
ML indicators are feasibly created for the TGS (28) — (34).
These indicators sets are used to reduce the number of binary
variables of the MILP-SCUC problem, also reducing the
mixed-binary constraints by significant values. As a result,
the MILP-SCUC formulation is shrunk and updated to form
the MLVR-MILP-SCUC formulation (57) that leads to a
reduction in the search space and an improvement in compu-
tation quality. The proposed method provides a faster compu-
tation time without degrading the optimal solution. As shown
in the results section, the reductions in solution times are
60%, 89%, 60%, 98%, 48%, and 49% for the IEEE tested
systems, Ontario, Polish-2383, and Polish-3012 bus systems,
respectively. The results conclusively validate the benefits of
the MLVR-MILP-SCUC method. In addition, it provides a
trusted tool for ISOs to solve the MILP-SCUC faster with a
lower optimality gap within the limited time in real-time use,
leading to lower operation costs.
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