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ABSTRACT K-means has been widely used in solving a wide range of clustering problems arising in
engineering and industrial applications, but it still suffers from several issues. To address these issues, a
hierarchical K-means method enhanced by Trust-Tech (H-KTT) is presented in this paper. The proposed
H-KTT method is composed of two stages. The first stage of H-KTT is a hierarchical K-means (H-K-means)
method for enhancing K-means with better initial points. Second, the H-K-means method is further enhanced
to find multiple high-quality clustering results by the Trust-Tech methodology. The H-KTT method was
evaluated on several test datasets including the clustering of Automatic Meter Reading (AMR), popular in
power grids, with promising results. In particular, the evaluation results indicate that the proposed H-KTT
method can significantly improve both the quality and stability of the clustering results by the K-means
method. Furthermore, while the K-means gives stochastic clustering results, the proposed H-KTT method

usually gives deterministic clustering results.

INDEX TERMS K-means, local optimal solution, hierarchical approach, Trust-Tech, dynamical system,

electric grids, smart meters.

. INTRODUCTION

LECTRIC demand clustering can extract the power
E consumption patterns as well as the characteristics of
electric users and can be very useful for consumer classifica-
tion. Moreover, electric load clustering helps utilities better
implement their energy policy and infrastructure planning
strategies. Important applications of electric load clustering
include the tariff design, anomaly detection, load forecasting,
data security, and big data [1].

Clustering techniques such as the K-means algorithm and
its variants have been applied to a variety of problems in
power girds such as the following: (1) anomaly detection of
online monitoring data of power equipment based on asso-
ciation rules and the clustering algorithm [6], [7], (2) devel-
opment of day-ahead and hour-ahead bus load forecasting
models [2], (1) forecasting hourly global solar radiation [3],
(2) multi-resolution load profile clustering for smart metering
data [4], (3) clustering load profiles for demand response
applications [5], [8], (4) clustering load patterns with

different consumption behaviors for market strategies
design [9], and (7) clustering load patterns with different
consumption behaviors customer classification [10].

Clustering has become a practical technology in many
applications. The prosperity of data mining technology fur-
ther promotes the applications of clustering algorithms to a
greater extent. Indeed, the K-means type of clustering algo-
rithms are popular in real-world applications due to their abil-
ity to handle both numeric and categorical variables and their
speed. For instance, the K-means algorithm has been applied
to the clustering of mRNA databases, the automatic segmen-
tation of brain tumors, the detection of forest fire smoke,
single channel separation from mixed signals, digital pulse
compression, subsequence clustering, and the management
of large sizes of 3D data collections used for segmentation
under image rotation, to name a few (see, for example, [11],
(12], [13], [14], [15], [16], [17], [18], [19]).

While many clustering problems are usually nonlinear and
non-convex, the K-means algorithm almost always converges
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to alocal ‘optimal’ solution. Moreover, the random initializa-
tion embedded in the K-means algorithm greatly affects its
ability to deliver stable clustering results. It is well recognized
that the K-means algorithm suffers from the following issues:
(1) it is very sensitive to the initial points, (ii) it gives a local
optimal solution, (iii) it is stochastic in obtaining a clustering
solution, and (iv) its clustering results have poor stability.

In the past, a significant amount of research was directed
toward improving the K-means type of clustering algorithms.
Several meta-heuristics-based methods, such as the Genetic
Algorithm, Particle Swarm Optimization (PSO), have been
applied with the aim of providing high-quality initial points
for the K-means type of algorithms. Due to the randomness
of K-means algorithm and that of the Meta-heuristic-based
method, the quality of the final clustering results remains
unsatisfactory, and the issue of poor stability still remains.
On the other hand, it is well recognized that the classical
K-means algorithm is sensitive to the initial centroids, making
the probability of finding appropriate initial centroids lead-
ing to high-quality clustering results low for large datasets.
Hence, enhancing the performance of classical K-means for
clustering large datasets is necessary (see, for example, [13],
[14], [15], [16], [17], [18], [19], [20], [21]).

Another approach to enhance the K-means perfor-
mance explores the hierarchical structure of AMI. In [29],
a hierarchical K-means (H-K-means) clustering method was
developed. This H-K-means method is different from the pre-
viously proposed ‘“‘hierarchical K-means” methods. In previ-
ous studies, the ‘“hierarchical” is based on the perspective
of methodology, which usually refers to the aforementioned
hierarchical clustering method. For example, the hierarchical
clustering method is combined with K-means in different
ways in [20] and [21]. The “hierarchical” is explored from
the perspective of data in [29], which means the establishment
of a hierarchical data structure before the process of K-means
clustering. On this basis, the proposed H-K-means method
was developed. In addition, extensive numerical studies on
a large-scale AMI dataset have shown that the proposed
H-K-means method possesses the following advantages:
(1) it can significantly improve the quality of the cluster-
ing results given by classical K-means, (2) it can preserve
the inherent speed advantage of classical K-means, (1) it is
especially applicable to big data problems, and (2) it can
effectively cluster large-scale load demand curves.

In this paper, the H-K-means method is extended to
incorporate the capability of Trust-Tech methodology in
computing a set of high-quality solutions; in particular,
an integrated methodology, termed the H-KTT (hierarchical
K-means enhanced by Trust-Tech), is developed. The Trust-
Tech (TRansformation Under STability-reTaining Equilibria
CHaracterization) methodology [22], [23], [24], [25], [26]
is applied to find multiple high-quality clustering results.
The resulting method, termed the H-KTT method, improves
not only the quality of the clustering (by effectively provid-
ing multiple local optimal solutions) but also the stability
of the clustering results via a systematic and deterministic
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procedure. The Trust-Tech method has been shown to have
the capability of enhancing other optimization methods to
achieve better optimization results such as the EM method
in [26], the PSO method in [27], and the branch and bound

method in [28].

In summary, the proposed H-KTT methodology is devel-

oped to achieve the following desired capability:

(i) It obtains multiple high-quality local optimal solutions
(as compared with variants of K-means) or even the
global optimal solution. This capability is enabled by
the Trust-Tech methodology;

(i1) It possesses stability in obtaining high-quality clus-
tering results that are enabled by both the Trust-Tech
method and by the hierarchical method;

(iii) While the K-means gives stochastic clustering results,
the proposed H-KTT method usually gives determinis-
tic clustering results;

(iv) It is effective and efficient in solving large-scale clus-
tering problems that are enabled by the K-means algo-
rithm, the Trust-Tech method, and by the hierarchical
method.

To demonstrate that the proposed H-KTT can deliver high-
degree stable clustering results, we employ the disagreement
value as the measure to evaluate its stability in obtaining clus-
tering results. In the numerical experimental results section,
we will highlight the improvement made by the H-KTT
method, as compared with several other methods that were
proposed to enhance the K-means algorithm. It will be further
shown in the numerical comparison studies that the proposed
H-KTT method indeed obtains high-quality clustering results
in a more stable manner. The experimental dataset we used
to evaluate the proposed H-KTT method comes from the
University of California Irvine datasets: the User Knowl-
edge Modeling dataset, the Car Evaluation dataset, the Syn-
thetic Control Chart time series dataset, and the Hill-Valley
dataset [30]. Applications of the proposed H-KTT to power
grids include (1) anomaly detection of online monitoring data
of power equipment, multi-resolution load profile clustering,
clustering load profiles for demand response applications,
and clustering load patterns for market strategies design.

The rest of the paper is organized as follows. Section II

gives the overview of the proposed method. Section III elabo-

rates on the Trust-Tech methodology. Section IV presents the
proposed Hierarchical K-Means enhanced by the Trust-Tech

(H-KTT) method. Section V demonstrates the mechanism of

locating multiple clustering solutions by Trust-Tech method.

In Section VI, the data sets, server configurations, models,

and evaluation indicators required for the experiment are

introduced and the experimental results are analyzed. Finally,

Section VII summarizes the paper and points out the future

research directions and existing problems.

Il. OVERVIEW OF THE PROPOSED METHOD

The clustering result of the K-means algorithm is not deter-
ministic due to its random selection of initial centroids.
Moreover, the K-means algorithm usually gets trapped near
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a local optimal solution. These two problems become more
pronounced when dealing with large datasets.

We propose to integrate the following two effective meth-
ods to enhance the K-means algorithm:

(1) Apply a hierarchical scheme to provide higher-quality
initial points for the K-means algorithm to local optimal
solutions; the resulting scheme is termed the hierarchical
K-means algorithm (H-K algorithm) [31];

(i) Apply the Trust-Tech method to each local optimal
solution obtained to compute a set of high-quality optimal
solutions.

For a given dataset, we can treat those points that are
close to each other as a representative point with their cen-
troid; then a reduced dataset (i.e., level-1 dataset) consist-
ing of all the representative points can be obtained. The
clustering result of this level-1 dataset by the K-means
method can be expressed by the centroids of all the clus-
ters. It is more effective to use these centroids as the initial
state to the K-means algorithm for clustering of the origi-
nal dataset instead of the ones obtained by random selec-
tion. On the basis of the above procedure, a given dataset
can be clustered into several hierarchical levels, as shown
in Fig. 1.
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FIGURE 1. A hierarchical scheme generating multi-level reduced
datasets.

Each hierarchical level consists of all the representative
points of its next level except for the last level, which consists
of all the data points from the original dataset. Then, at each
hierarchical level, we can implement the K-means algorithm
using the clustering result of its previous level as the initial
state. Let the number of levels L be defined by the user
or some criteria. The 1st level is the original dataset, and
each subsequent level is constituted by a smaller dataset
of its previous level. Based on this multilevel structure, the
H-K-means method can be described by the following
steps:

Step 1)

Set the original dataset as the Ist-level dataset and start
fromi= 1.

Step 2)

Establish the ith-level dataset based on the (i — 1) th-level
dataset (please see the latter part for details).

Step 3)

If i = L, go to Stage II; otherwise i = i 4+ 1 and go to
Step 2).
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Stage 11: Weighted clustering

Step 4)

If i = L, select K patterns among the ith-level dataset
randomly: otherwise, use the K -obtained centroids in Step 5)
instead.

Step 5)

Implement K-means clustering for the ith-level dataset and
use the patterns given by Step 4) as the initial centroids.
During each epoch of the K-means, calculate the centroid of
each cluster

Step 6)

If i = 1, terminate the process and output the clustering
results in Step 5) as the final results; otherwise, i = i — 1 and
go to Step 4).

This process is then iteratively applied from the top level to
the bottom one, where the original dataset has been clustered.
This is the so-called hierarchical K-means method (HK-
means method), which can achieve better clustering results
by supplying better initial points than the ones given by
a random selection for the K-means algorithm, as shown
in [29]. Moreover, dealing with the simplified datasets from
upper levels can reduce the computational burden to a certain
extent as compared with the same number of iterations in
the original dataset. Note that we use the K-means clustering
to generate the corresponding simplified dataset for each
hierarchical level.

A step-by-step description of the proposed H-KTT is pre-
sented below.

Stage 1 (Hierarchical datasets): Given a dataset and a
user-defined number of levels, build the hierarchical datasets
consisting of the Level 1 dataset, Level 2 dataset, and so on.
Set i = 1 and set an initial guess.

Stage 2 (K-means stage): Starting from each given initial
guess, apply the K-means method to the Level i dataset to
obtain a fast clustering solution. When there are multiple
initial guesses, multiple clustering solutions exist (when there
are multiple initial guesses).

Stage 3 (Trust-Tech stage): Starting from each solution
obtained at Stage 2, apply the Trust-Tech method to the
Level i dataset to find a set of local optimal solution (i.e., a set
of high-quality clustering solutions). If Level i is the original
dataset, then stop, output the clustering solutions, and select
the best one; otherwise, go to the next stage

Stage 4 (interface stage): Set i = i + 1 and set each
clustering solution obtained at Stage 3 as an initial guess (or
set the best clustering solution as the initial guess, depending
on the user’s preference) and go to Stage 2.

The proposed H-KTT method, composed of the above four
stages integrating the K-means hierarchical method and the
Trust-Tech method are able to compute a set of high-quality
clustering solutions that may contain the global optimal one.

lll. TRUST-TECH METHODOLOGY: ANALYTICAL
ASPECTS

We propose to integrate the Trust-Tech method to improve the
local optimal solutions obtained by the H-K-means method
because of its following distinguishing features:
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1) It can move from a local optimal solution obtained
by the K-means algorithm and find a set of higher-quality
local optimal solutions that may contain the global optimal
solution.

2) It can reduce the effect of the random initialization of
the K-means algorithm and find a set of high-quality local
optimal solutions rather than the random ones.

The methodology Trust-Tech is a dynamical method
designed to systematically compute multiple, local optimal
solutions in a tier-by-tier manner [26], [27], [28], [29].
It includes the steps of first finding, in a deterministic
manner, one local optimal solution, starting from an ini-
tial point, and then finding the nearby first-tier local opti-
mal solution, starting from the previously found one, then
finding the second-tier local optimal solutions until mul-
tiple or all the local optimal solutions are found. Finally,
a high-quality local optimal solution, which can be the global
optimal solution, is identified from the found local optimal
solutions [26], [27], [28], [29].

From a theoretical viewpoint, the Trust-Tech methodol-
ogy is built on the optimization theory, nonlinear dynamical
systems, stability region theory, and characterization of the
stability boundary. We explain the Trust-Tech framework in
solving the following unconstrained nonlinear programming
problem. Without loss of generality, an n-dimensional opti-
mization problem can be formulated as:

min C(x) (1)
xeR”
where C : R" — 9 is a function bounded below and
possesses only finite local optimal solutions.

Instead of solving the unconstrained optimization problem
described by (1) directly, we consider the corresponding
dynamical system:

x()=-VC(x) 2)

where x € i". Recall that for a hyperbolic equilibrium point
of (2), itis an (asymptotically) stable equilibrium point (SEP)
if all the eigenvalues of its corresponding Jacobian have
negative real parts; otherwise, it is an unstable equilibrium
point (UEP). A hyperbolic equilibrium point x of system (2)
is called as type-k equilibrium point if the Jacobian matrix
has n — k eigenvalues with a negative real part and k eigen-
values with a positive real part. A hyperbolic equilibrium
point x of system (2) is called the source if it is of type-n.
Hence, a source is an EP whose corresponding Jacobian
matrix Df (x) has all eigenvalues with a positive real part.

A useful concept for SEP is its stability region (also called
the region of attraction). The stability region of a SEP is
defined as the collection of state vectors whose corresponding
trajectories converge to the SEP [24]. It has been shown
that the Trust-Tech methodology performs the following
transformations [25]:

(1) Transformation of a local optimal solution of a nonlin-
ear optimization problem (1) into a stable equilibrium point
(SEP) of a continuous nonlinear dynamical system (2) (also
see Theorem 1 below).
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Theorem 1 ( Equilibrium Points and Local Optimum [22],
[23]): If X is a hyperbolic equilibrium point of gradient
system (2), then x is a SEP of system (2) if and only if C
(x) has an isolated minimum of the optimization problem (1).

(i1) Transformation of the search space of nonlinear opti-
mization problems (1) into the union of closed stability
regions of all the SEPs. Hence, the optimization problem (i.e.,
the problem of finding local optimal solutions) is transformed
into the problem of finding stable equilibrium points.

Hence, the stability regions of SEPs play an important
role in finding these local optimal solutions, as shown in the
following theorem.

Theorem 2 (Characterization of the Stability Boundary
[22], [23]): Suppose that all the equilibrium points of gra-
dient system (2) are hyperbolic. Let x;, i = 1,2, ... be the
equilibrium points on the stability boundary of a SEP, say
Xs. Then, the stability boundary is contained in the union of
the stable manifolds of the equilibrium points on the stability
boundary.

Theorem 1 characterizes the relationship between the opti-
mal solutions of the unconstrained optimization problem (1)
and the SEPs of its corresponding dynamical system (2).
Because of such correspondence, the problem of computing
multiple local optimal solutions of the optimization problem
(1) is then transformed into finding multiple SEPs of gradient
system (2).

Before describing a procedure to locate multiple local
optimal solutions, the following theorem shows that all the
decomposition points can serve as the bridge linking two
SEPs. Note that the decomposition point is a type-one unsta-
ble equilibrium point lying on the stability boundary with the
following property.

Theorem 3 (Existence of Another Optimal Solution [23],
[26]): Let xxl be a stable equilibrium point (SEP) of dynami-
cal system (2). If the stability boundary of the SEP exists and
x4 is a decomposition point on the stability boundary, then
there exists another SEP x2 to which the one-dimensional
unstable manifold of x; converges.

Theorem 3 reveals a relationship between SEPs and
decomposition points. The unstable manifold of a dynamic
decomposition point converges to two SEPs (i.e., two local
optimal solutions) of dynamical system (2). It asserts that
two neighboring local optimal solutions are connected by the
unstable manifold of the corresponding dynamic decomposi-
tion point.

Next, we present a Trust-Tech-based Dynamic Decompo-
sition Point method (DDP) [23] for locating another local
optimal solution from a local optimal solution of the uncon-
strained optimization problem (1) and proceed with the fol-
lowing key steps:

Step 1: (local method) A local optimal solution, say x;, can
be found by a local optimization method, such as an interior
point method, a gradient-based method, or an SPQ method.

Step 2: (DDP method for escaping from a local opti-
mal solution) Starting from an initial stable equilibrium
point x; (i.e., a local optimal solution), the TT moves along
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a (given or desired) deterministic direction to find the corre-
sponding dynamic decomposition point.

Step 3: (DDP method for another local optimal solution)
Starts from the dynamic decomposition point and moves
along the unstable manifold of the dynamic decomposition
point, which will lead to another local optimal solution.

We note that, for a given local optimal solution, its corre-
sponding first-tier local optimal solutions are defined as those
optimal solutions whose corresponding stability boundaries
have a non-empty intersection with the stability boundary of
the local optimal solution [25], [26]. Similarly, its second-tier
local optimal solutions are defined as those optimal solutions
whose corresponding stability boundaries have a non-empty
intersection with the stability boundary of first-tier local opti-
mal solutions [25], [26]. See Fig. 2 for an illustration.

FIGURE 2. Given a local optimal solution (i.e., a tier-zero local
optimal solution), the corresponding tier-1 local optimal
solutions are x;’1, xszﬂ, ng. Similarly, its tier-2 local optimal
solutions are x;’z, xsz’z, xg’z, xs4’2, xss’z, xg,z. Note that the
corresponding stability boundaries of tier-2 have a non-empty
intersection with the stability boundaries of its tier-1 local

optimal solutions.

IV. K-MEANS ENHANCED BY THE TRUST-TECH
METHOD

We are now in a position to present the proposed Hierarchi-
cal K-Means enhanced by the Trust-Tech (H-KTT) method.
The proposed H-KTT method is composed of three basic
stages: (1) hierarchical datasets contain multi-level datasets,
(2) the K-means method, which is designed for computing
a fast local solution, and (1) the Trust-Tech method, which
is designed for computing a set of high-quality multiple
local optimal solutions from which the best local optimal
solution is selected. (Alternatively, the top two best clustering
solutions are selected.) These clustering solutions are mapped
back to the next-level dataset (as designed in the hierarchical
datasets of Stage 1) to be used as the initial guess for the
K-means to cluster “this-level” dataset to obtain a good
clustering solution of “this level”” dataset. Again, the good
clustering solution obtained is then sent to Stage 3 to be
used as the initial condition for the Trust-Tech method to
compute a set of high-quality clustering solutions. Then, the
entire search procedure moves to the next level of the dataset

564

designed in Stage 1 and Stage 2 and Stage 3 are repeated (see
Fig. 3 and Fig. 4 for an illustration).

To classify a dataset with n points (with d dimensions)
into k clusters, the K-means clustering can be formulated as
a nonlinear constrained optimization problem, which can be
improved by Trust-Tech methodology as follows:

min f(x)
s.t.h(x) =0 3)

where x is the variable vector consisting of integer variables
and continuous variables, f(x) is the objective function to
be optimized, and h(x) is the equality constraints of the
optimization problem.

The clustering information of the dataset is expressed by
the integer variables in a k x n matrix.

x1 x2 DR xn
Xn+1 Xn+2 Xn+n
“4)
Xk=Dn+1  Xk—Dn+2 Xe—Dntn | gy

This kind of variable is used to indicate the centroid to
which the points will associate. The integer variable in row i,
column j, for instance, indicates that the j;; point in the dataset
belongs to the iy, centroid when it equals 1 or indicates that
the point does not belong to the centroid.

The pattern number of each cluster is expressed by the
integer variable in a 1 x k vector:

[Xkxnt1s Xhexcnd2s oo e e xkxn+k]1><k . (5)

These variables are also used to identify the total number
of points in the clusters. The integer variable in column j,
for instance, represents the total number of points in the
Jn cluster.

A. OBJECTIVE FUNCTION

1) TOTAL DISTANCE

The K-means algorithm minimizes the total distance from
each point (of each cluster) to its centroid to separate the
points with low similarity from the others. Here we take
the Euclidean distance metric as an example. In general, the
quality of the clustering results given by classical K-means
can be measured by an objective function such as, among
others, the summation of the square of the Euclidean distance
between each pattern and its centroid:

=1 i=1

2
| ©)

k
X; — wg

where K is the number of clusters, wy is the centroid of the
kth cluster, n; is the number of patterns belonging to
the kth cluster, and xf‘ is the ith pattern belonging to the
kth cluster.

To separate N patterns into K clusters, the basic procedure
of the classical K-means algorithm is presented as follows.
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H-KTT Methodology

———————— m-level data output
K-means

Clustering result

G
(one local solution)

Trust-Tech Method

2z

Select the best one, say cr}

Input

FIGURE 3. The m-level dataset is fed into the K-means method to solve for a fast local clustering solution. This solution is then used
as an initial guess for the Trust-Tech method to compute a set of multiple local optimal solutions from which the best local optimal

solution is selected and sent to the next-level dataset.

H-KTT Methodology

m

cr;
(good) initial

(m-1)-level data

________ output
:—_ Level(m-1) | ——————————> K-means L
e
T Llevel(m-2) ! — ceece oo

Clustering result

(one local solution)

Trust-Tech Method |

S

)

Select the best one, say LT

() Input

FIGURE 4. The best local optimal solution is mapped into the corresponding (m-1)-level data, and then is fed into the K-means
method to solve for a fast local clustering solution. This solution is then used as an initial guess for the Trust-Tech method to
compute a set of multiple local optimal solutions from which the best local optimal solution is selected and sent to the
next-level dataset. Alternatively, the top two best solutions can be selected (instead of the best one) and mapped to the next
level as the initial condition for the K-means method to obtain a fast clustering solution, and this process continues.

Step 1) Select K patterns from the original dataset ran-
domly as the initial centroids.

Step 2) For each pattern, calculate the distance between it
and each centroid, and assign it to the nearest cluster.

Step 3) Update each centroid, say the kth centroid, by

12'” L
k — — xi.
ng <

i=1

2) CONSTRAINT FUNCTIONS
(1) Clustering information
Since integer variables can only take the value of either

0 or 1, we express the penalty function to be fo =
nxk

Z x(1 —xp).
( 2) Number of patterns: The function for this clusteris f3 =
Z (xz-i-nxk - Z x(:—l)n+j)

( 3) Centrozd coordmate
k d

fo=) " Conskthrim—1ydts —

m=1 I=1

1

Xnxk-+m

Y Dit - Xy (D

i=1
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where D;; represents the coordinate value of the /-th coordi-
nate of the iy, vector point in the dataset.

B. CONSTRAINTS

The integer variables corresponding to the clustering infor-
mation must satisfy a set of constraints to ensure that each
point in the dataset belongs to just one centroid.

k
an(i71)+j =1,
i=1

j=12...... n 8)

V. MULTIPLE CLUSTERING SOLUTIONS BY
TRUST-TECH METHODS
The clustering result given by the hierarchical K-means
method is used as the initial condition for the Trust-Tech
method to compute tier-one local optimal solutions and
a higher-tier local optimal solution. While K-means gives
a local high-quality solution, Trust-Tech methodology can
improve the solution by finding a set of local optimal solu-
tions via the decomposition points of the found local optimal
solution, as explained in the following.

To numerically illustrate Trust-Tech methodology, we use
the two-dimensional unconstrained Six Hump Camel
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problem as an example:
1 2 4 x16 2 4
min, cge f(x) = 4x] — 2.1x7] + 5 Tan - 433 + 4x}

—5=x, =5 9

To compute a multiple local optimal solution, we construct
the following gradient dynamic system associated with opti-
mization problem (9):

X = ——— = —8x1 + 8.4x13 - 2xi5 .
8)61
Xg = ——— = —x1 + 8xp — 16x§ (10)
BXZ
1.5 - ‘ |
‘ I
‘ I
1
B y |
Xs6 " ;
"‘ X1 . “
0.5 I xc&r .
A .
' | <
! Xye s 2
=0 /r /,),,,,4,,7#/7(// l/ )
de j// ’
Ly o< x, |
Y Y
05} ' ‘
! I
| ¢ ) | Xs3
| A
‘ I
‘ I
1 |

FIGURE 5. There are multiple stable equilibrium points of
gradient system (10) and each one corresponds to a local
optimal solution of optimization problem (9). The stability
region and stability boundary of each stable equilibrium point
are highlighted and they are explored to find multiple stable
equilibrium points (i.e., multiple local optimal solutions).

The dashed black lines in Fig. 5 are the stability bound-
aries of dynamic system (10). xq1, ...,47 Xd1, ..., Xq7 are
the UEPs on the boundary and the lines marked with arrows
represent the stable manifolds of these UEPs lying on the
stability boundary. The stability boundary of (10) is indeed
the union of the stable manifolds of the UEPs lying on the
stability boundary.

According to Theorem 3, one can escape from a LOS
via the type-one dynamic decomposition point lying on its
quasi-stability boundary and move to a new LOS via either
the unstable manifold of the dynamic decomposition point
(DDP) or the unstable eigenvector and another local solver.
This motivates the development of a decomposition point-
based Trust-Tech method [22], [23]. Note that a type-one EP
on the quasi-stability boundary dA (x;) is termed a decom-
position point (with respect to x5). The decomposition point
serves as a bridge linking two SEPs, i.e., one can escape
the current stability region via the direction from the SEP to
the DDP and enter another stability region to compute the
corresponding SEP (i.e., another local minimum) [22], [23],
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[24], [25], [26], [27], [28]. However, the Trust-Tech decom-
position point method may encounter numerical difficulties
in computing exit points.

To resolve these difficulties, we next present a Trust-Tech
source-point method [31]. Theorem 4 below establishes the
existence of source points on the quasi-stability boundary and
the relationship between a source point and the quasi-stability
neighboring regions.

Theorem 4 (Existence of Source Points [31]): Assume the
gradient dynamical system (2) with a SEP x; whose stability
boundary is non-empty. If the stability region 9A, (x;) is
bounded, then at least one source must be on the stability
boundary 94, (x;).

15

0.5

X2
o

-0.5 -

FIGURE 6. There are two source points (i.e., X1, X,2) that lie on
the stability boundary of SEP xg1 and other source points that
lie in infinity.

To illustrate Theorem 4, we examine example (9) again.
We note from Fig. 6 that there are two sources x,; and x,
lying on its stability boundary. Other source points lie in
infinity.

Theorem 5 below shows that the unstable manifold of
the sources converges to multiple stable equilibrium points
(i.e., multiple local optimal solutions).

Theorem 5 (Unstable Manifold of the Source Point [31]):
Let the gradient dynamic system (2) contain a SEP x;
whose quasi-stability boundary is non-empty. Let S; be
a source point lying on the quasi-stability boundary
0A, (x5). Then, the unstable manifold of the source inter-
sects the quasi-stability region of every SEP whose quasi-
stability boundary intersects the quasi-stability boundary
of x;.

To illustrate Theorem 6, we examine example (9) again
and note from Fig. 7 that the blue curves are the unsta-
ble manifolds of the source points x,; and the purple
curves are the unstable manifolds of the source points x,;.
The unstable manifolds of x,; intersect the quasi-stability
regions of x4, Xs5, Xs6. Moreover, their quasi-stability bound-
aries indeed intersect the quasi-stability boundaries of x;
at x,1.
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FIGURE 7. The unstable manifolds of x4 intersect the quasi-
stability regions of xg4, Xs5, Xsg; hence, a total of three local
optimal solutions are obtained by following the unstable
manifold of the source.

A. THE TRUST-TECH SOURCE POINT METHOD

Stage I: Local search: Given a nonlinear optimization prob-
lem (1) and an initial point, construct the corresponding non-
linear dynamical system (2). Apply a numerical integration
method to (2) or employ a local search algorithm such as
BFGS, trust region, and SQP to compute a local minimum.

Stage II: Exit the stability region. Starting from the SEP
found in Stage I, compute a set of source points on its quasi-
stability boundary of the LOS of (1).

Stage III: Enter the neighboring stability regions. Follow
the unstable manifold of a source to enter neighboring stabil-
ity regions.

Stage IV: Compute neighboring local minimal solutions.
The unstable manifold of each source converges to neighbor-
ing SEPs; hence, a set of neighboring LOSs are found.

We note that when a source point cannot be found on the
stability boundary, then the search procedure can switch to the
decomposition point-based method to find multiple LOSs.

VI. EXPERIMENTAL RESULTS

Clustering techniques such as the K-means algorithm, and
its variants have been applied to a variety of problems in
power girds such as the seven applications described in
the Introduction section. Indeed, electric load clustering is
becoming more essential for its great potential in the analytics
of consumers’ energy consumption patterns and preferences
through data mining, given the growing popularity of Auto-
matic Meter Reading (AMR) in the smart grid paradigm.
Important potential applications of electric load clustering
include the tariff design, anomaly detection, load forecasting,
data security, and big data [6].

Since the K-means algorithm suffers from the four issues
described above, it will be shown in this section that these
issues can be greatly improved or even removed by the pro-
posed H-KTT method on several datasets that are publicly
available.

A. STABILITY MEASUREMENT
The stability of a clustering algorithm with respect to small
perturbations of the data or the parameters of the algorithm
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(e.g., random initialization) is a desirable quality. Since ini-
tialization of the K-means algorithm is a random selection
from the dataset, the clustering results are more likely to
be unstable over different runs. To evaluate the stability of
the algorithm, we use the entropy of similarity based on the
cluster ensemble (see [11] for details), which means taking
the average similarity between each pair of patterns based on
all the tests from the cluster ensemble, then calculating the
average entropy of the similarities as a measurement of the
disagreement value for all the tests. It should be pointed out
that stable clustering results give a low disagreement value
based on the definition of the entropy function. Conversely,
a median average similarity and thus, a high disagreement
value, is usually caused by the poor stability of a clustering
algorithm.

The experimental dataset we used to evaluate the proposed
H-KTT method comes from the popular dataset: the Univer-
sity of California Irvine datasets [30]: the User Knowledge
Modeling dataset, the Car Evaluation dataset, and the Syn-
thetic Control Chart time series dataset.

B. CASE I: THE USER KNOWLEDGE MODELING DATASET
The User Knowledge Modeling dataset is a real dataset
consisting of knowledge status about the subject of elec-
trical DC machines of 403 undergraduate students at Gazi
University in 2009. There are 5 attributes for each donor:
STG (the degree of study time for goal object materials),
SCQG (the degree of the user repetition number for goal object
materials), STR (the degree of user study time for related
objects with a goal object), LPR (the user exam performance
for related objects with a goal object), and PEG (the user
exam performance for goal objects). The knowledge level of
each student is put into four classes: very low, low, middle,
and high. All the attributes were normalized into the range
of [0, 10] for clustering proposes.

We first reduce the original dataset by clustering the pat-
terns close to each other with their centroids and obtain a
reduced dataset with 20 patterns as the first hierarchical level,
then use the original dataset as the second hierarchical level.
Level 1, 2 represents different levels of datasets. The 1st level
is the original dataset, and each subsequent level is constituted
by a smaller dataset of its previous level. And a given dataset
can be clustered into several hierarchical levels, as shown
in Fig. 1.

We then proceed as follows:

1. Cluster the first-level dataset using the K-means algo-
rithm based on random selection of the initial points.

2. Cluster the second-level dataset using the K-means algo-
rithm with the clustering result of the first level as the initial
condition.

We improve the clustering results obtained by applying
the H-KTT-means method. For computational efficiency,
we apply the Trust-Tech method only at the first hierar-
chical level and apply the K-means method in successive
hierarchical levels. In consideration of the randomness of the
K-means algorithm, we set the number of test runs as 10.
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All the clustering results obtained by the H-K-means method
and by the H-KTT method (the Trust-Tech method is applied
at the first level) are summarized in Table 1. In compari-
son, we also cluster the dataset using the original K-means
method.

TABLE 1. Ensemble result for case I.

K-means H-K-means H-KTT (level 1)
Index Hierarchical level Hierarchical level
(e+003) 1 2 1 2

(e+002) (e+003) (e+002) (e+003)
1 7.2379 | 6.0269 | 7.1109 | 5.6996 | 6.8817
2 7.0625 | 6.0079 | 7.0307 | 5.6996 | 6.8817
3 7.1429 | 5.9248 | 6.9229 | 5.6996 | 6.8817
4 7.1378 | 5.8449 | 6.9068 | 5.6996 | 6.8817
5 7.1618 | 5.6996 | 6.8817 | 5.6996 | 6.8817
6 7.1348 | 6.3280 | 7.1299 | 5.6996 | 6.8817
7 7.2251 5.9248 | 6.9229 | 5.6996 | 6.8817
8 6.9994 | 5.6996 | 6.8817 | 5.6996 | 6.8817
9 7.1112 | 6.0079 | 7.0307 | 5.6996 | 6.8817
10 7.1138 | 6.0269 | 7.1109 | 5.6996 | 6.8817

We observe from the local optimal solutions obtained by
the H-K-means that there exists a close relationship between
the quality of the clustering results of hierarchical levels (1)
and (2) among all the test runs. Moreover, the results obtained
by the H-K-means were better (17% to 20% improvement)
than the ones given by the K-means method, but the qual-
ity of the clustering results is still not the best, and the
clustering results are quite unstable (fluctuating between
5.6996 to 6.3280). By contrast, the clustering results given by
the H-KTT (which applied the Trust-Tech method at level 1)
have the following highlights:

(1) All the clustering solutions obtained by the H-KTT (1),
i.e., enhanced by the Trust-Tech method at the first level,
are improved to the same high-quality local optimal solu-
tion 5.6996, which may be the global optimal solution.

(ii)) While the clustering results by the K-means and
H-K-means are fluctuating around their averages, the clus-
tering results from the H-KTT are all the same, showing
the capability of the proposed H-KTT method in producing
consistent outputs.

To analyze the stability of each method, we calculate
the disagreement value based on the average similarity
between the patterns for the K-means, H-K-means and
H-KTT (applied Trust-Tech at level 1), respectively. The
disagreement value of each method is summarized in Table 2.
We can see that only a small improvement was achieved by
the H-K-means while Trust-Tech methodology had reduced
the disagreement value to 0, making all the local optimal
solutions given by the H-KKT improved to a deterministic
one.

C. CASE II: THE CAR EVALUATION DATASET
The Car Evaluation dataset is a simple hierarchical decision
model originally developed to demonstrate DEX. This model
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TABLE 2. Stability analysis for case I.

Method

Disagreement

K-means H-K-means

0.303364

H-KTT (level 1)
0.253407 0

evaluates 1728 cars according to the attributes. All the cars are
to be clustered into 4 levels: unacceptable, acceptable, good,
and very good, based on the given attributes. We numerically
normalized all the attributes into the range of [0, 10]. First,
we implement a 3-level H-K-means method (i.e., three-level
reduced datasets were generated from the original dataset).
The Level-3 dataset is the original one with 1728 patterns
while the Level-2 dataset has 200 patterns and the Level-1
dataset has 20 patterns. Also, due to the randomness of the
K-means method, we set the number of test runs to 20. All
the local optimal solutions given by the H-K-means had been
improved by Trust-Tech methodology in hierarchical levels
(1) and (2) successively (see Table 3 and Fig. 5). The results
of the K-means, H-K-means, H-KTT (1) (applied Trust-Tech
at level 1) and H-KTT (2) (applied Trust-Tech at levels 1 and
2) are shown in Table 3. The following observations are
obtained:

(i) While the clustering results of K-means fluctuates
around its average, the clustering results of H-KTT (2) are
not only deterministic values but also the best among the four
methods.

(ii)) The proposed H-KTT (1) and H-KTT (2) outper-
form the H-K-means and K-means methods in all 20 runs
(see Table 3).

(iii) The H-K method outperforms the K-means method in
all 20 runs.

Significant improvement has been achieved with applica-
tion of the Trust-Tech method at the first hierarchical level
(1). However, due to the diversity of the obtained clustering
solutions, there are still some local optimal solutions (clus-
tering results) whose quality can be further improved. Hence,
H-KTT (2) (apply Trust-Tech at levels 1 and 2) is applied
for further improvements. Although H-KTT (2) increases
computational burden to a certain extent, all of the local
optimal solutions by H-KTT (1) are all greatly improved.
Moreover, H-KTT (2) is highly stable in the sense that the
clustering results of the 20 test runs are the same, making it
completely stable in this dataset.

The K-means, H-K-means, H-KTT (1) (applied Trust-Tech
atlevel 1), and H-KTT (2) (applied Trust-Tech at levels 1 and
2) are shown in Table 4, which shows that the application of
hierarchical and the Trust-Tech method at level (1) greatly
improved the clustering results by 14.10% and 75.02%,
respectively. Moreover, the disagreement value of the clus-
tering results is greatly reduced, as all the local optimal
solutions are closer to each other, as compared with that of the
K-means. The disagreement value was also reduced to zero
after we applied Trust-Tech at levels 1 and 2 successively, as
all the clustering results obtained by the H-KTT (1) improved
based on the optimal one (which can be the global optimal).
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TABLE 3. The proposed H-KTT (1) and H-KTT (2) outperform the H-K-means and K-means methods for all 20 runs. The improvements

show up in both the quality of solutions and the stability of the solutions. It is interesting to note that both the H-KTT (level 1) and
H-KTT (levels 1,2) all give a constant value of 1.1126 for all 20 runs.

K-means H-K-means H-KTT (level 1) H-KTT (levels 1,2)
Hierarchical level Hierarchical level Hierarchical leyel
Index (e+005) 1 2 3 1 2 3 1 2 3

(e+002) (e+004) (e+005) (e+002) (e+004) (e+005) (e+002) (e+004) (e+005)

1 1.1414 6.7654 1.0791 1.1126 6.7654 1.0791 1.1126 6.7654 1.0791 1.1126
2 1.1517 7.5238 1.1358 1.1514 6.8594 1.0810 1.1134 6.8594 1.0790 1.1126
3 1.1467 7.6310 1.0961 1.1237 6.7606 1.0805 1.1134 6.7606 1.0790 1.1126
4 1.1585 7.4771 1.1348 1.1405 6.7396 1.0789 1.1126 6.7396 1.0789 1.1126
5 1.1559 7.0459 1.0815 1.1203 6.7418 1.0810 1.1134 6.7418 1.0790 1.1126
6 1.1467 7.4266 1.1307 1.1448 6.8617 1.0981 1.1134 6.8617 1.0790 1.1126
7 1.1538 7.4638 1.1642 1.1607 6.7910 1.0789 1.1126 6.7910 1.0789 1.1126
8 1.1819 7.8279 1.1214 1.1292 6.7396 1.0789 1.1126 6.7396 1.0789 1.1126
9 1.1519 7.3414 1.1555 1.1478 6.7396 1.0789 1.1126 6.7396 1.0789 1.1126
10 1.1429 7.5154 1.1016 1.1274 6.7654 1.0791 1.1126 6.7654 1.0791 1.1126
11 1.1406 7.5380 1.1214 1.1384 6.7396 1.0789 1.1126 6.7396 1.0789 1.1126
12 1.1538 7.1898 1.1453 1.1384 6.7654 1.0791 1.1126 6.7654 1.0791 1.1126
13 1.1510 7.6310 1.0961 1.1237 6.7606 1.0805 1.1134 6.7606 1.0790 1.1126
14 1.1585 7.0459 1.0815 1.1203 6.7418 1.0810 1.1134 6.7418 1.0790 1.1126
15 1.1428 7.3414 1.1555 1.1478 6.7396 1.0789 1.1126 6.7396 1.0789 1.1126
16 1.1355 7.5380 1.1214 1.1384 6.7396 1.0789 1.1126 6.7396 1.0789 1.1126
17 1.1527 7.4266 1.1307 1.1448 6.8617 1.0981 1.1134 6.8617 1.0790 1.1126
18 1.1614 6.7654 1.0791 1.1126 6.7654 1.0791 1.1126 6.7654 1.0791 1.1126
19 1.1717 7.4638 1.1642 1.1607 6.7910 1.0789 1.1126 6.7910 1.0789 1.1126
20 1.1675 7.8279 1.1214 1.1292 6.7396 1.0789 1.1126 6.7396 1.0789 1.1126
Ave. 1.1533 7.3893 1.1209 1.1356 6.7704 1.0813 1.1129 6.7704 1.0790 1.1126

TABLE 4. Stability assessment of the clustering results.

H-K- H-KTT H-KTT
Method K-means means (level 1) (level 1,2)
Disagreement | (0.450217 | 0.386746 | 0.112459 0

The Euclidean distance metric may not be suitable when
it comes to the clustering of a set of vector data, such as
sequences, time series, etc. At times, it is usually the fluc-
tuation characteristics instead of the vector data amplitudes
(or time series) that are of concern during the clustering
process. We note that the different amplitudes of two serial
data can cause a high Euclidean distance value, although their
fluctuation characteristics are similar. In this situation, the
cosine distance metric is used such as the following:

DX,Y)=1—cos(X,Y) (11)

where D(X,Y) represents the distance between series X
and Y. Due to the usage of different distance metrics, the
corresponding objective function of the optimization formu-
lation built is modified accordingly.

We tested the time efficiency and memory cost of our
proposed method (the number of test runs are set to 20).
The results of the K-means, H-K-means, H-KTT (1) (applied
Trust-Tech at level 1) and H-KTT (2) (applied Trust-Tech at
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levels 1 and 2) are shown in Table 5. The following observa-
tions are obtained:

(1) The average time efficiency of the proposed H-KTT (1)
and H-KTT (2) in all 20 runs is superior to H-K-means and
K-means methods.

(ii) The average memory cost of the proposed H-KTT (1)
and H-KTT (2) in all 20 runs is higher than H-K-means
and K-means methods. But the increase in memory cost is
neglectable.

D. CASE lll: SYNTHETIC CONTROL CHART TIME SERIES
DATASET

The synthetic control chart time series dataset contains
600 examples of control charts synthetically generated. The
length of each is 60 and the amplitude of each lies in the
range of 0 to 60. There are 6 different kinds of control charts:
normal, cyclic, increasing trend, decreasing trend, upward
shift, and downward shift.

Based on the cosine distance metric, we can apply the
proposed clustering method to the 600 time series. To com-
pute the metric, the sequences are viewed as vectors in an
inner product space, and the cosine similarity is defined as
the cosine of the angle between them, that is, the dot prod-
uct of the vectors divided by the product of their lengths.
It follows that the cosine similarity does not depend on the
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TABLE 5. Test results of time efficiency and memory cost.

K-means H-K-means H-KTT (level 1) H-KTT (levels 1,2)
Index Time Memory Time Memory Time Memory Time Memory

(e+002/ms) | (e+002/MB) | (e+002/ms) | (e+002/MB) | (e+002/ms) | (e+002/MB) | (e+002/ms) | (e+002/MB)
1 1.4384 1.030 1.3836 1.085 1.3370 1.125 1.3237 1.137
2 1.4091 1.121 1.3718 1.211 1.3317 1.242 1.2925 1.265
3 1.4092 1.085 1.3709 1.137 1.3552 1.173 1.3387 1.205
4 1.4991 1.061 1.4460 1.118 1.4303 1.144 1.4105 1.155
5 1.3792 1.096 1.3371 1.147 1.3132 1.180 1.2601 1.220
6 1.3792 1.053 1.3408 1.115 1.2920 1.137 1.2508 1.157
7 1.4991 1.043 1.4513 1.110 1.4064 1.122 1.3566 1.153
8 1.4631 1.097 1.4197 1.192 1.3748 1.213 1.3209 1.244
9 1.4092 1.075 1.3714 1.139 1.3533 1.169 1.3281 1.180
10 1.3792 1.065 1.3314 1.158 1.3072 1.193 1.2509 1.208
11 1.2893 1.097 1.2467 1.167 1.1982 1.178 1.1576 1.193
12 1.4092 1.085 1.3551 1.138 1.2995 1.166 1.2599 1.182
13 1.4692 1.068 1.4327 1.139 1.4023 1.173 1.3899 1.191
14 1.3792 1.076 1.3244 1.132 1.3111 1.143 1.2738 1.161
15 1.4092 1.064 1.3631 1.130 1.3084 1.147 1.2762 1.185
16 1.4692 1.056 1.4142 1.148 1.3994 1.183 1.3745 1.219
17 1.4692 1.084 1.4302 1.137 1.4201 1.169 1.3959 1.203
18 1.4392 1.072 1.3842 1.169 1.3711 1.195 1.3315 1.232
19 1.3495 1.069 1.3007 1.165 1.2518 1.178 1.1922 1.207
20 1.4991 1.110 1.4683 1.171 1.4075 1.193 1.4456 1.220
Ave. 1.4224 1.075 1.3772 1.145 1.34435 1171 13115 1.196
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FIGURE 8. Clustering results by H-K-means and H-KTT for case Il (refers to distance). The clustering results by

the H-KTT are much improved.

magnitudes of the vectors, but only on their angle. The aim
of the clustering process is to clearly distinguish all of the
time series data as clearly as possible, so we set the number
of clusters as 6 and used a simple dataset with 60 patterns
as the first hierarchical level, the original 600 time series
as the second hierarchical level, and also set the size of
the cluster ensemble as 10. Again, we apply the K-means,
K-means++ [32] and H-K-means first, then improve the
results using Trust-Tech methodology (H-KTT) in the first
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hierarchical level. This process was similar to the last two
cases, so we omitted the details and summarize the numerical
results in Tables 6 and 7.

We note from the ensemble result of the H-K-means that
there are still two problems in the test cases: (i) the cyclic
series cannot be clearly distinguished from the normal series,
(ii) the increasing (or decreasing) trend series cannot be
clearly distinguished from the upward (or downward) shift
series.
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TABLE 6. Ensemble result for case lll. The stability of H-KTT
(level 1) gives the best result since it gives consistent and
smaller results.

H-K-means H-KTT (level 1)
Index | K-means |[K-means++| Hierarchical level Hierarchical level
1 7 1 7
1 9.4085 | 8.8445 | 0.6760 |10.5796| 0.4935 | 8.0847
2 9.3644 | 9.9485 | 0.5694 | 9.2024 | 0.4935 | 8.0847
3 9.3644 | 9.4232 | 0.5571 | 8.6636 | 0.4935 | 8.0847
4 110.4793| 8.8519 | 0.5740 | 9.2467 | 0.4935 | 8.0847
5 9.5684 | 10.583 | 0.5819 | 9.1588 | 0.4935 | 8.0847
6 [10.4462| 10.5058 | 0.5980 | 9.4058 | 0.4935 | 8.0847
7 [10.0281] 9.0946 | 0.6384 |10.0979| 0.4935 | 8.0847
8 9.5180 | 9.0505 | 0.5103 | 8.6372 | 0.4935 | 8.0847
9 [10.7075| 8.6405 | 0.5238 | 8.5741 | 0.4935 | 8.0847
10 [10.6304| 9.6407 | 0.5494 | 8.7892 | 0.4935 | 8.0847

TABLE 7. The disagreement index is greatly improved by the
proposed H-KTT method, which give a value of zero.

Method K-means | K-means++ |H-K-means| H-KTT (level 1)
Disagreement | 0.303314 |0.281265|0.239651 0

Fig. 8(a) shows the clustering effect given by the
H-K-means. Here, we took the result of ensemble test (1) as
a representative case that had suffered from problems similar
to those in the other 9 ensemble cases, although they were
not exactly the same. We can find the problems mentioned
above where a large number of the cyclic series with different
frequencies (marked with red) and the normal series had been
mixed in cluster (1), which also caused the numerical result
in Table 6 to be of low quality. Moreover, the increasing
trend series had been mixed with the upward shift series
and the decreasing trend series had been mixed with the
downward shift series. By comparison, Fig. 8(b) has shown
the clustering effect given by H-KTT, in which all the cyclic
series which had caused a confusion in Fig. 8(a) had been
clearly separated.

VIl. CONCLUSION

An integrated method, termed the H-KTT (hierarchical
K-means enhanced by Trust-Tech), has been developed to
achieve the following goals:

(1) It computes multiple high-quality local optimal solu-
tions in clustering or even computes the global optimal
solution;

(i) It is not sensitive to initial guesses and possesses
stability (i.e., consistency) in obtaining high-quality
clustering results; in other words, while the K-means
gives stochastic clustering results, the proposed H-KTT
method usually gives deterministic clustering results.

(iii) Itis effective in solving large-scale clustering problems.

Numerical evaluation of the proposed method on four test

datasets favors the accomplishment of the above claimed
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advantages. One major disadvantage of the proposed method
is that, compared with the K-means method, it is slower as
it needs to escape from one local optimal solution to find
another local optimal solution in a tier-by-tier manner. How-
ever, the pay-off in obtaining high-quality optimal solutions
can be tremendous. Future work includes how to improve the
computational speed of the proposed method when applied to
applications where speed matters in addition to high-quality
optimal solutions.
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