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ABSTRACT The impact of false data injection (FDI) attacks on static state estimation of power systems has
been actively studied in the past decade. In this paper, we consider an estimation method that first decomposes
the system into islands and then implements robust regression estimators at the island level as well as the
system level. We carry out an analysis to establish its advantages in terms of state estimation accuracy and
attack detections. In particular, we focus on highly adversarial cases where the attacker can attack both the
measurement vector and the regressor matrix and attempts to manipulate the states to targeted values. Our
estimation approach employs a system decomposition method capable to generate islands small in their sizes
and applies the robust estimation method of least trimmed squares. We make comparisons with methods
using other decompositions and other robust estimators. To this end, we analyze the structure of the system
topology and measurements and perform extensive simulations using the IEEE 14- and 118-bus systems.
Furthermore, we investigate robustness improvement when phasor measurement units (PMUs) are available
and hybrid state estimation can be employed.

INDEX TERMS Cyber-physical security, false data injection attacks, cycle detection methods, coordinated
leverage point attacks, robust state estimation, phasor measurement units.

I. INTRODUCTION

FOR the safe and efficient operation of the power grid,
the system is constantly monitored and operated at the

control center. In practice, the operators use a static state
estimator (SE), which provides the state of the grid [1] and
permits the online security analysis. The static SE gives the
optimal state consisting of bus voltage phasors estimated
from redundant measurements commonly provided by super-
visory control and data acquisition (SCADA) units at remote
terminal units and intelligent electronic devices, including
active and reactive power flows and injections, and bus volt-
age magnitudes. More recently, the availability of phasor
measurement units (PMUs) has enabled hybrid state estima-
tion combining both PMUs and SCADAmeasurements in the
observation set [2] to improve SE accuracy and performance.

Placing a PMU at a bus can provide the voltage phasor at that
bus, and the phasor currents on several or all lines incident to
that bus [3].

Recently, the increase in cyber attack incidents has raised
concerns for the problem of SE security [4]. Under nominal
operations, measurement errors could be present due to noise,
equipment failures, and modeling errors and are detected by
analyzing the residuals of the weighted least squares AC
static SE. However, when an attacker launches malicious
false data injection (FDI) attacks in the measurements with
the knowledge on the system parameters and grid topology,
the estimated states may be manipulated to targeted values
without being detected as the residuals may remain small
or unchanged [5], [6], [7], [8]. Recent works deal with FDI
attack strategies which can be generated even if the attacker

116
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 10, 2023

https://orcid.org/0000-0001-9083-8795
https://orcid.org/0000-0003-0367-824X


Ahmadi et al.: Analysis of Targeted Coordinated Attacks on Decomposition-Based Robust State Estimation

has only limited information such as data of a subnetwork [9]
and limited PMU data [10]. In the literature, various FDI
attack detection methods have been proposed; see the survey
paper [11] and the references therein.

On the other hand, different FDI attack scenarios against
the SE have been considered. One class of adversarial attacks
known to be hard to detect is that of leverage point attacks,
which target the entries in the Jacobian matrix of the regres-
sion model of SE, e.g., [8], [12], [13], [14], [15]. Such attacks
can be generated by introducing changes in the network
parameters and topology data stored at the system opera-
tors. Recently, it is shown in [16] that modifying network
parameters can reduce the necessary number of FDI attacks.
In the abovementioned works, it has been established that
to obtain accurate state estimates under adversarial envi-
ronments, robust estimation techniques (e.g., [17]) can be
especially useful, including the least trimmed squares (LTS)
[8], [13], [14], [18], [19], [20] and the robust Huber
M-estimator [12]. Difficulties in SE when the data in the
regressor model may contain uncertainties and the impor-
tance of robust methods have been recognized in the early
works of [20], [21], [22] from the 1990s. In [13], it has
been proposed to use multiple robust estimators in parallel
to enhance the capability of attack detections.

In this context, to deal with large-scale systems, decom-
position of the grid is also found effective in [8] and [20],
where in each island the SE can be performed. This approach
enables robust SE algorithms to increase the number of out-
liers in the data that the estimator can tolerate, or the so-called
breakdown points [17]. In our previous work [15], we have
developed a graph-basedmethod to automatically decompose
power systems and, specifically, found that in increasing the
breakdown points of the islands, the planar face traversal
(PFT) algorithm [24] is useful. This feature is due to its
capability to identify islands having small sizes.

In this paper, we consider the robust SE approach of [8]
and [15] against adversarial attacks especially when the
attacks are more targeted and coordinated. The robust SE
approach is based on two techniques: (i) Decomposition of
the grid into islands and (ii) use of the LTS estimator at the
island/subsystem level. The LTS is known as a particularly
robust SEmethod; it ignores a fixed number of measurements
corresponding to residuals with largemagnitudes. In [15], we
demonstrated the superiority of our PFT-based decomposi-
tion method over other decomposition approaches. Compar-
isons were made in terms of breakdown points for various
IEEE systems with 14, 30, 57, 118, 145, and 300 buses.
However, the SE performance was verified only through
simulations using random FDI attacks.

Here, we aim to further improve our PFT-based robust
SE method and expose its strength and limitations under
FDI cyber-attacks of various degrees and placements. First,
we analyze the properties of the decomposed grid from
the viewpoint of the local state estimation executed at the
islands. Its advantages are highlighted in comparison to
islands obtained by a simpler graph-theoretic cycle detection

based on the minimum spanning tree (MST) method. Then,
through simulation studies, we will demonstrate the differ-
ence between the decomposition methods and the robust SE
methods. The following two developments are critical in our
study:

(i) One is the enhanced version of the SE algorithm
from [8] and [15] consisting of three steps as follows: It first
runs the LTS decentrally at each island level and then cen-
trally at the entire system level; its robustness is enhanced by
the residual analysis carried out as the third step.

(ii) We construct adversarial coordinated FDI attacks
against certain targeted buses in the system. Specifically,
we attack the power injections at those targeted buses and
their adjacent buses in both their measurements and the cor-
responding rows of the regressor matrix. By increasing the
number of attack points, the attacker can eventually manip-
ulate the state values of the targeted buses. In general, even
by robust SE methods, the attacks on the regressor matrix are
hard to resist and detect.

These techniques will be thoroughly tested by simula-
tions on the IEEE 14- and 118-bus systems, and the impact
of both randomly generated and targeted coordinated FDI
attacks will be examined. For comparison reasons, we equip
our algorithm with several robust SE schemes including the
LTS, the Huber M-estimation, and the least absolute value
(LAV). Furthermore, some of them as well as the conven-
tional largest normalized residual (LNR) with a bad data
detection (BDD) module will be implemented in a fully
centralized fashion. Under three classes of attacks, we will
demonstrate that our SE scheme clearly outperforms when
equippedwith the PFT-based decomposition in terms of accu-
racy on SE and attack detection probabilities especially when
the regressor matrix is under coordinated attacks. We will
moreover show that introducing PMUs can increase the SE
performance.

The paper is organized as follows. Section II reviews static
state estimation, bad data detection, and the attack models.
Section III introduces robust estimation techniques and also
the decomposition methods of power systems. Section IV
analyzes the targeted attacks on decomposition-based SE.
Section V presents the simulation results under several attack
scenarios. Finally, in Section VI, we conclude the paper.

II. PROBLEM FORMULATION
A. STATIC STATE ESTIMATION PROBLEM
State estimation uses three kinds of data as inputs: (i) The
network topology data, consisting of the on/off status of
power network switches and circuit breakers between buses;
(ii) the measurement data, including voltage magnitudes,
power injections and flows; and (iii) the parameter data,
including the branch admittance data and the variances of
measurement noises. The network topology and measure-
ment data are communicated to the control center from
SCADA units. After the system’s observability is verified, the
weighted least squares (WLS) AC state estimator algorithm is
executed to obtain the estimates of the state variables x, which
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are the voltage magnitudes and phase angles at all buses of
interest.

The measurement equation is expressed as z = h(x) + e,
where x ∈ Rn and z ∈ Rm denote the state vector and
the measurement vector, respectively, with n ≤ m. Further,
e ∈ Rm denotes the error vector, which is assumed to
follow the normal distribution with zero mean and covari-
ance matrix R, i.e., e ∼ N (0,R). The state variables are
related to the measurements by the nonlinear measurement
function h(·) [1].
To execute the state estimation in real time, a simpli-

fied model based on linearization is commonly used [1].
The optimal estimate of the state can be obtained as x̂ =
argmin

x̂

[
z− h(x̂)

]T R−1 [z− h(x̂)]. This can be computed

by the iterations as x̂k+1 = x̂k + 1xk , where 1xk =[
HTR−1HT

]−1HTR−1
(
z − h(x̂k )

)
, where H ∈ Rm×n is the

regressor matrix and k is the index of the iteration. The matrix
H is the Jacobian of the measurement function h(·) with
respect to the state x. The state increment 1xk is obtained
by regressing z− h(x̂k ) on H . The algorithm terminates once
the norm of 1xk becomes smaller than a given threshold.
Afterwards, bad data detection (BDD) is applied.

B. BAD DATA DETECTION
The BDDmodule is essential to protect state estimation from
outliers’ effects. The measurement data is checked to remove
any abnormal values. After the state estimation process con-
verges, the residuals are calculated as rk = z − h(x̂k ).
If any entries of rk are large in magnitude, the corresponding
measurements are eliminated, and the SE is re-executed with
the remaining data. The estimation and BDD are re-iterated
until such large residuals do not appear.

In practical SE, the largest normalized residual (LNR) is
used with the chi-square test in the BDD [1]. This is based on
the normalized residual given by rNi =

|ri|√
SiiRii

, where ri is the

ith element of the residual r and S is the residual sensitivity
matrix given by S = I − H (HTH )−1HT . If the largest
normalized residual is larger than a pre-determined threshold,
e.g., |rNi | > 3, it is eliminated from the measurements in the
next state estimation. The estimation is re-executed until no
outlier is detected.

C. MODEL OF FALSE DATA INJECTION ATTACKS
The attacker is assumed to be capable of launching FDI
attacks on SE inputs corresponding to a limited number of
buses, including the measurement, topology, and parameter
data. We consider the more adversarial scenario where the
attacker has the information about elements in the regressor
matrix H . In such a case, the following two classes of attacks
are particularly effective:

(i) One consists of those against the measurements. The
attacker may generate stealthy attacks of the form zc =
z + Hc, where c is a sparse vector with nonzero values at
entries corresponding to the targeted buses [5]. The attack
is stealthy in the sense that the residuals are not modified,

and conventional detection schemes based on analyzing the
residuals cannot detect the attacks.

(ii) The other consists of those against the regressor matrix.
Such attacks are called leverage point attacks [23], [25],
and the matrix is modified in the form Hc = H + δH ,
where δH contains nonzero columns corresponding to the
targeted buses. If a column in H is multiplied by a chosen
scalar in an attack, the attack will control the corresponding
state, and the residuals will be kept unchanged. The attack
becomes stealthy, and the estimated state will be manipulated
and becomes the corrupted value targeted by the attacker.
To generate such attacks, the attacker needs access to the line
connections, parameters, and sensors adjacent to the targeted
buses.

III. ROBUST ESTIMATION VIA GRID DECOMPOSITION
In this section, we outline a robust estimation technique
from our previous work [15] and its modified version based
on topology decomposition and robust estimation methods
designed to resist FDI attacks discussed above.

A. ROBUST ESTIMATORS
Robust estimators are designed to reduce the influence of bad
data on state estimation. One key feature of such estimators
is to reduce the weights given to bad data. This is in contrast
to theWLS, where large residuals have more influence on the
objective function. Here, we summarize the LTS estimator
that we mainly use in our simulation studies later. Other
robust estimators that we employ there are the least absolute
value (LAV) method and Huber M-based SE.

The LTSminimizes a trimmed percentage of the regression
squared residuals [17]. We use the notation r to express the
sorted version of the residual r in its entries from the smallest
to the largest in magnitude as r21 ≤ r

2
2 ≤ · · · ≤ r

2
m. Then, the

LTS finds the estimate x that minimizes the cost function

J (x) =
mT∑
i=1

r2i , (1)

where mT = b(1− α)mc+ 1 is the number of measurements
used after trimming, α corresponds to the trimming fraction,
and b·c is the floor function.

For any of the robust estimators mentioned above, its
capability when FDI attacks are present in the measurements
and topology data can be represented by their (finite-sample)
breakdown points [17]. This is the maximum fraction of out-
liers in the measurements that the estimator can resist while
offering reliable estimates before breaking down. The LTS is
known to be one of the most robust methods and, specifically,
its maximum breakdown point can be expressed as εmax,m =
1
mb

s∗
2 c, where s

∗ is the minimum number of measurements
whose removal make at least one measurement critical for
performing state estimation [22]. The challenging part for
its calculation is that when the system is large, the compu-
tation of s∗ can be expensive as it involves combinatorial
aspects.
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B. DECOMPOSITION INTO ISLANDS
In the power system, we might encounter buses with a
low number of measurements and connections, which would
impose a constraint on the breakdown point for the entire
system. To keep the influence of such buses limited, it is
effective to decompose the grid into several islands [8], [15],
[20], [22]. Islands can be categorized into two types, radial
and cyclic. In particular, finding small cycles is important for
raising the cyber-security level of state estimation [15].

In this paper, we follow the approach of [15] and decom-
pose the system into islands with three properties: (i) Each
bus belongs to at least one island. (ii) The number of buses
in each island is small. (iii) The total number of islands is
small. As mentioned earlier, these properties help in general
the robust estimation method based on LTS employed in
this paper. We must note however that the level of benefits
resulting from these properties may depend on the specific
structures and the parts in the system where the individual
islands are. For the detection of cycles, we compare two
methods, namely, one based on the minimum spanning tree
(MST) [26] and the other based on the planer face traver-
sal (PFT) algorithm employed in [15]. We summarize each
method below.

The MST method is simple. It finds a spanning tree in
the graph representing the grid and then by adding an edge
not part of the spanning tree, we can find a cycle. This
however may not result in islands of small sizes nor those
with high breakdown points. In contrast, in the PFT-based
method, if a planar graph (i.e., a graph written on a plane
without any intersections of edges) is given, it will find all
the faces (i.e., the subgraphs of minimal cycles) and there
will be no overlap among the subgraphs. This is based on
the PFT algorithm [24]. In [15], details on how to efficiently
deal with intersections in graphs to extend the approach are
provided.

To enhance robustness in static SE based on islanding and
robust techniques from [8] and [15] as discussed above, we
provide a modified version of the procedure. Specifically,
we follow the three-step algorithm outlined as follows:

(i) As the first step, robust estimation is performed at
each island. After its convergence, normalized residuals are
calculated for the estimates. Then, the residuals larger than
a specified threshold will be chosen as outliers and leverage
points in each island.

(ii) In the second step, the corresponding outlier entries are
removed from the measurement vector z and the regressor
matrixH of the entire system. The SE for the entire system is
then performed based on the WLS. Afterwards, the outliers
and leverage points detected in the first step are put back,
andwe calculate the normalized residuals for the second time.
The normalized residuals larger than a threshold are chosen
as the final outliers and leverage points.

(iii) The third step is for ensuring the accuracy level
of estimation and reducing unobservability. After removing
detected outliers from the second step, we make the state
estimate for the last time.

The difference from the original approach in [8] and [15]
lies in the second round of outlier detection and state estimate
for the entire system in the second and third steps. This
takes account of the chances that the residual-based outlier
detections at the island level can be erroneous. To keep the
number of false detections low, the choices of thresholds
in these steps are important especially when the attacks are
adversarial.

IV. TARGETED ATTACKS ON
DECOMPOSITION-BASED SE
In this section, we demonstrate the effectiveness of the robust
estimation method discussed above by analyzing it against a
class of coordinated attacks targeting certain buses and their
adjacent buses in the system. Here, we describe the system
setting and the attack strategies using the IEEE 14-bus system
shown in Fig. 1. Later in the paper, we extend our analysis to
a larger-scale case with the IEEE 118-bus system.

FIGURE 1. IEEE 14-bus system and the placement of
measurements and attacks.

A. IEEE 14-BUS SYSTEM: DECOMPOSITION
AND ITS RESILIENCY
In the power system, each bus is assumed to have measure-
ments for voltage magnitude and both active and reactive
power injections; each line has measurements for one active
and one reactive power flows at its ends. For the case of the
IEEE 14-bus system, there are 27 states (excluding the phase
angle of the slack bus) and 82 measurements in total.

First, we decompose the system based on the PFT-based
and the MST-based methods. Table 1 gives the summary of
the numbers of islands, the average number of buses in each
island, the numbers of buses in the largest islands, and the
computation times. We notice that the PFT-based method
is capable to find islands of smaller sizes. The details of
the decomposition are presented in Table 2.1 The islands
are denoted as Ii, i = 1, . . . , 10. Those common in both
PFT- and MST-based methods are I1 = {1, 2, 5}, I2 =
{2, 3, 4}, I3 = {4, 9, 7}, and I4 = {6, 12, 13}. The addi-
tional islands for the PFT-based method are I5 = {2, 4, 5},

1Note that there is one radial island, {7, 8}. This island is vulnerable to
attacks due to the small number of measurements. Hence, it is assumed to be
equipped with secure measurements and is not subject to attacks.
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TABLE 1. Decomposition of the IEEE 14- and 118-bus system by two methods.

TABLE 2. Islands obtained from the two decomposition methods and active power measurements linked to buses 2 and 6 in each
island.

I6 = {4, 5, 6, 11, 10, 9}, and I7 = {4, 5, 6, 9, 13, 14} while
those for the MST-based method are I8 = {1, 2, 4, 5}, I9 =
{1, 2, 4, 5, 6, 9, 10, 11}, and I10 = {1, 2, 4, 5, 6, 9, 13, 14}.
For these islands, their breakdown points for the LTS were
calculated as shown in Table 2. Here, we observe that PFT-
based islands take larger values than the MST-based ones.
More specifically, it was found that for this measurement
configuration, each island can tolerate up to 2 attacks regard-
less of its size. This means that smaller islands have larger
breakdown points, indicating the advantages of the PFT-
based islands. In calculating the breakdown points, we took
a decoupled approach to reduce the burden of computation.
In particular, we considered only active power measurements
for the phase angle estimation. It is known that reactive power

and voltage magnitude measurements are only weakly linked
to phase angles [1].

B. TWO CLASSES OF FDI ATTACKS AGAINST THE LTS
In our simulations using the LTS, in every island, we set
the number of measurements discarded to be 2 in estimation
against attacks. Under this setting, the LTSmay produce false
state estimations depending on the number of attacks and
there are two scenarios:

(i) In an island, when the number of attacks is greater than
the number of trimmed measurements (i.e., 2 in all islands),
the local state estimate in that island may become inaccurate;
such attacks are called masked attacks.
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TABLE 3. Attacked measurements in the IEEE 14-bus system simulations.

(ii) In an island, when the number of coordinated attacks
is greater than or equal to the total number of measurements
minus the number of trimmed measurements (given as mT
in (1)), the LTS might detect the remaining clean data as
outlying. Such attacks can result in estimates at values cho-
sen by the attacker, and hence can be much more harm-
ful to the system. Such attacks are referred to as targeted
attacks [8].
Table 2 indicates the number of FDIs necessary to create

such attacks for each island.

C. RESILIENCE ANALYSIS OF THE TWO
DECOMPOSITION METHODS
In the scenario considered here, the attacker aims to modify
the phases of the target buses 2 and 6. Here, the attacks will
be limited to FDIs against the active power injections at these
buses and their neighboring buses. To this end, the attacker
attempts to gain access to the active power measurements
linked to these buses and then to inject false data there.
In our experiment, we demonstrate the effects of attacks by
gradually increasing the number of attack points, denoted by
Ns, from 1 to 8. In particular, the order of the attacked buses
(in their active power injections) is shown in Table 3. Note
that when we say Ns attacks are made, measurements shown
under 1 to Ns in the second row of this table will be under
falsification. The attacker falsifies the measurements as well
as the rows of the Jacobian matrix related to these attacked
buses. By increasing the number of attacks, islands failing
to generate accurate estimation will increase even by using
the LTS.

At this point, we would like to discuss that when FDI
attacks are launched on buses 2 and 6 and their neighbors,
the islands from the PFT-based method have advantages over
those from the MST-based method. To this end, we make
a more careful inspection of the islands obtained from both
methods. By the topology of the system shown in Fig. 1,
we see that the two target buses have multiple neighboring
buses. The neighbors of bus 2 are buses 1, 3, 4, and 5 while
those of bus 6 are buses 5, 11, 12, and 13.

First, we notice that moreMST-based islands contain bus 2
than the PFT-based ones, which may already indicate that
attacking bus 2 can have more impact on MST-based state
estimation. In fact, as shown in Table 2, among the seven PFT-
based islands, only three of them contain bus 2. In contrast,
among the seven MST-based islands, five of them have bus 2.
On the other hand, the number of islands containing bus 6 are
six for both decomposition cases; the attack impact for this
case needs further analysis.

Second, there is a certain inclusion relation among the
islands from the two methods. For example, the PFT-based
island I5 = {2, 4, 5} is fully contained in the MST-
based island I8 = {1, 2, 4, 5} as I5 ⊂ I8. Similarly, it holds
I6 ⊂ I9 and I7 ⊂ I10. These relations indicate that in general,
the impact of attacks can be greater on theMST-based islands
than that on the PFT-based islands as they form a superset.

Third, among the PFT-based islands I5, I6, and I7, the
common buses can be found to be I5 ∩ I6 ∩ I7 = {4, 5}
whereas among the MST-based islands I8, I9, and I10, the
common buses are I8 ∩ I9 ∩ I10 = {1, 2, 4, 5}. This indicates
that targeting not only bus 2 but also bus 1 can be problematic
in the local SE at MST-based islands. Having overlaps in
the islands can create vulnerabilities because when buses
contained in many islands are attacked, all of those islands
can be affected in the SE performance.

Finally, among the PFT-based islands, bus 6 is contained in
two islands, namely, I6 and I7. However, these islands do not
contain bus 2. Hence, for PFT-based SE, the FDI attacks on
the two target buses may have more independent effects. This
is clearly different for MST-based SE, since the two islands
I9 and I10 contain both of the target buses 2 and 6; hence,
attacking these buses may have more combined effects.

To make a more detailed analysis, from the attack pattern
shown in Table 3, we can generate the lower part of Table 2,
where the relations between active power measurements and
their connections to islands are shown with entries 1 (linked)
and 0 (not linked). Now, let’s consider the case when the
attacker attacks four measurements with N4 and manipu-
lates P1, P2, P4, and P6. From the table, we confirm that
at least three of these measurements are linked to all three
islands given by the MST-based method, i.e., I8, I9, and I10.
Consequently, the LTS may not be capable to make precise
estimates of states or to correctly find the outliers because the
number of trimmed measurements is set to 2. In Table 3, the
third and fourth rows show the indices of the islands for which
the numbers of attacks Ns exceed their breakdown points.
On the other hand, in all remaining islands, at most two

measurements are linked. Islands I1, I2, and I5 have three
measurements linked to bus 2 which are not attacked and thus
the chance of producing correct results is higher. We note
that in our robust scheme, each state is estimated in multiple
islands; even if some islands fail to make accurate estimation
of some states, theymay be recovered by other islands. This is
the reason for adding the third step in our robust SE algorithm
discussed in Section III-B.

In conclusion, from the analysis and discussion so far, it is
evident that the PFT-based islands should be more resilient
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compared to the MST-based ones in general but especially
under attacks targeting certain buses. We will confirm this
aspect through simulations in the next section.

D. DISCUSSION ON DETECTION OF RANDOM
ERRORS AND ATTACKS
How to distinguish between real events and FDI attacks is
an important question in the context of ensuring a reliable
and secure grid monitoring. Real events that can be poten-
tially detected through our method include sensor failures,
sensor noises, topology errors such as wrong states of circuit
breakers and lines (open/close), and parameter errors. Sensor
failures and noises occur sporadically in a limited number of
sensors, mostly without much correlation. Such events can
be detected by our method but may be difficult to be dis-
tinguished from attacks. If attack/failure detection continues
over time at some sensors, they must be checked.

Opening lines in the system is a much more serious real
event regardless of whether they are caused by faults and
resulting protection actions, operator controls, or physical
attacks. If one line is made open, measurements near this line
will change at once. If it is a normal topology change or a
fault, then the measurement changes will be consistent in the
system, and this can be detected or known to the operator
by other means. The proposed approach may not detect such
changes by making one estimate run, partly because the
least trimmed squares estimation depends on the majority
of data. Moreover, under coordinated cyber-physical attacks
that open a line and change all the measurements linked to
this line in a consistent manner, detection would be difficult
by any method using a single time snapshot. These attacks
require extensive access and knowledge by the attacker and
are known as stealthy attacks. These stealthy attacks could
be detected, for example, by monitoring the time series in
the measurements and state estimates or by securing specific
sensors. For more on the subject of detection of random
errors and attacks, we refer to the survey paper [11] and the
references therein.

V. SIMULATION RESULTS
In the simulations, we compare the performance of state
estimation as well as detection of outliers in the measurement
data for seven different schemes. First of all, as estima-
tion algorithms, we employ the following four: The conven-
tional LNR and the robust estimators using LTS, Huber M,
and LAV. Four schemes are based on the robust algorithms
applied to the decomposed islands obtained from the PFT-
andMST-basedmethods; these are denoted LTSPFT, LTSMST,
MPFT, and LAVPST. Further, for comparison purposes, three
schemes apply the LNR, Huber M, and LAV to the entire
system in a centralized fashion, without decomposition; these
are denoted with the subscript C as LNRC, MC, and LAVC.

A. SIMULATION SETUP FOR THE IEEE 14-BUS SYSTEM
For the IEEE 14-bus system, we import the MATPOWER
data from [27]. The slack bus is taken to be bus 1, whose

voltage angle is fixed to zero. The error in each SCADA
measurement follows the normal distribution with zero mean
and standard deviation of 0.66% of the original value plus a
fixed value of 0.0017. The LTS algorithm proposed in [28] is
adapted to handle the sparsity in the AC SE. For the Huber
M-estimator, the threshold parameter was taken as 1.345. For
the detection of attacks, several thresholds are used. For the
conventional LNRC, the threshold is chosen to be 3 while
for MC and LAVC, we have chosen the threshold to be 7.
In the robust estimation schemes LTSPFT, LTSMST, MPFT,
and LAVPFT, at each island, the threshold of 5 is used in the
first step; then, in the second step, where we apply additional
post-estimation processing to the whole system, we use the
threshold of 7. These specific values for the thresholds were
chosen after some trial runs so as to minimize the false detec-
tion alarm rates in the clean case (without attacks). (In the
simulation results, the false detection alarm rates are shown
in Fig. 4 (b), where the no attack case corresponds to the
first row.)
For each attack case, we make Monte Carlo simulations

of 100 times (Mc = 100). To compare the estimation
accuracy of the different schemes, we evaluate the aver-
age estimation error for voltage angles in degrees as xe =

1
nbMc

∑Mc
k=1

∥∥x̂k − xT∥∥, where nb is the number of buses, x̂k is

the estimate from the kth Monte Carlo run, and xT is the true
state (i.e., the power flow solution). As the base case under
the described conditions, without any attacks, the LNR for
the centralized scheme results in the average error 0.1142.

B. ATTACKS ON MEASUREMENTS
In this part, we apply two types of attacks on the measure-
ments and compare the seven estimation schemes.

(a) First, we generate random attacks according to Table 3,
where each attacked measurement is falsified by adding a
uniformly random number between 20 to 60 percent of the
original measurement value. Specifically, in the case when
Ns points are attacked, the attack values are set as δzi = bizi
with bi ∼ U(0.2, 0.6) for i = i1, . . . , iNs , where ij is the
index of the jth attacked measurement in Table 3. Then, the
attacked measurement vector zc is generated as

zc,i =

{
zi + δzi if i = i1, . . . , iNs ,
zi otherwise.

(2)

The results of the average estimation errors in phase angles
(in degrees) are shown in Fig. 2 (a) in heatmap format.
We observe that all schemes are capable to achieve good
estimation at least up to seven attacks. It is notable that the
centralized schemes perform quite well.

(b) As a more adversarial case, we consider measurement
attacks in a more coordinated fashion. Specifically, the attack
vector is set as δz = Hc, where c is a sparse vector with
ci = 0.12 rad for the entries corresponding to the phases of
the targeted buses 2 and 6 and zero otherwise. Then, in the
case when Ns points are attacked, the falsified measurements
are generated by (2). The results of the average estimation
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FIGURE 2. Average estimation errors in degrees under (a) random attacks on measurements, (b) coordinated attacks on
measurements, and (c) attacks on the Jacobian matrix.

FIGURE 3. Estimated phase angles of 14 buses by LTS-PFT (top) and LTS-MST (bottom) under attacks on the Jacobian
matrix for Ns = 4,5,6,8.

errors are shown in Fig. 2 (b). In this case, the two LTS-based
schemes demonstrate to be the most robust, tolerating up to
seven attacks. Other methods quickly become unreliable. The
Huber M and LAV for both centralized and decomposition-
based schemes can handle only up to two attacks while
the conventional centralized LNR manages up to three
attacks.

C. ATTACKS ON THE JACOBIAN MATRIX
Next, we examine the effects of attacks on the Jacobian
matrix, resulting in leverage points. Here, we also follow the
attack strategy in Table 3 and gradually increase the number
Ns. To this end, the attack values on H are generated by first
setting the matrix δH ∈ Rm×n as

[δH ]i,j =

 (η − 1)[H ]i,j
if j corresponds to phase
angle of bus 2 or 6,

0 otherwise,

for i = 1, . . . ,m with η = −3. Then, the attacked Jacobian
matrix Hc is set as

[Hc]i,j =

{
[H ]i,j + [δH ]i,j if i = i1, . . . , iNs ,
[H ]i,j otherwise,

for j = 1, . . . , n. Under this attack, the estimated phases
of the targeted buses 2 and 6 will become one third of the
true estimate values. In the current setting, the true phase of
bus 2 is −6.48 deg, and hence, after the modification by the
intruder, it becomes −6.48/η = 2.16 deg.
Fig. 2 (c) shows the average estimation errors for the seven

estimation schemes. Under this attack scenario, we clearly
see the advantage of LTS based on the PFT decomposition
method. In particular, the difference from the LTS-MST
method becomes more evident as we increase the number of
attacks to more than four points. Fig. 3 shows the phase angle
estimations of all buses for LTS-PFT and LTS-MST in detail
in box plots obtained from the Monte Carlo simulations. The
green asterisks in the plots are the (true) power flow values.
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FIGURE 4. (a) The estimated probability of detection, (b) the estimated probability of false detection, and (c) the true probability
of detection of leverage points.

FIGURE 5. Average estimation errors in degrees with PMUs at (a) bus 2, (b) buses 2 and 9, and (c) buses 2, 6, and 9 under
coordinated attacks on the Jacobian matrix.

When the number of attacks isNs = 4, the difference between
the two methods can be found in erroneous estimations in
the MST-based results, indicated by the red pluses; this dif-
ference is not visible from the average estimation error data
in Fig. 2 (c). Here the attack points are P1, P2, P4, and P6,
and these make the estimation of the large-sized islands I8,
I9, and I10 for the MST-based method vulnerable as it goes
beyond the breakdown points in these islands (see Table 2).
As a consequence, the estimation in these islands fails to
properly detect the attack points. In contrast, under the PFT-
based method, all islands remain functional in estimation.
Moreover, when we increase the attacks to five points, the
MST-based method totally breaks down as shown in both
Fig. 2 (c) and Fig. 3. Finally, by increasing the attacks up
to eight points for the PFT-based method, the phase angle at
bus 2 moves to the targeted value of 2.16 deg (shown with a
magenta circle in Fig. 3 for LTSPFT withNs = 8). This occurs
even though for some islands, the number of attacks may not
be enough for realizing targeted attacks (as shown in Table 2).
This is because the Jacobian matrix is sparse.

As demonstrated above, the LTS based on the PFT method
well outperforms other estimation schemes, especially in
comparison to the conventional LNRC, which is popular in
practice. We would like to highlight now that even when
the estimation accuracy starts to degrade after the number
of attacks goes beyond 4 or so, our approach can provide
good performance in terms of detection of the attacked mea-
surements. To show this, we introduce three performance
measures as follows: (a) The estimated probability of leverage

point detection given byPl = 1
Mc

∑Mc
k=1

nlT ,k
nlT ,k+nF,k

, where nlT ,k

is the number of detected leverage points truly present in the
attack for each run k and nF,k is the number of falsely detected
leverage points. (b) The estimated probability of false detec-
tion given by Pf = 1

Mc

∑Mc
k=1

nF,k
nlT ,k+nF,k

. (c) The true proba-

bility of leverage point detection dl = 1
Mc

∑Mc
k=1

nlT ,k
nl

, where
nl is the number of the leverage points introduced.

The results for these three measures (a)–(c) are shown
in Fig. 4. In general, we observe that the LTS-PFT out-
performs all other schemes in all three detection measures.
In particular, the difference from the LTS-MST method
becomes evident after Ns becomes larger than 5. Moreover,
the measures for LTS-PFT indicate its high reliability in
attack detection up to Ns = 7. Other schemes may be
considered reliable in detecting only 1 leverage point except
for MC, which exhibits good performance when Ns = 2
also. In the robust statistics literature, it is known that
the Huber M, LAV, and LNR are vulnerable to leverage
points [17], [29], [30].

D. HYBRID ESTIMATION UNDER ATTACKS ON
THE JACOBIAN
In this last part, wewould like to see the effectiveness of intro-
ducing more measurements to the system and in particular
use PMUs under attacks on the Jacobian as in the previous
subsection. Following [31], we place PMUs at buses 2, 6,
and 9 for phasor measurements. We use the errors from
MATPOWER with the normal distribution of zero mean and
standard deviation of 0.2 deg [27]. Here, PMUs are consid-
ered to be secure and will not be affected by FDI attacks.
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TABLE 4. The numbers of islands containing different numbers of buses for the IEEE 118-bus system by the two decomposition
methods.

FIGURE 6. IEEE 118-bus system decomposed by (a) PFT-based and (b) MST-based methods and attacked buses.

FIGURE 7. Estimated phase angles of 118 buses by LTS-PFT (left) and LTS-MST (right) under attacks on the Jacobian matrix
for Ns = 10.

It turns out that by increasing the number of PMUs,
performance enhancement can be observed especially for
the decomposition-based estimations. The average estima-
tion errors in voltage angles (in degrees) are summarized
in Fig. 5 for three cases: (a) PMU at bus 2, (b) PMUs at
buses 2 and 9, and (c) PMUs at buses 2, 6, and 9. With-
out any FDI attacks, the average errors are 0.108 for (a),
0.081 for (b), and 0.064 for (c). In comparison with the results
in Fig. 2 (c) without any PMU, we see that adding PMUs has
immediate effects for all schemes except for the conventional
LNR and LAV under centralized computation. Here, again,
the LTS-PFT method performs best: While without PMU,
it tolerated 4 attacks, adding one PMU does show a clear
difference in the estimation accuracy. Moreover, with two
PMUs, it increases the number of tolerable attack points to 7.
It takes three PMUs for the performance of LTS-MST to
become similar to that of LTS-PFT. We also computed the
detection probabilities for the case with PMUs. Thoughwe do
not show the results, performance enhancement was evident.

FIGURE 8. Average estimation errors under attacks on the
Jacobian matrix for the IEEE 118-bus system.

E. IEEE 118-BUS SYSTEM AND ATTACKS ON ITS
JACOBIAN MATRIX
We now extend our study to the IEEE 118-bus system.
Compared to the small-scale 14-bus case, the two decom-
position methods result in quite different sets of islands.
The numbers of islands with different numbers of buses for
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TABLE 5. Attacked measurements in the IEEE 118-bus system simulations.

FIGURE 9. (a) The estimated probability of detection, (b) the estimated probability of false detection, and (c) the true probability
of detection of leverage points for the IEEE 118-bus system.

PFT- and MST-based methods are shown in Table 4 for the
IEEE 118-bus system. For example, for islands containing
5 buses, the PFT-based method resulted in a decomposition
with 10 such islands while the MST-based method generated
7 such islands. We see that in general, PFT-based islands
are smaller in their sizes, which should help their robustness
according to our discussion so far. In particular, the maximum
number of buses in an island for PFT is 13 while that for
MST is 20. Also, recall that the average numbers are shown
in Table 1. It is 4.41 buses per island for PST and 6.49 for
MST. In Figs. 6 (a) and 6 (b), the islands obtained by the
PFT- and MST-based methods are, respectively, shown by
different colors. The MST-based decomposition has a partic-
ularly large island with 20 buses indicated in pink. The attack
scenario studied here centers around this island. Note that the
measurement configuration is as explained in Section IV-A,
and the total number of measurements is 726.

To this end, four target buses are selected to be buses 5,
19, 46, and 80. In Fig. 6 (a) and (b), these buses are indicated
by the red dots. They are far from each other and are clearly
contained in different islands. However, notice in Fig. 6
(b) that these buses are in fact all part of the largest island
(in pink color). Attacks will be generated on these buses first
and then on neighboring buses indicated by the yellow dots
in Figs. 6 (a) and 6 (b). We demonstrate the effects of attacks
by increasing the number Ns of attack points from 4 to 11 and
following the order shown in Table 5.
The slack bus is taken to be bus 69, whose voltage angle

is fixed to zero. For the detection of attacks, the thresholds
are set to 10 for all steps and methods. Similarly to the IEEE
14-bus system case, these values were chosen after some trial
runs so that in the clean case (without attacks), the false
detection alarm rates are minimized. For each attack case,
we make Monte Carlo simulations of 40 times (Mc = 40).
Without any attacks, the LNR for the centralized scheme
results in the average error 0.0241.

Fig. 7 shows the phase angle estimations (in degrees)
of all buses for LTS-PFT (left) and LTS-MST (right) in
box plots when Ns = 10 obtained from the Monte Carlo
simulations. Obviously, the MST-based estimations vary

more in their values and the error propagates much faster in
the system (especially in the largest island). Fig. 8 shows the
average estimation errors for the seven estimation schemes.
We clearly see the advantage of the LTS-PFT method, espe-
cially over the LTS-MST method for Ns = 9, 10.
The results for estimated probabilities are shown in Fig. 9.

In general, we have the same pattern as that for the 14-bus
system. We observe that the LTS-PFT outperforms all other
schemes in all three detection measures. In particular, the
difference from the LTS-MST method becomes evident after
Ns = 6. Moreover, the measures for LTS-PFT indicate its
high reliability up to Ns = 10. Other schemes may be
considered unreliable after Ns = 3. Finally, we examined
the average times of state estimation. For the LTS-PFT and
LTS-MSTmethods, the running times for the SE at the largest
islands (step 1 of Section III-B, based on LTS executed in
parallel) became 1.12 and 7.84 sec, respectively, whereas
those for the SE of the whole system after removing outliers
(steps 2 and 3, based on the common WLS) were 0.24 and
0.17 sec, respectively. The LTS-PFT method is faster since
the islands are overall smaller than those of the LTS-MST.

VI. CONCLUSION
In this paper, we have considered robust techniques for static
SE of power systems in the presence of FDI cyber-attacks
on the measurement vectors and the Jacobian matrix. Our
approach is to first apply the LTS at islands obtained from
PFT-based decomposition and then execute state estimation
for the entire system to verify the islands’ detection results.
We analyzed the PFT-based and MST-based decomposition
methods and demonstrated the superior performance of the
proposed method with the PFT-based method through exten-
sive simulations on the IEEE 14- and 118-bus systems. Under
coordinated attacks in the Jacobian matrix, the difference
between the two decomposition methods has been shown
in both state estimation and attack detection accuracies. For
comparison, we have implemented other robust SE schemes
and have further introduced PMUs providingmore secure and
accurate measurements.
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