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ABSTRACT This paper proposes a new planning model to coordinate the expansion of electric vehicle
charging infrastructure (EVCI) and renewables in power grids. Firstly, individual electric vehicle (EV)
charging behaviours are modeled considering EV customers adopting smart charging services as the main
charging method and those using fast charging, super fast charging and battery swapping services as a
complementary charging approach. Next, EV aggregation and the associated system economic dispatch
model are built. A novel model predictive control (MPC) learning approach is then proposed to iteratively
learn the correlation between different types of EV charging loads and the EV interactions with renewables
and other generating units in modern power grids of the future. The simulation results demonstrate that the
proposed approach can be used to quantify the ratio of different types of charging loads in a region and
strategically guide on the integration of EVs and renewables to achieve the clean energy transition goals. The
proposed framework can also be used to decide charging capacity needs in a charging demand zone.

INDEX TERMS Electric vehicle charging infrastructure (EVCI), model predictive control (MPC), power
system planning, predictive learning, queuing model.

NOMENCLATURE
A. Indices
i Index for generating units (1,. . . ,n).
k Index for time steps (1,. . . ,K ).
m Index for iterations.

B. Parameters
α The queuing probability for EVs in a charging sta-

tion.
αc, αd Charge/discharge efficiency of the battery.
1t Length of the time step.
γ Penalty factor for deviations from PEV daily energy

consumption.
3R Total renewable power generation.
ρ Ratio of reserve to EV smart charging demand.
ς The maximum flexibility of PEV loads.
cd Degradation cost of battery per MWh.
D Constant battery swapping time in BSSs.
EC PEV forecasted energy demand in the next 24 hours.

Es Total EV energy consumption using battery swap-
ping services.

Jlb The lower bound for 7-day economic dispatch.
LF Electricity demand for EVs that only use fast charg-

ing service.
LO Original electrical load.
VC Curtailment cost of renewables.

C. Variables
1PG,i Ramp rate of generating unit i.
λ Average arrival rate of EVs in the peak hour.
µ Average service rate of EVs in the peak hour.
Bs Energy stored in a battery swapping station.
c The capacity of a charging station i.
Ci(PG,i) Operating cost function of generating unit i.
Jm The 7-day economic dispatch outcome in itera-

tion m.
L The average number of EVs in the system during

the peak hour.
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Lc Total energy allocated to PEVs.
Lq The average number of EVs in the queue during

the peak hour.
Ls The average number of EVs in service during

the peak hour.
PC Renewable power curtailment.
PG Active power of generating units.
Pnet Vector of the net generation.
PR Effective renewable power integrated into the

system.
uc Supplied power from the power grid to BSS.
ud Delivered power from BSS to the power grid.
ul PEV charging demand.

I. INTRODUCTION

TRANSFORMATION of the energy sector has been initi-
ated in several countries to achieve the net-zero emission

goals by 2050 [1]. Electrification of vehicles emerges as a
crucial economy-wide strategy to reduce greenhouse emis-
sions. There are several electric vehicle (EV) models cur-
rently available in the market. Different types of EV supply
equipment [2] and EV charging stations [3] are proposed to
address the charging needs and mitigate the challenges of
widespread EV integration in power grids. Advanced meter-
ing infrastructure [4] and distributed energy resource (DER)
communication network are also being growingly built to
integrate large-scale EV loads using direct load control [5].
Larger penetration of EVs is currently hindered by inade-
quate charging infrastructure [6]. Incentives are provided by
federal and state governments to promote the deployment
of EV charging network. EV charging infrastructure (EVCI)
planning has also become a research hot-spot in the literature.

The EVCI planning based on individual EV charging facil-
ities has been studied in the literature. The charging demand
of a fast charging station (FCS) located near a highway exit is
estimated in [7]. Ratio assessment of EV charging facilities
based on charging costs of EVs in a single smart charging
station (SCS), battery swapping station (BSS), or with an
uncoordinated home charger are discussed in [8]. The EV
charging demand and EV routing to the existing charging
facilities in a local demand zone are also explored when the
EV charging facilities are not sufficient [9], [10]. The above
research only considers retail markets under low levels of EV
penetration. However, EVCI are shaped at regional levels, and
due to the high investment costs and long-term operation and
maintenance requirements, system-level planning of charging
facilities is in high demand globally.

The expansion of FCSs in a region is studied in [11]
and [12] assuming that the EV charging demand is pro-
portional to the traffic flow. Nationwide FCS planning is
proposed in [13] for EVs with long-distance trips. Accom-
modation of such widespread installation of FCSs, however,
calls for a significant upgrade in power networks demand-
ing considerable costs and resources [14]. Also, most EV
charging currently occurs at homes when home charging

is feasible [15]. The cost-effective siting of EVCI in a
metropolitan area is investigated in [16] considering unco-
ordinated operation of home charging and FCS. However,
uncontrolled charging of EVs might jeopardize the operation
of the power grid [17]. Smart charging (SC) can be used in the
SCSs to coordinate either the home charging in a community
or public charging in a charging station. The operation and
capacity of aggregated BSSs are discussed in [18] to maxi-
mize the BSSs aggregation profit considering their potential
in becoming a part of the EVCI mix. Nevertheless, these
planningmodels were not able to coordinate different types of
charging facilities including SCSs, FCSs, super fast charging
stations (SFCSs) and BSSs at the regional level, and joint
expansion planning of EVCI and renewables has not been
explored. To fill in this gap, a master plan is needed to coor-
dinate the planning of all different types of charging facilities
and to quantitatively guide on EVCI expansion. The plan
should not only optimize specific charging facility expansion,
but also consider the usage of increasing flexible EV load to
adapt to the increasing intermittence in the renewable power
outputs such as wind and solar [19].

The majority of the recent literature on the topic, how-
ever, either focuses on the deployment of FCS in urban
areas, or apply simplified demand-side models for system-
level planning without investigating SC strategies [20]. The
planning and competition among service providers for com-
mercial charging stations are studied in [21] considering
the power distribution system and transportation network,
in which SC is not included. Considering the significant
impact of high EV penetrations on the market electricity
prices, the cost production model is used to simultaneously
deploy charging infrastructure and expand the capacity of
clean energy generators in [22], but the studied topic is limited
to planning for the FCS. Different types of charging tech-
nologies are studied in [23], where SCS and BSS planning
are not considered, and the EVCI planning under renewable
integration only tries to mitigate the system peak load.

This paper extends our previous work [24] and [25] and
aims at comprehensively addressing the knowledge gap on
the coordinated planning of both EVCI and renewables. Com-
pared to this paper, [24] investigates EV charging manage-
ment algorithm, and [25] identifies the parameters and flex-
ibility range of the aggregated EV load models in the daily
operation of power grids, in which EVCI planning is listed as
a future work. Besides, a new EV customer behavior model is
here built, where we assume SC is the main charging method,
and fast charging (FC), super-fast charging (SFC) and battery
swapping (BS) are complementary charging methods. Note
that BS is used in the previous papers as the only comple-
mentary charging method. Furthermore, the unknown inter-
dependence among different EV charging loads is identified
iteratively using a proposed predictive learning model. Thus,
system identification of future smart grids with EV loads
and renewables is achieved. In previous work [25], only the
aggregated EV load and its flexibility range for the daily
operation are identified, which is limited to the parameter
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identification of a predefined model. The main contributions
of this paper are:

1) Quantify the nearly-optimal EV charging load ratio
in different regions under different EV and renewable
penetrations, when SC is themain chargingmethod and
FC, SFC and BS alternatives are the complementary
charging methods.

2) Identify the interdependence among different EV
charging loads and interactions of EVs and renewables
in smart grids using the proposed predictive learning
method. Instead of using given EV load profiles [23] for
EVCI planning, individual EV activities and the system
cost production model are incorporated in the model to
optimize the EV charging load ratio, and at the same
time, achieve a system identification.

3) Estimate the capacity of different EV charging stations
including SCS, FCS, SFCS and BSS, to support poten-
tial large-scale EV charging demand and high renew-
able penetration in power grids, and coordinate EVCI
expansion planning among different stakeholders cost-
effectively.

The rest of this paper is organized as follows. Section II
presents the mathematical formulation of the proposed model
and the predictive learning method to assess the EV charg-
ing loads and characterize the EV interactions with renew-
ables. Section III introduces the capacity provisioning of
different EV charging stations. Section IV presents the
case studies. Section V discusses applications of the pro-
posed models in practice, followed by the conclusions in
Section VI.

II. SYSTEM IDENTIFICATION OF POWER GRIDS WITH
MASSIVE INTEGRATION OF EVs AND DERs
This section first introduces the individual EV customer
behavior model. Then the aggregation of different types
of EV loads and the integration into a system-level eco-
nomic dispatch model are proposed. The system identifica-
tion is achieved by using the proposed predictive learning
model.

A. LOWER-LEVEL EV ACTIVITY SIMULATION
The EV customers that only use FC and SFC services are typ-
ically found to charge their EVs mainly during the daytime,
featured with a routine charging behavior [26]. Hence, load
forecasting algorithms can be used directly to forecast the
aggregated load featured as an inelastic demand. The aggre-
gated BS load by EV customers that only use BS services
can also be regarded as inelastic load. Accordingly, only the
aggregated EV loads are here simulated for these types of
customers.

To capture all charging scenarios of EVs that mainly use
SC, the model incorporates FC, SFC and BS as complemen-
tary charging methods for these customers when the SC could
not satisfy their energy demands during trips. Note that SC
in this paper refers to all the level-2 home charging, public

FIGURE 1. The flowchart of EV states for smart charging EV
customers with FC, SFC and BS as complementary charging
methods.

parking charging, and workplace charging. Figure 1 illus-
trates the key decisions for these types of customers. When
the EV is parked and need to be charged, if it subscribes the
BS service as a complementary charging method, the EVwill
use SC at SCSs. The energy demand of SC is 1.2 times larger
than the minimum requirement set by the customer, and need
to be met upon EV departure, but limited to its charging as
well as EV battery capacities. When the SC could not satisfy
the charging demand, the EV customer will swap the depleted
battery with a fresh one in the BSS during the trip. If the EV
does not subscribe the BS service as a complementary charg-
ingmethod, the EV customerwill checkwhether the SC could
satisfy the trip energy demand. FC or SFC will be used based
on the EV charging demand as long as SC could not provide
enough mileage for their next trip. FCS and SFCS will start
to charge EVs upon their arrival. Although the BS service is
not subscribed by these EV customers, they can still swap the
depleted batteries during the trip when their charging demand
could not even be met by SFC. Note that human-in-the-loop
decision and system interactions with other energy resources
exist. Hence, the individual EV activity is simulated for this
type of customer.

B. HIGHER-LEVEL SYSTEM ECONOMIC DISPATCH
The system-level look-ahead economic dispatch model con-
siders different types of EV charging load. The objective
function (1) minimizes the total operational cost by dispatch-
ing both generator power and EV loads.

min J = J1 +

K∑
k=1

(J2 + J3 + J4) (1a)

J1 = γ (Lc(K + 1) − EC )2 (1b)

J2 = VCPC (k) (1c)

J3 =

n∑
i=1

Ci(PG,i(k)) (1d)

J4 = 2cdud (k) (1e)

The penalty cost in (1b) accounts for plug-in EV (PEV)’s
daily energy demand deviation, i.e., aggregated SC EV load
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plus its complementary FC and SFC loads. The cost of
curtailed renewable energy is shown (1c). The quadratic oper-
ational cost of fuel-based generators is in (1d). Equation (1e)
represents the degradation cost of batteries in BSSs under the
vehicle to grid (V2G) operating mode when EV batteries are
discharged causing extra battery cycles, and hence, the cost
is double. The system constraints for the economic dispatch
model are presented in (2)-(15) as below.

n∑
i=1

(PR,i(k) + PG,i(k)) + ud (k) − uc(k) − ul(k)

= LO(k) + LF (k) ∀k (2)

PG,i(k + 1) = PG,i(k) + 1PG,i(k) ∀k ∀i (3)

PminG,i ≤ PG,i(k) ≤ PmaxG,i ∀k ∀i (4)

1PminG,i ≤ 1PG,i(k) ≤ 1PmaxG,i ∀k ∀i (5)

PC,i(k)+PR,i(k) = 3R,i(k) ∀k ∀i (6)

0 ≤ PR,i(k) ≤ 3R,i(k) ∀k ∀i (7)

H · Pnet(k) ≤ F ∀k (8)

Lc(k + 1) = Lc(k) + αcul(k) 1t ∀k (9)

0 ≤ Lc(k) ≤ (1 + ς )EC ∀k (10)

uminl (k) ≤ ul(k) ≤ umaxl (k) ∀k (11)

Bs(k + 1) = Bs(k) + (αcuc(k) − (αd )−1ud (k))1t

−Es(k) ∀k (12)

Bmins ≤ Bs(k) ≤ Bmaxs ∀k (13)

0 ≤ uc(k) ≤ umaxc ∀k (14)

0 ≤ ud (k) ≤ umaxd ∀k (15)

Equation (2) enforces the power balance constraint, where
aggregated EV load for customers only using FC and SFC
is represented by LF . The state equations of fuel-based gen-
erators are given by (3)–(5). The output of the ith gen-
erator at the next time step in (3) is equal to the gener-
ator’s current power plus its ramp. The physical capacity
constraints for each generator is given by (4). Ramp limits
for generators in next several time intervals are shown in
(5). The variable renewable power is expressed by (6). The
effective renewable power generation integrated into the grid
plus the curtailment is equal to the total renewable power
generation. The amount of the renewable power generation
integrated into the grid depends on the total renewable power
generation as described in (7). Equation (8) represents the
transmission line power flow limits. H is the power trans-
fer distribution factor (PTDF) matrix. The vector storing
intermediate calculation of the net generation at all buses
is given by Pnet . The vector of the transmission line limits
is F.
Equations (9)-(11) express the state and control constraints

of PEV loads. The total load is modeled as virtual batteries,
where the battery energy increases gradually, and the charg-
ing limits vary with time. Lc is the cumulative energy that is
expected to be allocated; equation (9) presents that the Lc(k+

1) at the next time step is equal to Lc(k) plus the actual
charging power ul allocated to EVs at time step k . The EV

demand is restricted by (10), and its maximum flexibility
is reflected by ς . ul is constrained to its lower and upper
bound limits in (11). The aggregated PEV model is from [24]
and [25]. It is based on the centralized charging method for
EVs using direct load control in which the availability of PEV
customers and charging requirements of individual PEVs are
fully considered. Bidirectional signals communication are
enabled between EVs and the power grid. Three informa-
tion including EV departure time, minimum state of charge
(SOC) requirement, and the current SOC are collected from
individual EVs to calculate the time-dependent aggregated
charging constraints uminl (k) and umaxl (k), once the customers
(in Fig. 1) plug in their vehicles. The aggregated charging
power ul in each time step is calculated by the economic
dispatch model and distributed proportionally to each charg-
ing station. Charging stations will then allocate the power to
EVs by using a sorting based algorithm, which prioritizes
EV charging demands considering their departure time and
charging demand.
The state and control constraints of the aggregated BS

load [25] is determined by equations (12)-(15), where V2G
functionality is considered in the BSS. The energy stored in
the BSS at the next time step in (12) is equal to the current
BSS energy plus the charged energy, minus the discharged
energy and BS load. The BS load Es is formulated as an addi-
tive disturbance to the BSS and includes both the BS demand
by the customers only using BS service and the complemen-
tary BS demand from EVs in Fig. 1. While the BSSs have dif-
ferent battery swapping load at each time step, they have fixed
battery capacity. The battery storage capacity of the BSS (Bs)
in (13) and the charging and discharging power (uc and ud )
in (14) and (15) are limited to the corresponding thresholds.
Note that the battery degradation cost for additional V2G
cycles and charging efficiency are modeled in the optimiza-
tion problem, where BSS will not charge and discharge at the
same time.
It is worth mentioning that individual EV behavior, includ-

ing EV availability and trips, are imported to the optimiza-
tion model to decide on both the state of EV based on the
flowchart presented in Fig. 1 and the SOC of each EV. So,
the decision to use either SC, FC, SFC or BS services and
calculation of EV SOC is done by individual EVs in the
lower-level model. From customer point of view, decision to
use different charging services is made by themselves based
on their travel demands and preferences, and they only need
to set the estimated depart time and expected SOC of EVs
when they use SC service. From the perspective of the system
operator, only the aggregated charging constraints and charg-
ing power are changed for PEVs, and only additive BS load
is changed for BSSs. The higher-level mathematical model
for the PEVs remains the same as in our previous work [25].
Note that the system operator should provide a lower elec-
tricity price for SC EVs since the aggregated SC EV loads
provide additional flexibility to the grid. The rate design and
incentives for these SC EVs are out of the scope of this
paper.
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FIGURE 2. The proposed predictive learning model: MPC
learning.

C. INTERACTION OF EVs WITH DERs IN THE POWER
GRID
In order to have a promising expansion planning decision of
EVCI, one needs to estimate the correlation between different
chargingmechanisms and the interaction of DERs and EVs in
the smart power grids of the future. Predictive learning is the
framework used for the estimation of predictive data-analytic
models, which employ historical data and analytical tech-
niques to predict the future outcomes [27]. A novel predictive
learning model, model predictive control (MPC) learning,
is proposed in this paper to predict the future EV charging
loads. Different from predictive learning via machine learn-
ing for systems where neural networks are used as a black
box model [28], MPC learning employs double closed-loop
MPC [24] and adaptive control [29]. Thus, it relies on explicit
models and can provide performance guarantees. The pro-
posed framework for the MPC learning model is illustrated
in Fig. 2.

1) DOUBLE CLOSED-LOOP MPC
The double closed-loop MPCmodel in [24], which is the part
excluding offline adaptation method circled by dashed line in
Fig. 2, is firstly used to optimize the system costs without
violating the individual EV customer charging constraints.
It identifies charging load correlations for EV customers in
Fig. 1, considering system dynamics. Specifically, the outer
loop runs a 24-hour-ahead economic dispatch in equations
(1)-(15) with the time step of 1 hour, and passes the 3-hour-
ahead dispatch targets of virtual batteries to the inner loop.
The inner loop tries to follow the dispatch targets sent from
the outer loop by calculating the value of system control vari-
ables using the economic dispatch model. It then coordinates
individual EV charging through two-way communications
with the system operator. The time step of the inner loop
is 5 minutes. The plant is the power grids with large-scale
integration of EVs and DERs. The double closed-loop MPC
will quantify the SC load and its correlation with other
charging loads under given prediction values. Considering
the disturbance, both loops will adjust the control policies
based on the measured state variables during the next step.
Certainty equivalenceMPC is used in both loops for planning

purposes, and uncertainties in renewables and EV loads are
fully considered in the economic dispatch model.

2) OFFLINE ADAPTATION AND ITERATION
The offline adaptation method, represented in dashed lines in
Fig. 2, will update the system parameters in the economic dis-
patch model once the charging loads are identified. The sys-
tem will then iterate until the total cost reaches a low-enough
optimality gap. Specifically, once the online computation is
terminated, the results are used to update the parameters of
the virtual batteries in equations (9)-(11) and equations (12)-
(15). The economic dispatch model with updated parameters
will then be used in the double closed-loop MPC model
for system identification again in order to achieve a better
parameter estimation during each iteration. The iterations
will be terminated once a certain desired level of accuracy
is reached. The stop criteria for iteration m (m ≥ 2) are
expressed as

Jm − Jlb
Jlb

≤ TH (16a)

Jm ≥ Jm−1 or
Jm − Jm−1

Jm−1
≤ ϵ (16b)

where the parameter TH is fixed to 10%, so the difference
between the economic dispatch cost Jm and its lower bound
Jlb should be less than 10%. The lower bound value is derived
using hourly data with the assumption of fully-controllable
smart charging load and perfect knowledge on the other loads.
The parameter ϵ is fixed to 0.1%, so the iterations will stop
once the total cost of the system in the current iteration is
higher than that in the previous iteration, or the costs are
sufficiently close to each other.

The implementation steps of the MPC learning method is
shown in Fig. 3, which deploys an indirect adaptive control
scheme [30]. The MPC learning method firstly estimates the
aggregated EV loads for different EV chargingmethods using
the double closed-loop MPC algorithm. The estimates for
these parameters are then updated during offline adaptation to
calculate the system dispatch results and the EV load control
strategies until the results meet the stop criteria in (16). With
iterations, the overall MPC learning model is able to estimate
the unknown dependency among different EV chargingmeth-
ods by reducing the prediction error gradually. Hence, the
MPC learning method can provide a nearly optimal solution
to the system operation under the situation that the future SC
and its inter-dependency with other chargingmethods are less
understood, and at the same time, identify the charging loads
for a smart gridwith high EV and renewable penetrations. The
temporal EV load simulation results can be used to calculate
the ratio of EVs in the services available at different types
of charging stations in order to obtain a promising EVCI
expansion planning strategy.

It is worth noting that the proposed MPC learning method
allows for accurate representation of individual EV charging
constraints during each iteration. It is different from machine
learning methods which learn customer charging and driving
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FIGURE 3. Flowchart describing the implementation steps of the
MPC learning method.

decisions [31] and face difficulties at incorporating complex
EV physical constraints [32]. Besides, MPC learning applies
the adaptive control to high-level objectives to identify a
smart grid of the future with some unknown parameters,
while most existing adaptive control methods are limited to
lower-level control applications such as the one in [33].

III. EVCI EXPANSION PLANNING
The clean energy transition objectives and the electric utility
planning are the main driving factors for the growing DER
penetrations. The projection of EV penetration level can also
be made by electric utilities to reduce the greenhouse gas
emissions. Once the system-level DER and EV penetration
targets are set, the MPC learning model can simulate inter-
action among EVs with DERs in the grid and identify the
temporal EV loads. The system planners can also adjust the
EVCI and DER expansion targets based on the simulation
results. If the spatial information of EVs can be acquired or
sampled, the simulationmodel can return the spatial-temporal
results of the EV charging loads as individual EV trips are
simulated. However, such detailed information is hard to
obtain in practice, and available data is limited, especially at
the regional level with a large number of integrated EVs [34].
Future work needs to address these research gaps. In this
paper, we study a region with customers that mainly use smart
charging and use other charging methods as complementary
methods. The number of charging facilities needed in a local
charging demand zone is estimated in this Section.

A. CAPACITY PROVISIONING OF SCSs
The SC usually requires chargers to turn on/off EVs to opti-
mize the economic dispatch cost, and EVs are parked in
the parking lots for several hours. Therefore, extra charg-
ers should be installed to enable an opportunity to reserve
a certain level of capacity ρ to meet the peak demand
and capture the stochastic EV customer behavior. If the
average number of EVs that are being served in the peak
hour is Ls, the capacity of the SCS is then assessed via

the following equation:

c =
Ls

(1 − ρ)
(17)

B. CAPACITY PROVISIONING OF FCSs AND SFCSs
The EVs at FCSs and SFCSs are normally charged upon
arrival. The arrivals of EVs at FCS and SFCS during a specific
period are typically featured with a Poisson distribution with
rate λ. Each charger has an independently and identically
distributed exponential service-time distribution with mean
T (1/µ). It is assumed to have sufficient charging facilities to
meet the EV charging demand in this study, and the charging
network operator in a demand zone can coordinate and assign
the EVs to specific charging facilities. The EVs are then
lumped together to form one queue, although the service
capacity is split in different locations. Accordingly, a queuing
model with unlimited charging facilities (M/M/∞) is used.
The expected queue size of EVs Lq is 0, which yields

L = Ls (18)

L = r =
λ

µ
(19)

where Ls and µ are obtained from the MPC learning model
simulations. The stakeholders want to maximize the acces-
sibility of chargers to customers, and at the same time,
minimize the investment costs. Therefore, there will not be
an infinite number of chargers in practice. The number of
charging facilities should be found such that it adequately
balances the charging facility needs and the cost of service.
M/M/c queuing model with very small queuing delay [35]
is used to approximate the M/M/∞ model. The number of
charging facilities c in the M/M/c with the probability of
queuing α is given by

α =
φ(β)

φ(β) + β8(β)
(20)

c ≈ r + β
√
r (21)

where α is set to 0.01, i.e., the probability that a customer is
delayed in the queue during peak hours is 1%. Additionally,
φ(·) and 8(·) are the probability density function (PDF) and
cumulative distribution function (CDF) of a standard normal
random variable.

C. CAPACITY PROVISIONING OF BSSs
The BS time of EVs at BSSs is fixed. Therefore, theM/D/∞

model is used for BSSs. The state probability of M/D/∞ is
the same as that of theM/M/∞model, because theM/M/∞

model is insensitive to the distribution of service time. Hence,
λ can be calculated by

L = Ls (22)

L = r = λD (23)

where Ls for BSSs is also acquired from the simulation
results. Because the delay probability for the M/M/c queue
provides a very good approximation to that of the M/D/c
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FIGURE 4. EV load impact on the original load profile in the
system: base case scenario.

queue [36], equations (20)–(21) can be also used to determine
the BS lots for the BSSs.

IV. CASE STUDIES AND NUMERICAL RESULTS
A modified IEEE 118-bus test system in [25] is utilized
for the simulations. The test system’s original specifications
are modified as follows: 3800 MW renewable sources are
integrated to the system including one wind farm at bus
24 with the total capacity of 1000 MW and another wind
farm with 1500 MV capacity located at bus 27. A 1300 MW
photovoltaic (PV) power plant is also added at bus 33. Both
weekly predicted and actual data for renewables and load
captured in the week of December 18, 2017 in Texas from
ERCOT is used in the simulations [37]. Wind power plants,
solar farm, and the load have scale factors of 1/8, 1.08,
and 1/12.8, respectively. The peak load in the test system
is 3,591 MW. The current-day forecast data will replace
the day-ahead forecast data in an hour-ahead manner. The
curtailment cost of renewables is 40 $/MWh.

The system is assumed to host 900,000 EVs accounting
for 90% of all the vehicles. Hence, there is one vehicle per
3.59 kW peak load, which is similar to the real-world vehicle
to yearly peak load ratio in the state of Texas in 2017. Note
that the vehicle to peak load ratio varies in different regions.
The charging and discharging efficiency is assumed 90%. cd
is 12 $/MWh, and the usable EV battery capacity is set to
70 kWh. There are 112,500 EVs only using FC and SFC,
50 kW chargers are used in FC only, 250 kW chargers are
used in SFC only, and the inelastic load of the aggregated
FC and SFC demand is placed at bus 112. It is assumed that
112,500 EVs only use BS service. The aggregated BSSwhich
is regarded as a virtual battery capacity with 1,050 MWh
is placed at bus 117. The BSS charge/discharge rate is set
to 242 MW.We add a penalty when the BSS SOC is less than
20%, so 20% of the BSS capacity is reserved for BS. The
SOC of the BSS is restricted to be equal or higher than 5%.

The remaining 675,000 EVs use SC methods with the
charging rate of 10 kW, and the aggregated SC load is located
at bus 115 as a virtual battery. These customers use FC,
SFC, or BS as complementary charging methods when their
charging demands could not be satisfied by SC alone. Hence,
EV customers will swap their depleted battery in BSS when
they subscribe to the BS service and the SCmode fails tomeet
their next trip demand. Otherwise, FC or SFC methods are

used based on their charging demand as shown in Fig. 1. The
National Household Travel Survey (NHTS) 2017 database
[38] is used to obtain the EV driving profiles. We randomly
select 10,000 EV driving profiles in the state of Texas to
account for the EV customer activities during the simulations.
50% of the EVs are randomly selected to subscribe the BS
services. The initial SOC of the EVs has a uniform distribu-
tion within 0 to 100% of the battery capacity. 100 to 200 EVs
are connected and managed by each aggregator. The esti-
mated upper charging constraint in the first iteration of the
MPC learning is based on the availability of the aggregated
EVs, and the initial lower charging constraint is set to 0.
Aggregated hourly charging constraints from these customers
obtained from the simulations are used as the estimated charg-
ing constraints during the next iteration. The aggregated EV
load is used to estimate the total charging demand. None of
these customers is assumed to utilize BS services in the first
iteration of theMPC learning, and the actual BS load for these
customers obtained from the simulations is used as estimated
additive BS energy consumption during the next iteration.

A. SIMULATION RESULTS
We employed the CVX optimizer in MATLAB 2020b to run
all the scenarios. 7-day economic dispatch was simulated in
the test system utilizing the MPC learning model. The system
total operation cost is found $ 9,113,360 after 3 iterations,
which is close to the lower bound of the minimum cost
($ 9,065,841). Renewables count for 35.30% of the total
generation in the base case scenario. The fuel cost of the con-
ventional generating units is found 25.19 $/MWh on average.
Figure 4 illustrates that the FC load for EVs that only use FC
and SFC will increase the peak of the original load slightly,
as it only counts for a small share of the total power demand
of aggregated EVs. The total EV load features a renewable
follower characteristic.

Figure 5 shows the number of EVs that are being served in
different types of charging stations based on 10,000 sampled
EVs in the simulation. Compared with the base case scenario
where the EV subscribers for BS service that mainly use SC
is 50%, all the unmet charging demands are supplied by the
BSS when it has 100% BS service subscription as shown in
Fig. 5d, and there is no FC or SFC customer as illustrated
in Fig. 5b and Fig. 5c. The BS load is also found with a
spike on the 6th day in Fig. 5d. This is because there is less
smart charging load around the beginning of the 6th day as
shown in Fig. 5a and the system can accordingly integrate
more DER power output in the daytime of the 6th day. Thus,
the 100%BS service subscription case is featured with higher
flexibility under given BSS capacity, and the average fuel cost
is 25.15 $/MWh, which is lower than that of the base case
scenario. However, when it has 0% BS service subscription,
there are still some customers using BS service as shown in
Fig. 5d. The reason lies in the fact that a few EVs have long
driving distance, and their charging demand could not be met
by FC or SFC. The fuel cost is 25.22 $/MWh on average
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FIGURE 5. Hourly average number of EVs in different types of charging stations with 0%, 50% and 100% subscription of the BS
service for the 10,000 smart charging EVs in the sample.

FIGURE 6. Comparison of the hourly average number of EVs
with smart charging service under 50%, 100% and 150% DER
power generation for 10,000 EVs in the sample.

which is higher than that of the base case scenario. This is
because more FC load will result in more inelastic load for
the system to supply. To our best knowledge, this is the first
effort in the literature to indicate how the change of the BS
service subscription ratio could affect FC, SFC and SC loads.

B. IMPACTS OF DER AND EV PENETRATION ON THE
POWER GRID
Different DER capacities are also simulated to show the
impacts of DER integration on EV charging demands.
The comparison results of the base case scenario with
100% DER capacity are shown in Fig. 6. With the increase in
DER power generation, there are more SC EV loads match-
ing DER power output instead of filling the off-peak load
valley. In the scenario with 150% DER power output, the
system needs more EV charging loads in the 7th day than
the daily peak times in the week to match the high DER
power generation. It indicates that the system needs more
SC chargers or stationary storage units to avoid DER energy
curtailment when DER penetration level is high. FC, SFC and

FIGURE 7. Comparison of the original load and the net load
profiles under 50%, 100% and 150% DER power generation in
the system.

BS curves slightly change, because the number of EVs that
need these services are small and stable. As demonstrated in
Fig. 7, the DER penetration levels also affect the net load in
the system, which is the load demand supplied by conven-
tional generators. Higher DER penetrations result in lower
minimum output and higher ramp rate of the conventional
generating units. We define the ramp factor as the minimum
load divided by the maximum load during a time period. The
total energy supplied by DERs in percentage and the ramp
factor of the system are shown in Table 1. It can be seen
that even with 90% EV penetration to match DER power
output, the system still needs higher ramp-rate generators
and more storage units to maintain the system stability and
improve the ramp factor when the DERs have 150% power
output and supply 52.92% of the system load. Therefore,
the aggregated EV charging load can also participate in the
frequency responses to maintain the system stability.

The simulation results for 60% and 30% EV penetration
levels in the system are also added to Table 1. It can be seen
that the scenario with 30% EV penetration level and 150%
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TABLE 1. System performance Indices under Different DER
Integration Scenarios.

TABLE 2. Capacity Provisioning Results In The Base Case
Scenario.

DER power output is found with a very low ramp factor,
when the DERs supply 57.68% of the system total load.
Accordingly, if the system planner considers to increase the
DER penetration level first, followed by an increase in EV
penetration, then the power grid stability status will be a great
concern. On the other hand, the system will have high ramp
factor with 90% EV penetration level and 50% DER power
output. However, when the system planner firstly increases
EV penetration and then considers to adopt more DERs, the
low ratio of DER energy supply to the total energy supply
may affect the reduction of carbon emissions in the early
stages. Hence, the coordinated expansion of the EVCI and
DERs are needed to trade off less impact to grid stability and
more DER energy supply for clean energy transition.

C. CAPACITY OF DIFFERENT CHARGING STATIONS
Table 2 shows the results on the number of different EV
chargers and battery swapping lots for 10,000 sampled EVs
in the base case scenario with 90% EV penetration and 100%
DER power output. Ls is the maximum number of EVs that
are in the service for each charging method, and is obtained
from Fig. 5. 30% of the SC capacity is reserved considering
the uncertainty of the EV customer behaviors and those inher-
ent to the system. The queuing models are used for FC, SFC
and BSS services. The average service times T for FC and
SFC are also obtained from simulations. We extend both to
15 minutes and 10 minutes respectively, considering the idle
parking time, and name it as T ′. The average service time for
BSS is assumed to be 5 minutes. With calculated charging
capacity c for the 10,000 EVs using equations (20)-(21), the
average number of EVs in the queue Lq during the peak hours
is very small, which highlights that the designed charging
capacities are promising approximation of the ideal charging
stations without queuing, and few customers will experience
delay (similar to the case of gas stations).

FIGURE 8. EV load impact on the original load profile in the
system: California scenario.

Based on the results presented in Table 2, if the SC chargers
can be installed all over the charging demand zone, a res-
idential parking garage with 200 EVs should have 42 or
more 10 kW chargers. The total number of charging facilities
needed for FCS, SFCS and BSS in the zone are small, so the
charging facilities should be placed near the high traffic flow
areas or highways.

D. SENSITIVITY ANALYSIS
1) IMPACTS OF DIFFERENT EV CUSTOMER BEHAVIORS
AND REGIONS
The driving profiles of 10,000 customers in the state of
California are randomly selected to simulate the impact of EV
customer behaviors to the EVCI expansion planning in differ-
ent regions. Also, compared to the studied base case, the total
capacity of wind and solar farms are reversed so that wind
power plant is 1,300 MW and PV power plant is 2,500 MW.
Figure 8 illustrates that the aggregated SC EVs still show the
renewable follower characteristic. But compared to Fig. 4,
there are more charging sessions during the daytime since
solar power generation is higher in this scenario. The capacity
provisioning results for 10,000 sampled EVs in the Califor-
nia scenario are also demonstrated in Table 3. Compared to
Table 2 in the base case under the same 50% BS subscription
ratio, it indicates that more SC facilities are needed to match
the higher solar power during the daytime. The number of
FC and SFC facilities increases since more SC sessions are
scheduled during the daytime and the customers sometimes
need more FC or SFC service in order to handle the daily
trip demand. However, the demand for BS swapping lots is
reduced. This is because the daily average driving distance for
these sampled EVs in California is less than that of customers
in Texas, where higher customer trip energy demands could
be met by only using SC even though they subscribe the
BS service. Less demand of complementary BS service also
contributes to the increased usage of the SC facilities. Note
that we rounded up the charging capacity c to the smaller
integer greater than or equal to the calculated values, so the
Lq results in Table 2 and Table 3 are slightly different.

2) COMPUTATION PERFORMANCE
All the simulations are done on a 3.10GHz Intel i5
Core 16 GB RAM computer. The total execution time of the
base case scenario with 10,000 EV samples is 183 minutes.
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TABLE 3. Capacity Provisioning Results in The California
Scenario.

TABLE 4. Computation Results of MPC Learning Under Different
EV Samples.

The average time for each iteration is 45.8 minutes, and
the simulation is terminated after 4 iterations as shown in
Table 4. 7 days simulation is run during each iteration, and
the calculation time includes the 24-hour look-ahead direct
current optimal power flow (DCOPF) execution in the outer
MPC loop with a time step of 1 hour, the 3-hour look-ahead
DCOPF execution in the inner MPC loop with a time step of
5 minutes, and the computation time of aggregating individ-
ual EV charging constraints and calculating power allocated
to EVs which are happening every 5 minutes. As illustrated
in Table 4, the average computation time during each iter-
ation only increases by 7 minutes when we increase the EV
samples from 10,000 to 50,000. The simulation time in each
iteration does not increase significantly since aggregation of
individual EV parameters and power allocation to each EV
are arithmetical calculations, and the DCOPF model is a
convex optimization using the aggregated information. Also,
the computation of the EVCI planning problem can be done
offline. Hence, the model can be scaled to large EV data
samples. However, the limited customer travel data will be
a main concern when simulating larger EV samples in a
region, as we imported NHTS customer data from 12 states
including Texas, California,Washington, etc., to reach 50,000
EV samples in the simulation. Also, customer behavior in
different regions may vary which affects the average unit cost
of generators in the simulation.

3) EFFECT OF APPLYING THE PROPOSED MODEL TO
MEDIUM VOLTAGE (MV) AND LOW VOLTAGE (LV)
SYSTEMS
The higher-level look-ahead economic dispatch model solves
multiple future time-step dispatch problems during each time
step. The power flow is a DCOPF formulation and power
losses are not considered. The load values in our look-ahead
economic dispatch model can be increased to account for the
estimated losses, and the mathematical formulation remains
the same. The voltage drops are also not included in the
look-ahead DCOPF model. AC feasibility check following
DCOPF solutions can ensure that the solutions are applicable

in real-world operation of the high voltage transmission sys-
tem. The voltage drops in distribution system are implicitly
accounted for by the proposed method since the SC could
avoid the increase in peak loads. The voltage drops and reac-
tive power in the distribution grid can be also compensated
locally by EV charging stations and regulating transformers,
if the EV charging stations can operate in four-quadrants.
Since this paper aims at regional-level EVCI expansion plan-
ning, the distribution voltage drops are not considered in the
model in order to balance the modeling precision and com-
putational complexity in this planning problem. However, the
proposedmodel can be used to simulate theMV or LV system
when ACOPF is used to consider distribution system voltage
drops and power losses, as the proposed model itself can
simulate different EV sample sizes. One needs to only take
into account that the total EV and simulated EV are required
to have a relatively large number so that the aggregated EV
parameters are predictable and the cost production model can
be used. Also, the number of customers using FC, SFC and
BS will be much smaller than that of using SC. The FCS,
SFCS and BSS planning results will be more accurate with
large number of EV samples.

V. DISCUSSIONS
The simulation results provide an estimation of the charging
load ratio in a region when SC can be installed in most loca-
tions. The results show that the number of customers using
FC, SFC or BSS will be much smaller than that of using SC,
and SC of large-scale EVs could optimize the system cost and
improve the system performance by increasing its flexibility.
While BS service is necessary considering the long-drive
distances of a few EVs, the stakeholders can still use FC and
SFC to replace BSS as long as EV customers are willing to
spend some time to charge their EVs during the trip. Also, the
FC and SFC are good companions for customers who do not
subscribe a BS service. In the studied case in California with
the same BS subscription ratio as that in the base case, the FC
and SFC capacity increase. The large solar power will supply
the increased FC and SFC load andmitigate the impacts of FC
and SFC to the power grid. In contrast, BSSs are less needed.
Hence, the actual ratio of the BSSs will be determined by
customer preference and the grid flexibility needs.

The interaction of the future large-scale EV loads and
DERs is also studied. The obtained performance indices of
the power grid can guide the regional expansion planning
with massive deployment of EVCI and DERs. System plan-
ners and electric utility regulators can determine the trajectory
of the EVCI and DER expansion based on Table 1. The
planning results can also be adjusted based on the system
parameter changes over time.

The charging capacity in a local charging demand zone
is also calculated, which returns an upper bound for the
minimum charging facilities in most cases. However, the
placement of specific charging stations in an area should be
studied case by case. For example, each household should
have one level-2 SC charger if they can install it. Coverage is
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also an important factor for selecting the locations of FCSs,
SFCSs, and BSSs as they may be in less demand. More FC
facilities should be built to cover the whole area even if some
of them have a low utilization rate. Other factors such as
land use, customer density, traffic density, power distribution
grid and customer preferences should also be considered.
If most EV customers in the area cannot install the charging
at home or workplace, the FC, SFC or BS stations will be
the main charging method; the planning is then similar to
that of a gas station. Once the arrival rate and charging time
of the charging stations are estimated, the queuing models
in this paper can still be used to decide on the number of
charging facilities. If the area has mixed SC customers, and
BS or FC only customers, it requires the stakeholders to
observe the portion of different types of customers, follow
the cite guidelines and plan accordingly with a combination
of different methods. The detailed location and placement
methods of DERs and EV charging facilities [39] are out of
scope of this paper.

The simulated charging capacity of different charging
facilities can be used as a starting point for detailed EVCI
planning. With the estimated future charging capacities in
a charging demand zone, experts in different domains can
then study land use, potential locations, and configurations
of different types of the charging stations. It enables the
backward planning of the EVCIs since the coordinated plan-
ning considers different EV and renewable penetration levels,
and avoids a situation where the charging stations are built
based on current charging demand and will need costly facil-
ity upgrades later. During the forward expansion processes,
a certain number of EV supply equipment and DERs can be
added based on the diffusion speed of EVs and a certain level
of charging facility adequacy should be maintained.

VI. CONCLUSION
This article discussed three aspects of EVCI expansion plan-
ning considering the increasing trend in DER penetration.
Firstly, the proposed method can quantify the change in the
EV charging load ratio with respect to the changes in EV
charging methods. Hence, the equilibrium of EV charging
load ratio in future smart grids can be simulated. Besides,
different EV and DER penetration levels are also simulated.
The appropriate penetration levels can be set by system plan-
ners and electric utility regulators to trade off the DER energy
supply expectation and the power grid stability concerns.
Furthermore, the charging capacities of different charging
stations are also quantified to achieve the equilibrium of
adequate charging facilities for customers and less investment
cost for stakeholders. The results of these considerations help
to optimize the strategic planning to achieve a smooth clean
energy transition. While these trade off decisions can vary in
different geographical regions, and change dynamically when
system parameters evolve over time, the decision makers can
still simulate the results using the proposedmethods with new
parameter values, and change the action policy with updated

planning targets. They can also adjust the planning target
based on the expansion outcomes in practice.

Several important aspects that could be further researched
in the future include (i) building co-optimization model for
transmission and distribution systems to more accurately
model power losses and voltage drops; (ii) considering capa-
bilities and locations of DERs and EV charging stations to
better plan and operate the power distribution grids.
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