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ABSTRACT This paper presents an online multi-level energy management system for local microgrids
of commercial buildings that integrate roof-top photovoltaic sources, battery storage systems, utility grids,
diesel generators, supercapacitors, and commercial buildings consisting of active orchestrated loads, to solve
the uncertainty problem of sources and loads, while also optimizing the local microgrid operation cost of
commercial buildings and the utilization rate of local renewable energy. The energy management system
includes a long-term rolling optimization level, rule-based optimization level, and load demand optimization
level. At the long-term rolling optimization level, an online rolling method of data restructuring is proposed,
where measurement data, short-term prediction data, and day-ahead prediction data are reconstructed to
reduce the uncertainty in photovoltaic source prediction and load demand prediction. Four methods are
proposed for the energy management system and simulated in MATLAB/Simulink under three typical
weather conditions, cloudy, sunny, and rainy. Simulation results show that the performance of Method 3 is
closest to that of Method 4, whose data conditions are ideal; Method 3 reduces the operational cost of the
commercial building microgrid and improves the utilization rate of photovoltaic sources, at the slight cost of
non-critical load shedding.

INDEX TERMS Commercial buildings, online, energy management system, microgrids, operational cost,
utilization rate.

I. INTRODUCTION

THE building sector accounts for almost 55% of global
electricity consumption and approximately 37% of

global CO2 emissions [1]. In buildings, the potential for
enormous emission reductions remains untapped owing to the
continued use of fossil-fuel-based assets, a lack of effective
energy-efficiency policies, and insufficient investment [2].
Commercial buildings, such as offices and banks, widely
exist in urban areas and account for much of the overall load
demand. Such buildings are characterized by the load demand
changing with the workday, with the load demand peak-
ing during the daytime. Coincidentally, photovoltaic (PV)
sources generate power in the daytime and can supply power

to the aforementioned buildings, which is a potential way to
achieve net-zero energy consumption. In linewith the concept
of green buildings, the daily power consumption of buildings
can be guaranteed by configuring reasonable PV sources and
battery storage (BS) [3].

With the development of green buildings equipped with
a roofed PV system, there is increased interest in studying
an energy management system (EMS) in terms of the uncer-
tainty in renewable power generation [4], [5], [6] and the
load demand [7], [8], [9]. Methods of addressing uncertain-
ties considering both the demands and supplies of micro-
grids can be categorized into two types. The first type is
non-deterministic modelingmethods that model uncertainties
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through probabilistic statistical methods. In [10], PV solar
power uncertainty was analyzed with solar power scenario
generation and reduction methods based on the Wasserstein
distance metric and K-medoids, respectively, and the gen-
eration of solar power was obtained using a probability
distribution function. In [11], the Gaussian probability dis-
tribution function was used to simulate uncertainty scenar-
ios for demands. In [12], the beta and Rayleigh probability
density functions were used to model uncertainties in solar
irradiance and wind speed, respectively. In [13], lognormal
distributions were applied to model EV uncertainties. The
advantage of the non-deterministic modeling method is that
uncertainties can be modeled based solely on statistical data
avoiding building complex physical models. The drawback of
the method is that it is difficult to obtain an appropriate prob-
ability density function and the prediction error of short-term
data maybe increase due to its non-stationary characteristic,
therefore, it is more suitable for intra-day predicted data. The
second type is deterministic modeling methods that usually
use a non-probabilistic model to reduce the uncertainty by
improving the data prediction accuracy; such as the time-
series prediction method and neural network method. In [14],
a neural network was applied to predict the load demand
with a feed-forward structure. In [11], the autoregressive
moving-average model was used to predict wind generation.
In [15], the traditional encoder single deep learning method
was introduced for weather forecasts using deep learning
techniques. In [16], boosted decision tree regression model
was applied to predict the changes in solar radiation based
on collected data in Malaysia. In [17], an optimal scheduling
model was proposed for isolated microgrids by using auto-
mated reinforcement learning-based multi-period forecasting
of renewable power generations and loads to reduce the nega-
tive impact of the uncertainty of load and renewable energies
outputs on microgrid operation. In [18], an elman neural
network prediction model is developed for load forecasting.
The advantage of the deterministic modeling method is that
the model can run fast to get online accessible results. The
disadvantage of this method is that it is difficult to obtain
accurate long-term data, therefore, it is more suitable for
intra-hour predicted data. Considering the online operation
requirements of a commercial building microgrid in this
paper, the deterministic modeling method is applied to deal
with the uncertainty of local renewable energy and loads.
Weather data obtained from official weather forecast agency
and the deterministic modeling method are then combined to
predict long-term online data, which not only saves forecast
time but also inherits the prediction accuracy.

To further resolve the uncertainty, an EMS integrated into
a microgrid was proposed to improve the flexibility, stability,
and reliability of a power supply [19], [20]. The EMS plays
a critical role in determining the economy and environmen-
tal friendliness of commercial building microgrids. Refer-
ence [21] proposed an optimal EMS for a direct current (DC)
microgrid applied to a commercial building, with the EMS

FIGURE 1. Microgrid topology of a commercial building.

contributing to power quality, fuel savings, and power effi-
ciency, but the study does not consider economic aspects of
the EMS, such as electricity prices, which directly affect the
demand response of commercial buildings. In [22], a model
predictive control algorithm for the EMS in an apartment
building integrating a microgrid was proposed to reduce the
electricity bill of a building and to improve the matching of
local generation and consumption. However, the simplistic
optimization objective only considers the power cost of the
utility grid (UG) and does not improve the usage rate of
renewable energy sources (RESs) or the power cost of the
storage system. Reference [23] presented a model for the
EMS of a building microgrid coupled with a battery that
was modeled considering battery degradation and real-life
operation characteristics. The proposed model could reduce
the building owner’s annual cost by up to 3.1% under the con-
sidered pricing scheme but does not consider the usage rate
of RESs. In [24], a novel structure for parking lot microgrids
was proposed to guarantee demand flexibility, minimize the
electricity consumption cost for the owners of electric vehi-
cles (EVs), and make a profit for the microgrid; however, the
proposed structure is limited to using only day-ahead peak-
shaving and valley-filling for power systems with distinct
peak hours in the daily operation and does not consider the
intraday uncertainty of the renewable power generation and
load demand, which affects the performance of the intraday
system, including the economy and RES utilization.

Against the above background, this paper proposes an
online multi-level EMS for commercial building microgrids
with multiple sources and a series of interruptible appliances
to consider long-term energy planning while maintaining the
real-time supply-demand balance.

A microgrid shall have the capability to be isolated. While
conventional microgrids emphasize their role as a way to
improve local energy independence and resilience, commer-
cial building microgrids typically maintain power supply for
at least enough time to cope with UG outages without dam-
aging the system, and even in some cases, they may be able to
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power the system indefinitely [25], [26]. Themicrogrid topol-
ogy of a commercial building, shown in Fig. 1, comprises PV
sources, a UG, BS, a diesel generator (DG), a supercapacitor
(SC), and a commercial building. The proposed EMS adopts
rolling optimization to deal with the uncertainty in PV power
generation and the load demand online. The error in the
rolling optimization can be rescheduled online at the rule-
based level of the EMS. The main contributions of this paper
are as follows:

1) An online multi-level EMS, including a long-term
rolling optimization level, rule-based optimization
level, and load demand optimization level, is designed
in this paper to consider long-term energy planning
while maintaining the real-time supply-demand bal-
ance. In the load demand optimization level, a time-
constrained and power-constrained load management
method is applied according to the load priority.

2) At the long-term rolling optimization level, an online
rolling method of data restructuring combining multi-
ple types of data is proposed to improve the uncertainty
in PV power generation and load demand.

3) Four methods are comprehensively analyzed and com-
pared under three weather conditions for the EMS.
Method 4, which does not consider uncertainty in PV
power generation and the load demand power predic-
tion, provides a powerful reference. Simulations show
that Method 3 is effective in reducing the operational
cost of the commercial building microgrid and improv-
ing the utilization rate of PV sources.

The remainder of the paper is organized as follows.
Section II describes the studied online rolling method of
reconstructing data. Section III presents the design processes
of the multi-level EMS that comprises a long-term rolling
optimization level, load demand optimization level, and rule-
based optimization level. The multi-level EMS is validated in
Section IV. Finally, conclusions and directions of future work
are discussed in Section V.

II. ONLINE ROLLING METHOD OF DATA
RESTRUCTURING
After comprehensively considering the modeling cost and
modeling accuracy of the uncertainties, an online rolling
method of data restructuring is proposed to construct pre-
diction data for the load power and RES power by restruc-
turing three types of data: day-ahead prediction data, short-
term prediction data, and measurement data. As shown in
Fig. 2, the structure of the online rolling method consists of
five parts, where the four parts: a PV short-term prediction
model, a load short-term prediction model, a PV day-ahead
prediction model, and a load day-ahead prediction mode,
provide the measurement data, the short-term prediction data
and the day-ahead predicted data for the restructured data
frame. The mathematical expression of this method is shown
in (1), where the restructured data frame, FRS , is denoted by
the measurement data,Mti (ti is from tm to t0), the short-term
prediction data, Sti (ti is from t1 to ts), and the day-ahead

FIGURE 2. Structure of the online rolling method.

predicted data, Dti (ti is from ts+1 to td ). δ is dirac delta
function.

A. DATA DESCRIPTION
The PV day-ahead predicted data are hourly forecast data
obtained from a day-ahead prediction model that comprises
a simplified PV maximum power point tracking (MPPT)
estimation [27] and metadata. The metadata referring to
the accumulated ground solar radiation from Météo France,
is freely accessible for day-ahead predicted data and is
applied in day-ahead optimization [28]. However, data of
poor accuracy are sometimes missing or cannot be updated
in time. The load-demand day-ahead prediction data are
obtained from a load demand adjustment model that handles
the metadata from Électricité De France, and the commercial
building information of the staff and administrators is taken
from a human-machine interface. The short-term prediction
data are obtained using the short-term prediction model in
Fig. 2, where a moving-average algorithm with low cost is
applied because of the continuity of the load demand and
weather data in this paper [29]. Themeasurement data include
load demand data from the load power estimation and PV
power data from the PV MPPT power estimation [30].

FRS =



0∑
i=m

Mti · δ(t − ti) +

s∑
i=1

Sti · δ(t − ti)

+

d∑
i=s+1

Dti · δ(t − ti),

(1)

B. MOVING-AVERAGE ALGORITHM
The moving-average algorithm is introduced as a time-series
prediction method [31], which can online eliminate irregular
time series of changes, thus revealing a trend of time series
data in Fig. 3. The algorithm is simple to apply with little
calculation cost considering the statistical characteristics of
time-series data.

The principle of the prediction process is shown in Fig. 3.
There are two data series, namely the measurement series
(Z1, Z2–Zh) and prediction series (P1, P2–Pl). The average
value of measurement series A is first calculated and then
taken as the first point of the prediction series, P1 = A.
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FIGURE 3. Moving-average algorithm.

FIGURE 4. Comparison of rolling prediction results for different
horizons.

The first prediction point P1 and the measurement series
(Zh−1–Z2, Z1) are then taken as the new measurement series
(Z1, Z2–Zh). Finally, the calculation is repeated from the
first step until the rest of the predicted series is obtained
(P2, P3–Pl). The prediction method is suitable for short mea-
surement series and short prediction series.

Comparison of rolling prediction results for different hori-
zons, 5min, 25min, and 125 min, are shown in Fig. 4.
The drawback to the predictionmethod is that the error pro-

portionally increases with the horizon of prediction, because
the method relies heavily on historical data and drastic
changes of PV power, which is difficult for a long-term pre-
diction with this method. In this paper, the rolling prediction
horizon of 5 min is chosen for the short-term prediction data.

C. DATA RESTRUCTURING
The restructured data frame at time t0 is represented in Fig. 2,
where the measurement data intercepts the segment from tm
to t0, the short-term prediction data intercepts the segment
from t1 to ts, and the day-ahead prediction data intercepts

FIGURE 5. Process of reconstructing data.

the segment from ts+1 to td . An example of the process of
reconstructing data for PV is given in Fig. 5, where three types
of PV data—measurement data, short-term prediction data,
and day-ahead prediction data—are restructured in chrono-
logical order as long-term data. The data are specifically
restructured as follows. First, the PV measurement data are
got by the PVMPPT power estimation model simulating with
the recorded temperature and solar irradiation, because the
PV MPPT power estimation model can accurately simulate
the voltage and current characteristics of PV panels. Then, the
PV day-ahead prediction data are provided by the simplified
PV MPPT power estimation model with the hourly forecast
solar irradiation data from the weather forecast agencyMétéo
France, because the simplified PV MPPT power estima-
tion model is fast and suitable for PV prediction. Next, the
short-term prediction data are obtained by using the moving-
average algorithmwith the input of the PVmeasurement data.
Finally, the three types of data are restructured to be pPV_RS in
chronological order. The above process takes place in a loop,
and this is the online rolling method of data restructuring.

III. ONLINE MULTI-LEVEL ENERGY MANAGEMENT
SYSTEM
Multiple power generation sources, storage systems, and
loads make the energy management of a commercial building
microgrid complicated under uncertain conditions that RESs
and the load demand are separately affected by weather con-
ditions and user behaviors. Accordingly, an onlinemulti-level
EMS that comprehensibly considers energy and power man-
agement should be established to handle the discrete events of
loads and the continuous regulation of the commercial build-
ing microgrid. The structure of the online multi-level EMS
comprises a physical module, controller, long-term rolling
optimization level, rule-based optimization level, and load
demand optimization level as shown in Fig. 6, where CB
denotes commercial building, CBM represents commercial
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FIGURE 6. Structure of the online multi-level EMS.

TABLE 1. Question list.

building microgrid. The long-term rolling optimization level
conducts an intraday rolling global optimization by restruc-
turing day-ahead prediction data, short-term prediction data,
and measurement data. Considering the uncertainties of the
users’ behaviors and weather conditions, the results obtained
at the long-term rolling optimization level are optimized for
the second time at the rule-based optimization level, which
deals with the differences (i.e., errors) between the predic-
tion data and measurement data. The role of the real-time
load demand optimization level determines the load shedding
and restoration sequence, and the rule-based optimization
level further ensures the rationalization of load shedding and
restoration sequence, thus guaranteeing the real-time balance
of the commercial building microgrid.

A question list is presented in Table 1. Tmin is the minimal
time that appliances can be shed, whereas Tmax is themaximal
time that appliances can be shed.

A. LONG-TERM ROLLING OPTIMIZATION LEVEL
The long-term rolling optimization level comprises the online
rolling method of restructuring data mentioned previously
and global optimization.

The global optimization modeling for the whole operation
period considers all constraints of the physical components,
but not constraints of the SC so as to reduce the compu-
tational complexity. The global optimization optimizes the

energy cost by dispatching the power flow according to the
restructured data. Considering each component cost of the
commercial building microgrid, the optimization objective to
minimize the total operational cost is given by

MinCTOTAL = CPV_S + CCB_S + CBS + CUG + CDG, (2)

where CPV_S is the energy cost adopted to punish PV shed-
ding, CCB_S is the energy cost adopted to punish load shed-
ding, CBS is the BS energy cost, CUG is the UG energy cost,
and CDG is the DG energy cost, which comprises the fuel
costCDG_F andDGoperation andmaintenance costCDG_OM .
CPV_S , CCB_S are separately calculated according to the
amount of PV shedding and load shedding power pPV_S ,
pCB_S and their punishment tariff TPV_S , TCB_S in (3) and
(4); CBS is denoted by its tariff TBS and the absolution of its
power pBS in (5), and the positive/negative of pBS represents
the BS charging/discharging; CUG is given by the negative
of the UG power pUG and the UG’s tariff TUG in (6), and
the positive/negative of pUG represents that the commercial
building microgrid sells/buys power to/from the UG; CDG
consists of CDG_F and CDG_OM in (7), CDG_F is expressed
as (8) CDG_OM is denoted in (9) using the DG operating time
that is calculated by counting 1t when DG is turned on [32].
The rationale for setting these tariffs is to encourage the use
of green energy while protecting load demand.

CPV_S =

tF∑
ti=t0

TPV_S (ti) · 1t · pPV_S (ti), (3)

CCB_S =

tF∑
ti=t0

TCB_S (ti) · 1t · pCB_S (ti), (4)

CBS =

tF∑
ti=t0

TBS (ti) · 1t · |pBS (ti)|, (5)

CUG =

tF∑
ti=t0

TUG (ti) · 1t · (−pUG (ti)), (6)

CDG = CDG_F + CDG_OM , (7)

CDG_F =

tF∑
ti=t0

TDG_F (ti) · 1t · pDG (ti) , (8)

CDG_OM =

tF∑
ti=t0

TDG_OM (ti) · 1t · (pDG (ti) > 0). (9)

The following constraints are considered in global opti-
mization.

The power balance constraints considering the PV sources,
DG, commercial building, BS, and UG [33] are

pPV (ti) + pDG(ti) = pCB(ti) + pBS (ti) + pUG(ti),

ti = {t0, t0 + 1t, t0 + 21t, . . . , tF } ,

(10)

where pPV is the power of the PV sources; pDG is the DG sup-
ply power, which is zero or positive; pCB is the power required
by the commercial building; pBS is the BS power, which is
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positive/negative for BS charging/discharging; pUG is the UG
power, which is positive/negative for power injection/supply;
ti denotes the times of sampling; and 1t is the time interval
between two samples.

The PV power pPV is constrained by its maximum gen-
erated power pPV_MPPT under current solar irradiation and
ambient temperature conditions, which is expressed by

pPV (ti) = pPV_MPPT (ti) − pPV_S (ti), (11)

where pPV_S is the PV shedding power.
This BS constraints are described by the following equa-

tions [33]:

socBS (ti) = SOCBS_0

=
1

3600 · vBS · CREF

tF∑
ti=t0

pBS (ti)1t (12)

SOCBS_MIN ≤ socBS (ti) ≤ SOCBS_MAX , (13)

−PBS_MAX ≤ pBS (ti) ≤ PBS_MAX . (14)

Equation (12) expresses the socBS estimation method.
socBS refers to the real-time state of charge (SOC) of the BS,
SOCBS_MIN /SOCBS_MAX is the lowest/highest point of BS
discharge/charging in (13). PBS_MAX is the maximum power
of the BS charging or discharge, which reflects the maximum
current of the BS in (14).

The UG is assumed to be a single utility grid connection,
whose constraints are expressed as

−PUG_MAX ≤ pUG(ti) ≤ PUG_MAX , (15)

|pUG(ti) − pUG(ti−1)| ≤ PUG_FLUC , (16)

where pUG is limited by PUG_MAX in (15) and the UG power
fluctuation is limited to PUG_FLUC in (16) to protect the UG
power quality.

The DG constraint is denoted by (17). The on/off status of
the DG can be determined when ti is an integer multiple of
dtDG. pDG is zero when the DG is off, and pDG is limited
between the minimal DG output power PDG_ON_MIN and
maximal DG output power PDG_ON_MAX when the DG is on:

pDG(ti) = pDG(ti−1)


if rem(ti/dtDG) ̸= 0,
pDG(ti) ∈ {0} ∪[
pDG_ON_MIN pDG_ON_MAX

]
.

(17)

The load demand of the building pCB_D, is assumed to
comprise the critical load pCB_CRT and non-critical load
pCB_N_CRT in (18). pCB and its power shedding pCB_S are
limited by pCB_D:

pCB_D = pCB_CRT + pCB_N_CRT , (18)

pCB(ti) = pCB_D(ti) − pCB_S (ti). (19)

The DG is designed to support the peak load indepen-
dently, with aim of characterizing the off-grid operation of
the commercial building microgrid, thus the UG is restricted
to 0 when the high-cost DG is turned on:

if pDG(ti) > 0 then pUG(ti) = 0. (20)

BS is available to offset some but not all of the PV produc-
tion and load demand. The PV supply and loads cannot be
shed when the BS is available:

if socBS (ti) > SOCBS_MIN then pCB_S (ti) = 0, (21)

if socBS (ti) < SOCBS_MAX and pDG(ti) = 0

thenpPV_S (ti) = 0. (22)

There are additional constraints under two conditions.
Constraints (23) are applied at the UG power shoulder and
peak and constraints (24) are applied in the UG power valley:

a


if pPV_MPPT (ti) ≥ pCB_D(ti), then{
pUG(ti) ≥ 0

pBS (ti) ≥ 0

b


if pPV_MPPT (ti) ≤ pCB_D(ti) and

pDG(ti) = 0, then

{
pUG(ti) ≤ 0

pBS (ti) ≤ 0
c
{
pCB_S (ti) ≤ (1 − kCB_CRIT ) · pCB_D(ti)

(23)

pCB_S (ti) ≤ (1 − kCB_CRIT ) · pCB_D(ti). (24)

Equations (23)a and (23)b together constrain that the BS
and UG cannot directly exchange power at the UG power
shoulder and peak, and (23)c constrains the load shedding
power by a critical load coefficient, kCB_CRIT . Equation (24)
only constrains the load shedding power, thus the BS and UG
can exchange power in the UG power valley.

B. LOAD DEMAND OPTIMIZATION LEVEL
The objective of the load demand optimization is to maximize
the priority coefficient sum of the operating appliances f (SAp)
to protect important critical loads in (25), where i is the
appliance number. Copi is the coefficient of priority of the ith

appliance. SAp_i is the decision variable of the load demand
optimization. SAp_i is 0 when the ith appliance is off; SAp_i
is 1 when the ith appliance is on. The constraint is in (26),
where pCB_ is limited by the minimal value of pCB_D and the
available power of the commercial building microgrid, pAvial ,
supplied by the PV sources, UG, BS, DG, and SC.

Max f (SAp) =

n∑
i=1

Copi ∗ SAp_iSAp_i =

{
0 if ith appliance is off
1 if ith appliance is on

i = {1, 2, 3, . . . , n} ,

(25)

pCB ≤ min(pCB_D, pAvial). (26)

Fig. 7 is the flow diagram of the load demand optimization.
The process of optimizing the load demand is as follows.
Themicrogrid operator of a commercial building judges if the
load demand needs to be shed. If pAvial is less than pCB_D, then
the optimization objective (25) is run to choose the proper
appliances to be shed.Meanwhile, the time of shedding appli-
ances is counted. The appliances remain shed if the counted
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FIGURE 7. Flow diagram of the load demand optimization.

FIGURE 8. Simulation results of real-time load optimization.

time for the shed appliances is less than Tmin. There are two
paths for load restoration. One is when pAvial is greater than
pCB_D, the appliances can be restored if the count time for the
shed appliances is greater than Tmin. The other is the priority
of the shed appliances is increased to forcibly restore the shed
appliances if their count time reaches Tmax . The load demand
optimization operates continually as the above processes until
the simulation is complete.

Fig. 8 presents simulation results of the load demand opti-
mization. When the curve of pAvial is below the curve of
pCB_D, pCB is below the curve of pAvial , which shows that the
real-time load optimization is running to shed some proper
appliances. When the curve of pAvial is above the curve of
pCB_D, all the load power demand can be met, and the curves
of pCB_D and pCB thus coincide.

C. RULE-BASED OPTIMIZATION LEVEL
The rule-based optimization level redistributes the energy
flow of the microgrid and controls the appliances by reading
the output results of the long-term rolling optimization level
and load demand optimization level.

Rules are designed as follows to ensure optimal real-time
energy allocation.

FIGURE 9. Demonstration flow diagram of four designed
methods.

Cases 1, 2, and 3 differ from case 4 according to the
question of whether a critical loadwill be shed (Q4), as shown
in Fig. 6. Case 1 is that the PV sources generate excess
power. The excess power charges the BS or is sold to the
UG according to the optimization results of the long-term
rolling optimization level. There may even be a direct PV
shedding operation. Cases 2 and 3 are that the PV supply
is insufficient to supply loads. Case 2 differs from case 3 in
terms of distributing the power flow according to the question
of whether the UG is in a power valley (Q6). In case 2, the
UG is in a power valley with a low-price cost and can supply
loads and the BS. In case 3, the BS and UG can supply loads
according to the long-term rolling optimization level results.
Case 4 is that a critical load is at risk of being shed. Ultimately,
the power references of the PV sources, BS, UG, SC, DG,
and the control signal of the loads are output to control the
microgrid state.

IV. SIMULATION
The EMS is programmed in MATLAB/Simulink, and the
optimization is solved using CPLEX [34]. Four methods
are designed and compared to choose the optimal method
for EMS in terms of the utilization rate of PV sources and
the cost of the commercial building microgrid. Fig. 9 is a
demonstration flow diagram of the four methods.

Method 1 combines the rule-based optimization and load
demand optimization. Methods 2, 3, and 4 are designed in
the same way by combining rule-based optimization, load
demand optimization, and global optimization. In particular,
the input ofMethod 2 is the day-ahead prediction data that are
updated daily; the input of Method 3 is the restructured data
obtained using the online rollingmethod of data restructuring,
where the restructured data are updated in minutes; and the
input of Method 4 is the actual data assumed to be accessed
in the simulation without the predictive accuracy problem.

A. SCENARIO DESIGN AND PARAMETERS
The simulation scenario is designed for an operational
period of 24 h, which is separated into five time periods:
0:00–6:00, 6:00–8:00, 8:00–17:00, 17:00–22:00, and
22:00–24:00. A commercial building environment on a sum-
mer day in France is simulated. The roof-top PV sources com-
prise 14 PV panels (SF 130/2-125, Solar-Fabrik, Germany)
arranged in series, whose maximum power output is 1750 W
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FIGURE 10. Three weather data recording.

FIGURE 11. Appliances parameters.

under standard test conditions. Three weather data recording
are shown in Fig. 10. June 20th 2018, May 8th 2018, and
July 16th 2018 in France were cloudy, sunny, rainy days,
respectively [33]. The UG is a single-phase voltage power
source. The BS comprises five lead-acid batteries arranged
in series, whose individual specifications are 12 V/6.6 Ah.
The DG used in this simulation is an SDMO Technic 6500 E
AVR. The SC has a capacity of 94 F and rated voltage of 75 V.

The studied microgrid is designed for real application
based on a commercial building with 100 kW load demand.
The load power curve coming from an office building in
France, is scaled to an experimentally verifiable scale for
49 appliances, including emergency lighting, a stair lift, mul-
tiple personal computers, multiple printers, and other elec-
trical equipment. Fig. 11 presents the appliance parameters
defined by staff and administrators, including the shed time
constraints, the rated power of the appliances, and the shed
priority coefficient. Additionally, the time constraints are
defined to reflect the dynamic characteristics of user behav-
iors. The maximal priority coefficient is 100, and the minimal
priority coefficient is 1.

Table 2 presents the five-time periods [33]. During the
periods 0:00–6:00 and 22:00–24:00, the commercial building

TABLE 2. Scenario parameters.

has a low load demand, and it is assumed that the commercial
building maintains all critical loads, respecting the additional
constraints in (24) and power strategies in cases 1, 3, and 4,
to encourage theUG to discharge and smooth its power valley.
During the period 6:00–8:00, the PV energy production and
load demand vary according to the season. It is assumed
that the additional constraints in (23) and power strategies in
cases 1, 2, and 4 are applied to prevent the power exchange
between the UG and BS and thus prevent the microgrid
administrator from using the BS to profit from the UG to
aggravate the instability of the UG by buying electricity at
a low price and selling at a high price during the day. During
the period 8:00–17:00, the load demand varies according
to the user behaviors, and the EMS is assumed to use the
additional constraints in (23) and the strategies in cases 1, 2,
and 4 to coordinate power flow for the microgrid. During the
period 17:00–22:00, the load demand is low for commercial
buildings but high for residential buildings, and the UG is thus
highly stressed locally. The additional constraints in (23) and
the strategies in cases 1, 2, and 4 are thus assumed to apply.

The simulation parameters are given in Table 3 [33].
The initial SOC of the BS, SOCBS_0, is set at 50%. pBS
is limited to 1000 W, and socBS is limited to the range
of 20%–80%, which alleviates BS aging. Considering the
efficiency of power conversion between the microgrid and
UG, the reference voltage of the common DC bus, v∗DC , is set
at 400 V. PUG_MAX is limited to 600 W in the power valley
and 200 W in other power periods. The proportion of critical
loads, kL_CRIT , is assumed to be 100% approximately at night
and 80% at other times, indicating that the shadow rate of the
load demand is 0% at night and not greater than 20% at other
times. pDG is limited to 1500 W to satisfy the maximal load
demand power. PSC_MAX is set at 1500 W to compensate for
the DG power deficiency during the start-on stage, and the
initial SOC of the SC, SOCSC_0, is 75%.

The tariff of each physical component is predefined
according to a selected pricing mechanism, where the high
load shedding punishment tariff is set at 1.8 e/kWh, the PV
power shedding punishment tariff is set at 1.5e/kWh, the UG
power tariff is set using the TOU method [35], the BS power
tariff is set considerably low at 0.05 e/kWh, the DG power
tariff is contrastively set high at 1.2e/kWh owing to the high
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TABLE 3. Simulation parameters.

FIGURE 12. DC bus curves obtained using the four designed
methods.

cost of fuel, and the DG operation and maintenance tariff is
set at 0.63 e/kWh [32].

B. SIMULATION RESULTS AND ANALYSIS
Methods 1, 2, 3, and 4 are applied in the simulation to
comprehensively compare their operational feasibility, load
power rate, PV power usage rate, and operational cost, where
data conditions of Method 4 are ideal. The detailed operating
status of the commercial building microgrid on June 20,
2018 is shown from Fig. 12 to Fig. 17.
The DC bus voltage of each method is shown in Fig. 12.

This figure shows that themicrogrid of a commercial building
can operate well under eachmethodwhile keeping theDC bus
voltage stable.

The PV power curve is shown for each method in Fig. 13,
where the PV installed capacity is represented by the red
dotted line. At night, the energy generated by PV sources
is nearly zero. During the day, the generation of PV power
gradually increases until it reaches a maximum at noon and
then gradually decreases. The violent energy fluctuation is

FIGURE 13. PV curves obtained using the four designed
methods.

mainly due to the variation in shading by moving clouds.
Under the four methods, the PV sources operate well in the
PV MPPT mode and PV shedding mode.

Fig.14 presents the load demand power and operational
load power greater or equal to the critical load power drawn
as the red dotted line. At night, all loads that need to be run
are set as critical loads to ensure the minimum operating
requirements of the commercial building. During the day,
with an increase in the staffing level, the load of the commer-
cial building gradually increases until reaching a maximum at
noon and then decreases with the gradual departure of staff.

Fig. 15 reveals the power charging, power discharging, and
SOC evaluations of the BS under all limitations. At night, the
BS tends to charge owing to the low electricity price of the
UG. During the day, the complex change in the BS state is
mainly due to the intermittence of PV power generation and
load demand.

Fig.16 presents the UG power, which operates within
power limitations. At night, the UG, limited to 600 W, tends
to sell energy at a low price to smooth its power valley. During
the day, the UG power limitation is set at 200 W to ensure the
stable operation of the commercial building microgrid.

Fig. 17 gives the operating results of the DG and SC.
At night, the DG hardly runs owing to the low load demand
and low UG price. During the day, the DG participates in
the energy supply as a high-price source and serves as a
final means to maintain the energy balance for the microgrid.
The start-up of the DG is always accompanied by an energy
supplement of the SC. The SC needs to be charged when its
SOC is low to prevent its discharging.

The PV power usage rate and load power rate of three
weather conditions are shown for each method in Fig. 18.
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FIGURE 14. Power curves of a commercial building obtained
using the four designed methods.

FIGURE 15. BS curves obtained using the four designed
methods.

The PV power usage rate and load power rate under the three
weather conditions is gradually increased from Method 1 to
Method 4, and the special case was on June 20, 2018, where
the load power rate of Method 3 was lower than that of Meth-
ods 1, 2 and 4, which was due to the time gap encountered for
the DG restart, and the non-critical load was shed.

On June 20, 2018, PV power has the lowest usage rate,
98.13%, for Method 1 and the highest usage rate, 99.68%,

FIGURE 16. UG curves obtained using the four designed
methods.

FIGURE 17. DG and SC curves obtained using the four designed
methods.

for Method 4. Method 2 has a higher PV power usage rate,
98.53%, than Method 1. Moreover, Method 3 has a higher
usage rate of PV power, 99.22%, than Methods 1 and 2; the
rate is nearly as high as that for Method 4. The load power
rate of methods 1, 2, 3, and 4 are 99.97%, 100%, 99.87%,
and 100%, respectively.

On May 8, 2018, PV power has the lowest usage rate,
99.89%, for Method 1 and the highest usage rate, 99.99%,
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FIGURE 18. PV power usage rate and load power rate
comparison.

FIGURE 19. Total cost comparison.

for Method 4. Method 2 has a higher PV power usage rate,
99.90%, than Method 1. Moreover, Method 3 has a higher
usage rate of PV power, 99.95%, than Methods 1 and 2; the
rate is nearly as high as that for Method 4. The load power
rate of methods 1, 2, 3, and 4 are 99.59%, 100%, 100%, and
100%, respectively.

On July 16, 2018, PV power has the lowest usage rate,
98.84%, for Method 1 and the highest usage rate, 99.51%,
for Method 4. Method 2 has a higher PV power usage rate,
99.26%, than Method 1. Moreover, Method 3 has a higher
usage rate of PV power, 99.41%, than Methods 1 and 2; the
rate is nearly as high as that for Method 4. The load power
rate of methods 1, 2, 3, and 4 are 99.72%, 99.85%, 99.92%,
and 100%, respectively.

These results indicate that Method 3 performs better than
Methods 1 and 2 in terms of PV power usage, while the load
power rate of Method 3 is similar to the rates for the other
three methods.

Fig. 19 presents the total costs of using the four methods
of three weather conditions. The total costs under the three
weather conditions are gradually reduced from Method 1 to
Method 4.

On June 20, 2018, the total cost of Method 2 is 17.78% less
than that of Method 1. The total cost of Method 3 is 29.61%
less than that of Method 1 and almost the same as that of
Method 4.

On May 8, 2018, the total cost of Method 2 is 19.44% less
than that of Method 1. The total cost of Method 3 is 20.40%
less than that of Method 1 and almost the same as that of
Method 4.

On July 16, 2018, the total cost of Method 2 is 16.17% less
than that of Method 1. The total cost of Method 3 is 21.34%
less than that of Method 1 and almost the same as that of
Method 4.

The above results demonstrate that the four methods ensure
the normal operation of the commercial building microgrid.
Additionally, Method 3 performs well in reducing the opera-
tional cost and improving the utilization rate of PV sources.

V. CONCLUSION
This paper investigated an EMS for a commercial building
microgrid to improve the utilization rate of PV sources and
reduce the cost of the commercial building microgrid on the
premise of ensuring the stability of the power supply system.
The EMS mainly comprises a long-term rolling optimization
level, rule-based optimization level, and load demand opti-
mization level. The rule-based optimization level coordinates
the energy flow for the commercial building microgrid, the
load demand optimization level maximizes the sum of the
coefficients of priorities under the available power limit, and
the long-term rolling optimization level schedules a long-
term proper power flow for the commercial building micro-
grid. Moreover, an online rolling method of data restructuring
was developed to improve the uncertainty in PV power gener-
ation and load demand in the long-term rolling optimization
level. The method can operate over multiple cycles on the
whole-day timescale.

On the cloudy day, Method 3 effectively improves the
utilization rate of PV sources by 1.09%, while reducing the
total cost by more than 29.61% for the commercial building
microgrid with only small effects on the loads compared with
Methods 1 and 2; On the sunny day, Method 3 effectively
improves the utilization rate of PV sources by 0.06%, while
reducing the total cost by more than 20.40% for the commer-
cial building microgrid; On the rainy day, Method 3 effec-
tively improves the utilization rate of PV sources by 0.57%,
while reducing the total cost by more than 21.30% for the
commercial building microgrid. The above simulation results
demonstrate that the EMS operates well for the commer-
cial building microgrid, which provides a theoretical basis
for energy management and optimal dispatch of commercial
building microgrids in the future, such as office buildings,
bank buildings, shopping mall buildings, etc.

Adjustable loads are not considered in this paper because
adjustable loads such as those of the EVs need to be studied in
dedicated works owing to the complexity of their behavioral
characteristics. Future work will focus on the research of the
management strategy for the commercial building microgrid
integrating EVs, making full use of the source–load charac-
teristics of EVs to charge EVs in the period of PV power
generation or the power valley of the UG. Additionally, future
work will investigate discharge to the commercial building
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microgrid in the period of the power peak of the UG, which
can alleviate pressure on the UG, benefit EV users, and,
importantly, provide a path for the future design of net-zero
buildings.
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