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ABSTRACT Dispatching active distribution networks (ADNs) is an energy-intensive application that,
if implemented via battery-energy storage systems (BESSs), can require a large capacity of these assets in
order to fully balance the uncertainties caused by the stochastic demand and generation. The insufficient
capacity of the BESSs often leads to their state-of-charge (SOC) saturation; this results in unreliable dispatch
tracking. In this work, we propose and experimentally validate a real-time control scheme that achieves a
highly-reliable dispatching of ADNs and ensures that the BESSs’ SOC is not saturated during the daily
operation. Our proposed scheme uses a two-layer model predictive control (MPC). The upper-layer MPC,
running every 5 minutes, optimizes the BESSs’ SOC trajectories while minimizing the tracking error,
considering the prosumption forecast of the whole day. Then, the lower layerMPC, running every 30 seconds,
takes the BESSs’ SOC trajectories as constraints while achieving a high-resolution tracking of the dispatch
plan over the current 5-minute time horizon. Both layers account for the grid constraints by using the
augmented relaxed optimal power-flow (AR-OPF) model; an exact convex relaxation of the original AC-OPF
and used in this paper (for the first time in the literature) to solve a real-time constrained control problem for
ADNs. Our proposed frameworkwas experimentally validated using a 1.5MVA/2.5MWhBESS connected to
an actual 24-nodemedium-voltage (MV)ADN that, in Aigle, Switzerland, hosted an uncontrollable 3.2MWp
distributed photovoltaic generation, 3.4 MVA hydro-power generations, and a 2.8 MW base demand.

INDEX TERMS Active distribution networks, dispatching, model predictive control, battery, AC optimal
power flow, real-time.

I. INTRODUCTION

INCREASING the displacement of conventional power-
generation towards stochastic renewable generation

(e.g., [1], [2]) is causing increased power imbalances. This
leads to increased reserve requirements in power transmission
grids (e.g., [3], [4]). Such a displacement is at the origin
of operational issues in power distribution grids associ-
ated with the delivered quality-of-service (mainly associ-
ated with voltage quality), as well as lines and transformer
congestion [5], [6]).
Dispatching power-distribution networks is proposed in

the existing literature as a way to tackle the problem of bulk
transmission system imbalances at the local scale and to

solve local distribution grid operational issues (e.g., [7], [8]).
This process is achieved by controlling suitable distributed
energy resources (DERs) in order to indirectly regulate the
power injections of heterogeneous and stochastic resources,
according to a pre-defined power trajectory established the
day before operation [9], [10]. In these schemes, distribution
system operators (DSOs) can determine the day before oper-
ation their dispatch plan by taking into account uncertainties
of stochastic power injections and can follow it during the
day of operation by controlling flexible resources such as
battery-energy storage systems (BESSs).

Different dispatching frameworks were proposed by the
authors of this paper. For example, in the work in [9],
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we propose and validate a dispatching framework on an
medium voltage (MV) feeder by using a utility-scale BESS.
In the work in [11], we propose and validate a dispatching
framework on a micro-grid by using multiple controllable
DERs. Both controls were formulated to track the dispatch
plan, over a short horizon (i.e., 5 minutes). This makes the
control myopic, with respect to prosumers’ uncertainties in
the forthcoming timesteps. The consequence of such schemes
is that the early saturation of the flexibility offered by con-
trollable resources (e.g., BESSs’ state-of-charge - SOC) can
occur hence can interrupt the reliable tracking of the dis-
patch plan. A way to solve the problem is proposed, in [11],
by optimally curtailing the excess of power from renewable
stochastic generation. Another solution is to increase the
time-ahead horizon period (e.g., [12]) in the real-time (RT)
model predictive control (MPC) of the schemes proposed
in [9] and [11]. However, this approach increases the com-
putation time (due to large number of variables) and can
exceed the RT actuation-time deadline of the MPC con-
troller. Furthermore, most of the RT controls proposed in
the literature assume BESSs to have sufficient capacities.
However, this is not always true in real-life setups as dif-
ferent applications have different energy and power require-
ments. For example, using a BESS for providing primary
frequency regulation [13] is a power-intensive application
and does not necessarily require a large energy capacity. Two
other examples of power-intensive applications are voltage
regulation [14], and congestion management [15]. However,
dispatching by a BESS (the main focus of this work) is an
energy-intensive application, as it needs to compensate for
the dispatch energy-errors that occur during the day (or until
a sufficient SOC is restored). The previous works in [9] and
[11] were validated with sufficiently sized BESSs. An insuf-
ficiently sized BESS, however, results in an early saturation
of its capacity and will discontinue the dispatching activity
for the rest of the day. Additionally, when the above schemes
are implemented on a grid with rich stochastic injections,
a successful dispatch requires a large BESS capacity. This
capacity might be challenging to procure by the DSOs, due to
regulatory constraints and (sufficiently low) payback times.

Furthermore, the works in [9] and [12] do not account for
the grid constraints, and the work in [11] does consider the
grid constraints via a linear power-flow model. Although the
linear power-flowmodel in [11] stands correct for most of the
cases, it cannot rigorously guarantee the feasible operation
of a generic power distribution grid in correspondence to
any possible state. In this respect, the full AC power-flow
equations could be considered to properlymodel the grid con-
straints. However, this leads to the well-known non-convex
optimal power-flow (OPF) problem [16], [17]. OPF problems
are usually computationally expensive. Hence, they are often
used for offline optimizations schemes such as for the plan-
ning of grid reinforcements (e.g., [18]). Several OPF-based
optimization schemes are presented in [19], [20], [21], and
[22]; however, either they are quite computationally expen-
sive hence cannot be used for real-time controls, or they are

not exact (i.e, the OPF solution is not a solution of the AC
power-flow equations). To solve this issue, several convexi-
fication approaches (for example [11], [23], [24], [25], [26],
[27], [28]) are proposed in the literature. These approaches
improve the OPF computational performance for real-time
controls. They can be broadly categorized into two types.
The first one is based on the OPF linearization, for example,
in [11], [23], [24], and [25]. These schemes rely on the first
(e.g., [11], [24], [25]) or multiple (e.g., [23]) order of Taylor’s
series expansion of the power-flow equations that are used to
express, as a function of the power injections, the nodal volt-
ages, line currents, and the losses. In the works [11] and [25],
Authors here implement linearized OPFs-based real-time
controllers for real-scale ADNs. The second approach relies
on the adoption of a suitable relaxation of the power-flow
equations to obtain a convex formulation of the OPF [26],
[27], [28]. Semi-definite relaxations as second-order-cone-
program (SOCP) in a bus injection model [27] and in a
branch flow model [28] are the most adopted models. These
relaxations are referred to as relaxed-OPF (R-OPF) models.
However, as shown in [26], R-OPF applies to a subset of
distribution networks. Furthermore, these methods ignore the
presence of shunt elements, which is not a realistic assump-
tion for MV distribution networks with branches composed
by long coaxial cables. Due to inexactness of these meth-
ods, they have not been used in actual networks in real-
time controllers. To overcome these shortcomings, in [26],
the so-called augmented relaxed (AR)-OPF is proposed; this
would account for the shunt elements and provide an exact
solution of the OPF if specific conditions are met. AR-OPF
is based on a SOCP relaxation of the original power-flow
equations. Compared to the other SOCP-based relaxations,
the AR-OPF guarantees the exactness of the power-flow
solutions, given that some conditions (verifiable ex-ante)
are met [26]. As it will be described later, the exactness
is achieved by including some additional constraints on the
SOCP-based relaxation of [28].

Given the above-listed issues, we propose a real-time grid-
aware MPC scheme that: (i) achieves an accurate dispatch
tracking of distribution grid while avoiding BESSs’ SOC
saturation and (ii) integrates an AC-OPF-based grid-aware
real-time control by using theAR-OPF. The proposed scheme
inherently restores adequate SOC levels for the subsequent
day. This is achieved by a proposed two-layer real-time
MPC where the upper layer refines the SOC trajectory of
the BESS every 5 minutes, based on updated forecasts of
prosumers uncertainties for longer-time horizons. Then, the
lower-layer MPC computes the BESS’s active and reactive
power setpoints by considering the SOC trajectory computed
by the upper layer as a constraint. The upper-layer MPC
is periodically fed with the updated 5-minute forecasts of
the stochastic injections for a longer-time horizon (up to
the end of the day of operation). Regarding the forecasts,
we adopted an integrated data-driven prediction of the pro-
sumption by relying on the day-ahead predicted scenarios,
updated global horizontal-irradiance (GHI) forecasts from
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a commercial service, and the latest power measurements.
Our proposed framework was experimentally validated on
an actual 24-node medium voltage (MV) grid (in Aigle,
Switzerland), hosted an uncontrollable 3.2 MWp distributed
photovoltaic generation, 3.4 MVA hydro generations, and a
2.8 MW base demand. A grid-connected 1.5 MVA/2.5 MWh
BESS was the sole controllable resource in this setup. The
grid was equipped with a state-of-the-art metering and com-
munication infrastructure to determine the grid state at a
high refresh rate (i.e., 50 estimations a second) by using
17 commercial distribution-level phasor-measurement units
(PMUs). In summary, our main contributions with respect to
the existing literature are the following.
• The formulation of a two-layerMPC scheme. To the best
of our knowledge, this is the first work that proposes
a two-layer MPC scheme applied for avoiding BESS
SOC saturation in dispatching ADNs. Compared to the
works in [9] and [12], the proposed two-layer MPC
avoids BESS SOC saturation by solving a farsighted
MPC (considering a longer horizon till the end of the
day), along with a myopic MPC (by a shorter horizon of
5 minutes).

• The formulation accounts for the grid constraints by
using an exact convex model of AC-OPF, i.e., the AR-
OPF, in contrast to the linearized grid model in [11].
Due to its exactness, the AR-OPF guarantees the feasible
operation of the grid, with respect to any possible grid
state. Compared to the SOCP-based AC-OPF models
of [28], it applies to network models that take into
account the shunt parameters.

• The experimental validation. To the best of our knowl-
edge, this is the first real-scale experimental validation
of a grid-aware AC-OPF-based real-time MPC on a real
MV distribution network. The control is assisted by a
dedicated metering and communication infrastructure.

The paper is organized as follows. Section II states
the problem, Section III describes the day-ahead problem,
Section IV introduces the real-time controller, Section V
presents the experimental setup, Section VI discusses the
experimental results and Section VII summarizes the out-
comes and findings.

II. PROBLEM STATEMENT
We consider a power distribution grid that hosts het-
erogeneous controllable and uncontrollable DERs. The
uncontrollable resources comprise stochastic renewable
power generators and demand, whereas the controllable
resource is a grid-connected BESS. The grid is dispatched
at its grid-connection point (GCP) by controlling the BESS
via a real-time (RT) controller, according to a pre-determined
dispatch plan. The dispatch plan is computed the day ahead,
based on the forecasts of stochastic generation and demand,
on the status of the controllable resource (i.e., the BESS), and
by taking into account the local grid constraints. The dispatch
plan has a 5-minute time resolution and is computed at 23:30
local time the day before operation.

FIGURE 1. Schematic representation of the SOC evolution of the
BESS with myopic single-layer MPC and farsighted two-layer
MPC.

FIGURE 2. Schematic dataflow of the proposed scheduling and
control framework.

The RT operation begins at 00:00 local time. The purpose
of the RT controller is to achieve a fine tracking of the
day-ahead dispatch plan and, during the rest of the daily
operation, to avoid the saturation of the BESS SOC. At the
end of the day, the framework has to restore a sufficient BESS
SOC for dispatching the next day. Existing schemes in [9] and
[11] used a RT controller with anMPC look-ahead horizon of
5 minutes. However, this MPC is myopic to the uncertainties
of the injections, which eventually leads to BESS SOC
saturation, as schematically shown in Fig. 1. In this work,
we avoid the BESS SOC saturation by adding a farsighted
MPC layer that enforces an SOC budget. This feature is
enabled by the proposed two-layeredMPC framework, where
the upper layer (farsighted) avoids the SOC saturation of
the BESS; whereas, the lower layer (myopic) fine tracks the
dispatch plan.

• The upper-layer MPC computes the BESS energy-
budget by using the latest intra-day forecasts and the
current states of both the grid and the BESS. It runs every
5 minutes and considers an MPC horizon of the whole
day in a shrinking manner, i.e, horizon length reduces as
the day advances.

• The lower-layer MPC optimizes the active and reactive
power setpoints of the BESS and considers the energy
budget restrictions from the upper-layer MPC and grid
constraints. It runs every 30 seconds and considers an
MPC horizon of 5 minutes, in a shrinking manner.

The day-ahead and real-time data flow is shown in Fig. 2.
Each stage is described in detail in the following sections.

III. DAY-AHEAD DISPATCH COMPUTATION
The objective of the day-ahead scheduling is to com-
pute the dispatch plan, specifically, the active power-profile
that the targeted distribution network should follow at its
GCP at a 5-minute resolution, during the next day operation.
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The dispatch plan is denoted by the sequence Pdispy , y =
0, 1, . . . ,N − 1, where index y is associated with 5-minute
discrete intervals of the day of operation, and where N =
288 is the number of time intervals in 24 hours. The dispatch
plan accounts for the stochastic variations of the distributed
renewable generations and for the demand by day-ahead
scenarios produced according to forecasts.

A. DAY-AHEAD LOAD AND RENEWABLE GENERATION
FORECAST
The dispatch computation relies on power-injection fore-
casts (for each node of the network) modeled by scenarios.
We develop a data-driven scheme for generating day-ahead
scenarios of demand and renewable-power (in the form of PV
and hydro-) generation. We assume that the PV generation
is aggregated behind-the-meter (BTM) with the local loads,
whereas the hydro-power generation is from stand-alone
distributed power plants. Most nodes in this network hosts
uncontrollable distributed renewable generation (e.g., PV)
and demands (e.g., electrical appliances in residential and
commercial buildings). Generally, they are characterized by a
high degree of volatility due to the reduced smoothing effect
given by the small number of single load units. A survey
of forecasting methods accounting for local effects is pre-
sented in [29]. Based on these relatively standard approaches,
we develop data-driven schemes for stochastic demand and
renewable generation forecasts. These schemes are described
below.

1) DEMAND FORECAST
It uses nodal historical data-sets updated on a rolling horizon,
whenever new data is available. Algorithm 1 shows the key
steps: The first one refers to the disaggregation of the true
demand from the aggregated nodal power-injections (denoted
by Pl), followed by the clustering and multivariate Gaussian
fitting of the true demand. These steps are described below.

• Disaggregation separates the true demand from the
behind-the-meter (BTM) PV-power generation. We use
the unsupervised disaggregation (step 4 inAlgorithm 1)
process proposed in [30]. In short, the method relies on
the net nodal power-injections (Pl), GHI G, and air tem-
perature θ from the same area. It models the PV-power
generation as a function of GHI (considering several tilt
and azimuth of PV panels), enabling the identification of
the patterns of the PV-power generation in the measured
data set. Furthermore, it provides the disaggregated (or
actual) demand that is used to develop the corresponding
day-ahead forecast model.

• Clustering is applied on the estimated demand profiles
(P load

l ) to group them into Nc clusters based on features
(such as day-types in step 8, Algorithm 1). We use four
clusters (Nc = 4): Mondays to Thursdays (C1) are in
one day type, Fridays (C2), Saturdays (C3) and Sundays
(C4) are in three other separate day-type clusters.

Algorithm 1 Day-Ahead Demand Forecasting
Require: Historical nodal power-injections (Pl ), GHI (G), air tem-

perature (θ ), node index l ∈ L = {1, . . . ,L}
1: procedure DEMANDDAYAHEAD(1)
2: for l = 1:|L| do
3: if node l contains a PV plant then
4: [P load

l , PV-config] = Dissaggregation(Pl ,G, θ)
5: else
6: P load

l = Pl
7: end if
8: [PC1

l , . . . ,PCNc
l ] = Clustering(P load

l , features)
9: end for

10: for c = 1 : Nc do
11: 1PCi

l = PCi
l −mean(P

Ci
l )

12: �
Ci
l = cov(1PCi

l ) (multivariate Gaussian fitting)
13: 1P̃Ci

l = mvnrnd(�Ci ,Nsc)
14: P̃Ci

l = 1P̃Ci
l + mean(PCi

l )
15: end for
16: end procedure

• Multivariate-Gaussian-based scenario generation.
Each day type cluster is fitted to a multivariate-Gaussian
model via the following steps: (i) compute the zero
mean scenarios for the historical data set (step 11,Algo-
rithm 1), (ii) compute the time cross-correlation matrix
(step 12), (iii) sample Nsc number of scenarios by using
the time-correlated multivariate-Gaussian distribution
model with a 95% confidence interval (step 13) and,
finally, (iv) generate the demand scenarios by adding the
cluster mean (step 14).

2) PV-POWER GENERATION
It is modeled from the day-ahead GHI forecasts provided by
a commercial forecasting service, SoDa(2). It provides the
present and the next-day forecasts, with a time resolution
of 15 minutes and updated every 6 hours. It uses gradient-
boosting as part of machine-learning scheme, and inputs
from historical data-sets of HelioClim-3, McClear clear sky
irradiance model [31], and Global Forecast Service (GFS)
Numerical Weather Prediction (NWP).3 It provides point
predictions and 5% and 95% confidence intervals that are
fundamental to generate scenarios for computing the dispatch
plan. The 15-minute forecasts are linearly interpolated to
obtain forecasts with 5-minute time samplings. TheGHI fore-
casts are converted to power generation using a physics-based
model tool-chain [32], [33] that takes air temperature (θ),
tilt, and azimuth angles and the PV-plant’s nominal capacity.
These parameters are obtained from the PV-config output
from step 4, Algorithm 1 as the true configurations of the
PV plants are not known a priori.

1The functions mean, cov and mvnrnd are MATLAB functions to com-
pute mean, correlation-coefficients and generate random scenarios (using the
mean, covariance and the number of samples), respectively.

2www.soda-pro.com/soda-products/ai-forecast
3www.ncei.noaa.gov/products/weather-climate-models/global-forecast
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3) HYDRO-POWER GENERATION
In our forecast model, the hydro-power plants are operated at
a given power setpoint and do not have significant intra-day
variation, hence we model them as constant power-injection
sources.

A validation of the predicted scenarios by using above
forecasting methods are presented in Sec VI.

B. DAY-AHEAD PROBLEM FORMULATION
We use the dispatch computation algorithm from [34],
a stochastic-based optimization problem accounting for the
uncertainty of the nodal powers (modeled by day-ahead sce-
narios) and the grid constraints by co-dist-flow4 [34]. The
problem minimizes the dispatch error that considers all the
day-ahead scenarios and the flexibility offered by the control-
lable resource. The dispatch plan is computed such that the
power regulation made by the controllable resources (BESS
in this case) does not violate the grid and its constraints; and
the power factor at the GCP remains within a pre-defined
range. As our main contribution in this work is on a real-time
control scheme, we omit the dispatch formulation.

IV. REAL-TIME OPERATION
The purpose of real-time control is to track the day-ahead
dispatch plan, during the day of operation by using a BESS.
As stated earlier, the real-time control scheme comprises two
layers operating at 5-minute and 30-second time resolutions.
The control problems of both layers are formulated as MPC
and require forecasts of the nodal power injections. The upper
layer MPC uses forecasts of the nodal power-injections at
5-minute time resolutions, whereas the lower layer MPC uses
forecasts at 30-second time resolutions. We use data-driven
schemes for intra-day and short-term forecasting for upper
and lower MPCs respectively. They are described below.

A. INTRA-DAY AND SHORT-TERM FORECASTING
A data-driven intra-day forecasting scheme is developed to
forecast nodal power-injections during the day by using the
latest power measurements (pmeasl ) (provided by PMUs),
the updated GHI forecasts (from SoDa), and the day-ahead
scenarios. The scheme in described in Algorithm 2. Intra-
day forecasts p̂loadl are obtained as the weighted sum of
the day-ahead scenarios of nodal injections (P̃l from Algo-
rithm 1). The weights are computed every 5 minutes, based
on recent realizations (from the measurements). The weights
are computed by finding the similarity (by norm-2) between
the realization and day-ahead scenarios as in step 5, Algo-
rithm 2. In step 7-12, the updated GHI and air temperature
forecasts are obtained from the SoDA service then used to
compute PV generation (p̂pvl ). Intra-day forecasts are updated
every 5 minutes.

4The co-dist-flow is an iterative scheme where the dispatch plan is first
optimized by neglecting the losses, then they are corrected by solving
non-linear AC power flow that is accounted in the next iteration of the
optimization. The reader can refer to [34] for more information.

Algorithm 2 Intra-Day Forecasting

Require: Day-ahead load scenarios (P̃l = [ploadl,1 , . . . ,ploadl,Nsc
]), PV-

config (from Algorithm 1)
1: procedure IntraDayForecast
2: for l = 1:|L| do
3: Get realizations (pmeasl ) till the last 5-minutes slot.
4: d = [d1, . . . , di, . . . , dNsc ] = ‖P̃l − pmeasl )‖2
5: Weights wi = 1/di/

∑Nsc
i (1/di)

6: Intra-day load forecast p̂loadl =
∑
wiploadl,i

7: if node l contains a PV plant then
8: Get SoDa’s GHI (G), temperature (θ ) forecasts
9: p̂pvl = PVmodel(G, θ , PV-config)

10: else
11: p̂pvl = 0
12: end if
13: end for
14: end procedure

FIGURE 3. Illustration of the adopted nomenclature with respect
to the generic two-port 5 model of a transmission line.

Short-term forecasts are obtained by linearly interpolat-
ing the latest intra-day forecasts with the time-resolution of
30 seconds; then we use a persistent predictor5 to correct the
forecasts of current timesteps by using the last observations.
The short-term forecasts are updated every 30 seconds.

B. GRID MODEL
Both MPC layers account for the grid constraints by
using the AR-OPF [26] model, an exact convexification of
the non-linear AC power-flow equations. To introduce the
AR-OPF nomenclature, we refer to generic two-port equiv-
alent 5−model of the network branches shown Fig. 3.
As anticipated, we consider a radial grid configuration.

Let index 0 refer to the slack bus. Buses other than the slack
are denoted by 1, . . . ,L and are in the set L. The upstream
and downstream buses to bus l are denoted, respectively,
by symbol up(l) and l. The symbol H refers to adjacency
matrix, as defined in [26]. Let k be the time index in the set
K = [1, . . . ,K ]. Let S tl,k = Ptl,k + iQtl,k and Sbl,k = Pbl,k +
iQbl,k be the complex power that enters the line l from top and
bottom, respectively; and let fl be the square of the current in
line l flowing through zl (see Fig. 3). zl = rl + ixl and 2bl be
the longitudinal impedance and shunt capacitance of line l. z∗l
refer to complex conjugate of zl . Let vl,k be the square of the
voltagemagnitude at bus l and vmin and vmax the squares of the
minimum and maximum of nodal voltages. Imaxl is the square
of maximum current limits of the line l. Let sl,k = pl,k+ iql,k
be the power absorbed at bus l. Let sBl,k = pBl,k + iqBl,k
be the injections from BESS. The uncontrollable injections
from demand, PV- and hydro-power generation are modeled

5A more advanced forecaster will be investigated in future works.
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by their forecasts denoted,respectively, as p̂loadl,k , p̂pvl,k and

p̂hydrol,k . The nodal active- and reactive-injections are pl,k =

pBl,k + p̂
pv
l,k + p̂

hydro
l,k − p̂

load
l,k and ql,k = −qBl,k − q̂

load
l,k − q̂

hydro
l,k ,

respectively.
According to [26], the AR-OPF constraints are composed

of the SOCP relaxations of the power-flow equation (referred
to as relaxed (R)-OPF). The R-OPF equations are

S tl,k = sl,k +
∑
m∈L

Hl,mS tm,k+zl fl,k−j(vup(l),k+vl,k )bl,

∀l ∈ L, k ∈ K, (1a)

Sbl,k = sl,k +
∑
m∈L

Hl,mS tm,k , ∀l ∈ L,

∀k ∈ K, (1b)

vl,k = vup(l),k−2R
(
z∗l
(
S tl,k+jvup(l),kbl

))
+|zl |2fl,k ,

∀l ∈ L,∀k ∈ K, (1c)

fl,k ≥
|S tl,k + jvup(l),kbl |

2

vup(l),k
, ∀l ∈ L,

∀k ∈ K, (1d)

For the exactness, the AR-OPF [26] introduces auxiliary
variables in order to add security constraints on the upper
bounds of the nodal voltage- and current-magnitudes. This
is done such that these security constraints do not depend
on original variable f , but rather on an upper bound f̄ . Let
symbols f̄ , Ŝ, S̄ are auxiliary variables for lines of the grid
and v̄ for the buses. The AR-OPF equations are as follows.

Ŝ tl,k = sl,k+
∑
m∈L

Hl,mŜ tm,k−j(v̄up(l),k+v̄l,k )bl,

∀l ∈ L,∀k ∈ K, (1e)

Ŝbl,k = sl,k+
∑
m∈L

Hl,mŜ tm,k , ∀l ∈ L,

∀k ∈ K, (1f)

S̄ tl,k = sl,k+
∑
m∈L

Hl,mS̄ tm,k+zl f̄l,k−j(vup(l),k+vl,k )bl,

∀l ∈ L,∀k ∈ K, (1g)

S̄bl,k = sl,k+
∑
m∈L

Hl,mS̄ tm,k , ∀l ∈ L,

∀k ∈ K, (1h)

v̄l,k = v̄up(l),k−2R
(
z∗l (Ŝ

t
l,k+jv̄up(l),kbl)

)
, ∀l ∈ L,

∀k ∈ K, (1i)

f̄l,kvl,k ≥ |max
{
|Q̂bl,k−jv̄l,kbl |, |Q̄

b
l,k−jvl,kbl |

}
|
2

+ |max
{
|P̂bl,k |, |P̄

b
l,k |
}
|
2, ∀l ∈ L,∀k ∈ K,

(1j)

f̄l,kvup(l),k ≥ |max
{
|Q̂tl,k+jv̄up(l),kbl |, |Q̄
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l,k |
}
|
2

+ |max
{
|Q̂tl,k |, |Q̄

t
l,k |
}
|
2,∀l ∈ L,∀k ∈ K,

(1l)

FIGURE 4. (a) BESS converter capability function φ in eq.2a with
AC and DC voltages. (b) Equivalent circuit diagram of BESS.

Imaxl vl,k ≥ |max
{
|P̂bl,k |, |P̄

b
l,k |
}
|
2

+ |max
{
|Q̂bl,k |, |Q̄

b
l,k |
}
|
2, ∀l ∈ L,∀k ∈ K,

(1m)

vmin ≤ vl,k , v̄l,k ≤ vmax , ∀l ∈ L,∀k ∈ K, (1n)

P̄tl,k ≤ Pmaxl , Q̄tl,k ≤ Qmaxl , ∀l ∈ L,∀k ∈ K,
(1o)

Eq. (1e)-(1f) express the lower bound on branch power flows
at the sending and receiving ends of the line l, whereas the
eq. (1g) and (1h) express the upper bound for power flows.
Eq (1i) expresses the upper bound on the nodal voltages.
These variables are then used in upper and lower bounds
on the square of longitudinal current in eq. (1j) and (1k).
Eq. (1l)- (1m) and eq. (1n) limit, respectively, the amapacities
and nodal voltage. Eq. (1o) expresses upper bound on the
active and reactive power flows in line l where Pmaxl /Qmaxl
are bounds on active/reactive power flows in line l.

C. REAL-TIME MODEL PREDICTIVE CONTROL (RT-MPC)
OF BESS
1) BESS MODEL
The BESS is controlled by an MPC to provide active- and
reactive-power regulations to the grid and to respect the capa-
bility of the BESS power converter. Let Pbessl and Ebessl be
the power and energy capacities of BESS connected at bus l.
In theory, the converter capability is represented by a circle
((pBl,k )

2
+ (qBl,k )

2 6 Pbessl
2
), but it is not true in practice, as the

power capability of the converter depends on both the AC
and DC voltages of the converter. An example of capability
curves with different combination of the AC and DC voltage
are shown in Fig. 4, and they can be represented by piece-
wise-linear functions as follows.

φ(vdct , v
ac
t , p

B
l , q

B
l ,P

bess
l ) ≤ 0. (2a)

Here, vdc is the DC bus voltage and vact is the magnitude of
the direct sequence voltage on the AC side of the converter.
They can be obtained from measurements.

We model the BESS losses by adding an equivalent resis-
tance in the power-flow equations, as proposed in [34]. The
approach integrates the equivalent resistance into the grid’s
admittance matrix by adding a extra line (l ′) for each BESS.
It enables the retention of the convexity of the AR-OPF
problem, without the need of any auxiliary variables. Fig. 4(b)
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FIGURE 5. Sequence of decisions computed during real-time
operations.

shows the equivalent resistance with an ideal voltage source
and series resistance (Rbessl ). Due to this simplification (i.e.,
adding equivalent resistance to the grid’s admittance matrix)
the BESS state-of-energy (SOE) (SOEl = SOClEbessl ) evolu-
tion with sampling time Ts is now expressed simply by

SOEl,k+1 = SOEl,k + TspBl,k , ∀l ∈ L, ∀k ∈ K. (2b)

We constrain the SOE by safety margin of 0.1 per unit of
the extremes saturation/depletion of the battery. It is

0.1 Ebessl ≤ SOEl,k ≤ 0.9 Ebessl , ∀l ∈ L, ∀k ∈ K, (2c)

Also, to account for the degradation of the BESS caused by
its operation, we include the following constraint that limits
the active power by a pre-defined threshold:

Ts
2×3600

∣∣∣pBl,k ∣∣∣ ≤ NeEbessl , ∀l ∈ L, ∀k ∈ K (2d)

where Ne is rated number of cycles for the battery.

2) MODEL PREDICTIVE CONTROL (MPC) PROBLEM
As stated earlier, the real-time control scheme comprises two
layers, both formulated as MPCs but with different horizon
lengths. The upper layer considers intra-day prosumption
forecast during the whole day, via a subsequent shrinking
horizon, and it computes successive BESS SOC trajectories.
The lower layer considers a forecast of 5-minute intervals
with a shrinking horizon and computes power setpoints for
the BESS and accounts for the SOC trajectory (provided
by the upper layer) as a hard constraint. This two-layered
structure enables full visibility of the uncertainties during
the real-time operations, thus ensuring that the control does
not saturate the BESS SOC. Fig. 5 explains the sequence of
operations, per time step, during real-time operations. The
time intervals are divided into 5-minute and 30-second slots
that correspond to the sampling of upper- and lower-level
MPCs.
• The dispatch setpoint to track Pdispy is retrieved from the
dispatch plan profile with indices y = 0, 1, . . . ,N − 1
whereN = 288 for 24 hours in a day. Intra-day forecasts
p̂loadl,y , q̂

load
l,y , p̂

pv
l,y, p̂

hydro
l,y , are updated.

• The upper-layer MPC computes BESS energy budget
1SOEy, y = 0, 1, . . . ,N − 1 every 5 minutes, based on
updated intra-day forecasts and the current BESS SOE .

• The dispatch setpoint to be tracked by the lower MPC
is denoted by P̄dispk = Pdisp

b
k
10 c

, where b.c refers to the

floor function. The first and the last 30-second indexes in
current 5-minute intervals are denoted, respectively, by k

and k̄ , i.e., k = b k10c×10 and k̄ = k+10−1. The power
measurements at the GCP denoted by Pmeas0,k is obtained.

Using P̄dispk ,Pmeas0,k and 1SOEk , the lower-lyaer MPC
computes BESS setpoints pBk at time resolutions of
30 seconds with indices k = 0, 1, . . . ,K − 1 ∈ K with
K = 2880 (for 24 hours) during the day of operation.

a: UPPER-LAYER MPC
The objective is to minimize the tracking error between the
dispatch plan Pdisp and power at the GCP Pt0. Note that P

t
0 is a

dependent variable related to the uncontrollable power injec-
tions, the controllable BESS injections and the grid losses
derived from AR-OPF (Eq.(1)). The decision variables are
the BESS active and reactive powers for compensating for
the uncertainties in the nodal injections, the latter modeled by
intra-day point forecasts. The objective function to minimize
is the weighted6 sum of the tracking error for the whole day
and for the grid losses7:

p̂Bl = arg min
∀S,v,sB

wp
N∑
j=y

‖Pdispj − Pt0,j‖2

+ wl
N∑
j=y

∑
l∈L

rl flj (3a)

subject to (1), (2) (3b)

A bound on the final SOE such that it is restored to com-
fortable SOC by the day’s operation is also added.

0.45Ebessl ≤ SOE l,N ≤ 0.55Ebessl . (3c)

The state of energy budget 1SOEl is computed using the
first element of the BESS setpoint vector from upper-layer
MPC:

1ŜOE l = p̂Bl,1 ×
300
3600

. (3d)

As stated before, the upper-layer MPC is solved every
5 minutes in a shrinking manner, with updated prosumption
forecasts until the end of the day. Once it is solved, index y is
updated to the next 5-minute index.

b: LOWER-LAYER MPC
The problem is formulated as an MPC and the objective is to
minimize the energy error incurred over a 5-minute horizon
length with power set-points actuated every 30 seconds. The
dispatch-energy error at time k comprises (i) uncovered-
energy errors from time index k to k−1, ε̂k =

∑k−1
j=k (P̄

disp
j −

Pmeas0,j ) and (ii) the predicted error from k to k̄ given as

εk =
∑k̄

j=k (P̄
disp
j − Pt0,j). The MPC is fromulated as a

multi-objective function that comprises the dispatch energy

6The weights wp, wl and we can be derived from energy imbalance prices
in the day-ahead electricity market.

7Grid losses are included to satisfy exactness conditions of the AR-OPF
formulation as in [26].
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FIGURE 6. (a) Topology with locations of the PMUs, PV plants, hydro-power plants,
(b) Location of the substations and lines on the map, and (c) BESS and PV infrastructure:
(1) Satellite view of the centralized PV plant of capacity 1.8 MWp, (2) battery container and
(3) interior of the battery.

error incurred at the GCP (from current timestep to end of
the 5-min. period) and the grid losses7:

minimize
∀S,v,sB

we(εk + ε̂k )+ wl
k̄∑
j=k

∑
l∈L

rl fl,k (4a)

subject to (1), (2). (4b)

Additionally, the energy budget from the upper-layer
MPCs are added as constraint on the BESS SOE as

SOEl,k̄ ≥ SOEl,k +1ŜOE l if 1ŜOE l ≥ 0, (4c)

SOEl,k̄ ≤ SOEl,k +1ŜOE l if 1ŜOE l ≤ 0. (4d)

The constraints in (4c) sets a threshold SOC to be attained
by the end of the current 5-minute duration. This ensures that
the BESS is used judiciously by the lower MPC to avoid its
saturation hence restore a comfortable SOC value by the end
of the daily operation. Due to the convex reformulation of the
AC power-flow equations that use the AR-OPF, the control
problems in (3) and (4) are convex and can be solved by
standard solvers (eg., Mosek [35]).

V. EXPERIMENTAL SETUP
A. MEDIUM-VOLTAGE DISTRIBUTION GRID IN AIGLE,
SWITZERLAND
We validate the proposed control scheme on a real MV
grid situated in Aigle, Switzerland (a mixed rural/urban sys-
tem operated by Romande Energie,8 one of the main Swiss
DSOs). We consider a radial feeder composed of 24 nodes.
The topology and locations of various connected resources
are shown in Fig. 6a-6b. It is a three-phase 21 kV/20 MVA
balanced (seen in the observations) system. The grid accom-
modates peak power consumption (at the feeder) of 4.3 MWp
and 2.9 MWp, respectively, during the winter and sum-
mer. It hosts an aggregated PV-power generation capacity of
3.2 MWp, including a single plant of 1.8 MWp. The grid
also hosts a distributed hydro-power generation of 3.4 MVA
that is allocated to four plants. The placement of these gen-
erations are shown in Fig. 6a. The grid is connected with a
1.5 MW/2.5 MWh BESS at node 11. Figure 6c(2-3) shows
the exterior and interior of the BESS. The cells are lithium-
nickel-manganese-cobalt-oxide (Li-NMCo) based and are

8https://www.romande-energie.ch/

rated for 4000 equivalent full cycles. The grid comprises
30 racks in parallel, with 11 modules per rack in series
(each module composed by 1p22s cell pack) connected to a
four-quadrant power converter. The whole setup is installed
in a temperature controlled container, as shown in Fig. 6c.

B. METERING AND IT INFRASTRUCTURE
1) PHASOR MEASUREMENT UNITS
The RT-MPC algorithm relies on the grid awareness provided
by a cluster of distributed metering units that provide up-to-
date relevant measurements such that they can be accounted
as initial conditions, (in the RT-MPC problem in (3) and
(4)) ensuring a safe and secure operation of the grid. In this
respect, the MV-distribution grid is equipped with the state-
of-the-art monitoring solution SynchroGuard9 that provides
real-time situational awareness of the grid. The setup con-
tains 17 PMUs distributed across the grid, the locations are
shown in Fig. 6a. Fig 7a shows an example of an installed
PMU and its components at a substation. The PMUs pro-
vide synchronised and time-tagged phasors that are sent to
a central server through a phasor data concentrator (PDC).
As described later, the PDC is hosted in a local server and
is compliant with the IEEE Guide C37.244-2013 [36]. The
PDC is responsible for the data aggregation and data pushing
of the PMU measurements. The measured characteristics of
this setup, especially the network latency and packet losses,
are given in the Appendix VII-B. As shown in Fig. 16, the
average and maximum latencies of most PMUs are below
60 and 180 milliseconds, respectively; this is much lower
than the control actuation time of 30 seconds. We also show
the packet losses in Table 4. As observed, the mean packet
losses are below 0.02%. Therefore, the installed measuring
and communication infrastructure can be considered reliable
for the experimental validation of the RT-MPC [37].

A real-time state estimator (RTSE) accurately estimates
nodal voltage and nodal/branch current and powers of the
whole grid, every 20 ms using only the PMU data. The
performance analysis of the RTSE is detailed in [38].

Note that the metering system is also a source of historical
measurements used to predict day-ahead scenarios, intra and
short-term forecasts of the uncontrollable injections.

9https://zaphiro.ch/technology/
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FIGURE 7. (a) PMU installation at a monitored substation, (1)
Zaphiro PMU box, (2) GPS antenna, (3) current sensor (4) cables
and (b) GHI and temperature measurement box (Meteobox) at a
PV plant: 1) pyranometer, (2) temperature sensor (3) antenna (4)
power supply (5) NI Compact RIO.

FIGURE 8. IT communication infrastructure of the experimental
setup (vSwitch refer to virtual switches).

2) GHI AND TEMPERATURE MEASUREMENT BOX
For the modelling of the PV generation, we use the historical
data of GHI and air temperature from the same region where
the PV plants are located. We installed GHI and temper-
ature sensing boxes (Meteobox) to measure the GHI, air-
and PV-panel- temperatures. These meteoboxes are installed
at three locations10 in the grid. They provide in real-time
measurements with sampling of 500 ms (including commu-
nication latency). Fig 7b shows the installed meteobox at the
site; each one consists of a pyranometer to sense the GHI,
two temperature sensors, and a power supply. They each also
contain a modem to stream the measured data, by using the
public 4G network, to the local data server. The meteobox
code is implemented in National Instruments-Comapct-RIO.

3) COMMUNICATION INFRASTRUCTURE, CENTRALIZED
SERVER AND DATA-LOGGING
Fig. 8 shows the schematic of the communication and server
infrastructure that enables the day-ahead and real-time con-
trol operations. A centralised local server hosts five different
virtual machines (VMs) to implement a PDC, RTSE, data-

10As distribution networks generally have limited geographical expansion
and the substations are close to each other, a few GHI sensors are sufficient
to represent GHI variation over the whole distribution network.

FIGURE 9. Flow-chart showing real-time operation during
24 hours.

logging, day-ahead dispatch, real-timeMPC, a BESS setpoint
actuator, and a router. PMUmeasurements are streamed to the
VM1 through the public network. In the VM1, a dedicated
PDC is implemented. It is responsible for PMU data aggre-
gation and alignment. Once data aggregation is finished, it is
sent to the real-time state estimation (RTSE) (running on the
same VM1). After the estimation is done, the measurements
and the estimated states are sent, and stored, in the local
server database (by VM2). The real-time controls, day-ahead
dispatcher and forecasting algorithms are implemented in
VM3. VM4 hosts the BESS actuator responsible to measure
the BESS state and send actuation messages (e.g., BESS set-
points). To facilitate communication among theVMs, BESS’s
BMS and its converter, PMUs and Meteoboxes, we equip
them with a dedicated IPv4 communication network by using
Ethernet cables, as shown in Fig. 8. The communication net-
work links all the monitoring units (PMUs and Meteoboxes),
the controllable resources (BESS’ BMS and its converter),
and the local server. The PMUs and the Meteoboxes use
public telecom networks (4G), whereas the BESS BMSs and
converters use Ethernet cables. As shown in Fig. 8, all the
elements are connected to the local substation switch that is
physically connected to a DSO control centre by the DSO-
owned optical-fibre network. The BESS operator connects to
the server, remotely through a secure VPN client provided by
the DSO control centre.

C. DATAFLOW
Fig. 9 shows the sequence of the operations and communica-
tion flows at the day-ahead and real-time stages. In the day-
ahead scheduler (first step), the dispatch plan is computed and
stored in the database. It is run once a day at 23:30 local time.
The input to the day-ahead stage are the forecast scenarios
of the load and generation of different nodes (Sec. III-A) and
the estimated state of the BESS. The real-time stage (second
step onward) shows the steps during the real-time operations.
At the beginning of each 5-minute time interval, the energy
budget is computed by the upper-layer MPC, based on latest
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intra-day forecasts and current SOCs. Then, the lower-layer
MPC loops every 30 seconds to compute the BESS active
and reactive setpoints, based on short-term forecasts and the
BESS SOC. This cycle is repeated until 23:59:30 local time.

VI. EXPERIMENTAL RESULTS
A. EXPERIMENTAL VALIDATION
In this section, we present the experimental results obtained
by dispatching the MV grid described in Sec. V. First, to rep-
resent different characteristics in terms of power injection
patterns, we show results for two typical days. On the first
day, the MV grid imports the net power into the grid, whereas
on the second day, it exports the net power (during the middle
of the day), due to generations from hydro-power and PV-
power plants. Then, we show the control performance for
a week-long experiment. The control performance of the
proposed two-layer MPC scheme is compared against other
two cases: (i)Without control, where no compensation from
the BESS is performed, and (ii) a single-layer MPC, where
lower-layer MPC problem (eq. 4) is solved, but without SOE
budget from the upper-layer MPC. As the experiments were
performed with the two-layer MPC, and the same experimen-
tal conditions cannot be reproduced, we perform numerical
simulations with a single-layer MPC under the same condi-
tions as the day of operation for this comparison.

1) DAY 1
It corresponds to a clear-sky weekday, where the demand is
relatively higher than the net generations. The main source
of uncertainty is the demand. The experimental results are
described below.

a: DAY-AHEAD OPERATION
It begins at 23:30 local time the day before. It computes
the dispatch plan, based on predicted scenarios. We show
the day-ahead scenarios (lineplots in different colors) at the
GCP11 in Fig. 10a. The computed dispatch plan is shown in
Fig. 10b, along with the power at the GCP with contribution
from the BESS. As observed, the dispatch plan still has some
uncovered errors due to the insufficient size of the BESS.
In Fig. 10c, the SOC plot shows that, in many scenarios, the
BESS reaches its saturation limits. The initial SOC is 50 %;
this is also the SOC of the battery before the start of the real-
time operation.

b: REAL-TIME OPERATION
It starts at 00:00 hrs. Fig 11a shows the dispatch plan (in gray
area), the power at the GCP for different control schemes.
Fig. 11b shows the SOC evolution with different control
schemes. Fig 11c shows the plot of tracking-error cumulative-
distribution function (CDF) as a result of different real-time
controls. The single-layer MPC lets the BESS saturate at

11Due to space constraints, the day-ahead scenarios for the all the nodes of
Aigle grid are not shown. The day ahead scenarios at the GCP is a by-product
of the day-ahead scenarios at all the nodes accounting for the grid losses.

FIGURE 10. (a-c) Dispatch plan computation for day 1
(01-Mar.-2022). Each line-plot in different color represents a
different day-ahead scenario.

FIGURE 11. (a-c) Real-time operation for day 1 (01-Mar.-2022).

around 8:00 hrs, hence the BESS could not be used for
the whole day. As a result, the dispatch fails. In contrast, the
two-layer MPC ensures that the BESS never saturates, due
to the energy budget constraints computed by the upper-
layer MPC. The CDF plot of the tracking error in Fig. 11c
shows that two-layer MPC, on the one hand, achieves a better
tracking of the dispatch plan with a lower probability of high
tracking error. On the other hand, it maintains the BESS
SOC within a flexible range. Table 1 reports the maximum-
absolute-error (MAE), net absolute-energy-error (AEE), and
the root-mean-square-error (RMSE) of the dispatch error by
using different controls. The two-layer MPC outperforms,
respectively, the single-layer MPC in RMSE by 40%, the
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FIGURE 12. (a-c) Dispatch plan computation for day 2
(22-Mar.-2022). Each line-plot in different color represents a
different day-ahead scenario.

MAE by 67%, and the AEE by 35%. Therefore, we conclude
that the control based on two-layer MPC performs the best.

2) DAY 2
It corresponds to a day with higher variation in the power
injection due to higher uncertainty with next export due to
high PV and hydro generations. The results are below.

a: DAY-AHEAD OPERATION
Fig 12a shows the day ahead scenarios at the GCP for Day
2. This day exhibits more variations in power injections that
result in a higher uncertainty in the day-ahead scenarios of
the GCP. Also, during the middle of the day, the net power
at the GCP is negative (producing), as hydro-power plants
(at different nodes) are generate power. Fig 12b shows the
computed dispatch plan and compressed scenarios of the
active powers at the GCP, due to the compensations from
BESS. However, again the BESS capacity is insufficient to
cover the uncertainty of all the day-ahead scenarios, which
results in spread of the optimized power at the GCP, even
with contribution of the BESS. From the BESS SOC plot in
Fig. 12c, it is also evident that BESS saturates for several day-
ahead scenarios.

b: REAL-TIME OPERATION
Fig 13a shows the tracked dispatch plan that uses different
control schemes. Again, we show the BESS SOC, and the
CDF of the dispatch tracking errors in, respectively, Fig. 13b
and 13c. The two-layer MPC achieves fine tracking of the
dispatch plan, compared to the other two cases. Moreover,
the two-layer MPC restores the BESS SOC to 47% at the
end of the day’s operation, whereas the single-layer MPC lets

FIGURE 13. (a-c) Real-time operation for Day 2 (22-Mar.-2022).

TABLE 1. Tracking error statistics with different control schemes.

the BESS saturate to the upper limit (90%), from 7.00 hrs
to 14.00 hrs and again from 20.00 hrs to 24.00 hrs. As a
result, it fails the dispatch during this period. The CDF plot in
Fig. 13c shows that two-layer MPC achieves a lower tracking
error with high probability. The metrics reported in Table 1
show that the two-layer MPC scores on RMSE and MAE,
respectively, 31% and 65% better than the single-layer MPC,
however similar AEE.

3) WEEK-LONG EXPERIMENT
To demonstrate the effectiveness of the dispatching scheme,
we ran the control of the BESS for an entire week. Fig 14a
shows the dispatch plan and the measured GCP power with
and without two-layer MPC scheme. In Fig. 14b, we show
the SOC evolution during the week. The power at the GCP
follows the dispatch plan and keeps the BESS SOC within
a comfortable SOC so that dispatching is continued the next
day.

B. FURTHER ANALYSIS
1) VALIDATION OF THE GRID MODEL
We compare the modelled grid quantities by AR-OPF with
the measurements to validate that the grid constraints are
accounted correctly with minimum error. Fig. 15 shows com-
parison, in the form of CDFs, for the difference between
(modelled vs. state estimated) the voltage, current and the
losses. The CDF plots, on the voltages and currents, cor-
respond to a particular bus/line. The modeled voltages and
currents achieve high accuracy. The errors on the voltage and
current modelling are less than 0.01 pu, and the errors on
the losses are less than 0.2 kW for 99 % of the time. This
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FIGURE 14. Dispatch tracking over a week (25-Feb.-2022, Friday to 03-Mar.-2022, Thursday): (a) Power at the
GCP and dispatch plan, (b) SOC evolution.

FIGURE 15. Validation of the OPF model for real-time operation
with PMU measurements: (a-c) shows CDF of the incurred error
on the modeling of voltage (in pu), current (in pu) and total grid
losses (in kW).

TABLE 2. Computation time.

comparison validates that the OPF model used, in real-time
MPC, to model the grid constraints are realistic.

2) COMPUTATIONAL PERFORMANCE
As stated earlier, the RT-MPC stage is solved on VM3
(Fig. 8). VM3 is configured with the Windows 10 operating
system with specification 64-bit, 8 GB memory and 3.3 GHz
CPU. It uses the Mosek [35] solver to solve the real-time
optimization problem. Using this setup, in Table 2, we list
the minimum, mean, and maximum computation times for to
solving upper- and lower-layer MPCs. As it can be seen, the
computation time is within 30 seconds, the time deadline of
real-time actuation.

VII. CONCLUSION
In this work, we have provided a solution to the issue of BESS
SOC saturation in dispatching ADNs, where a day-ahead dis-
patch plan is tracked by controlling a grid-connected BESS,
during the day’s operation. The solution relied on a two-layer
real-time MPC scheme, where a slow and farsighted MPC
constrain, every 5 minutes, an energy budget based on latest
whole day forecasts, on the real-time fastMPC that runs every
30 seconds. The two-layer scheme ensures that the BESS
SOC is not saturated during the day and that it is restored to
a comfortable SOC for the subsequent day’s dispatch opera-
tion. This is useful for reliable and continuous dispatching
of ADNs by a BESS. The MPCs are fed by data-driven
forecasts of the power demand and generations. The real-time

TABLE 3. MPC Computation time with increasing number of
Controllable BESS.

control scheme accounts for the grid constraints by using a
convex AC-OPF model. The optimization problem is convex,
thus achieving optimality and enhanced-level tractability and
being efficient to solve.

The control framework is validated on a real MV grid that
is located in Aigle Switzerland and that hosts 3.2 MWp of
photovoltaic generation, 3.4 MVA hydro-power generation,
and a 2.8 MW of base demand. The MV grid is connected
with a 1.5 MVA/2.5 MWh BESS that is controlled by the
real-time controller and that is monitored by 17 PMUs. The
experimental results, performed over a week (including clear-
sky, cloudy, weekday, and weekend days), show that the pro-
posed two-layer MPC scheme always keeps the BESS SOC
within flexible region and achieves better tracking, compared
to myopic single-layerMPC scheme. The proposed two-layer
MPC scheme reduces by half the absolute-energy tracking
error (AEE), MAE, and the RMSE, compared to the myopic
single-layer MPC scheme. We have also validated the grid
model by comparing the modeled versus estimated states,
and by concluding the error below 0.01 per unit in the nodal
voltages/lines currents and below 0.2 kW in the grid losses.

APPENDIX
A. COMPUTATION TIME WITH INCREASING NUMBER OF
BESS UNITS
We perform a sensitivity analysis of the RT-MPC computa-
tion time with multiple distributed BESS units. It provides
insight into how the computational performance scales with
an increasing number of controllable variables. For this anal-
ysis, the BESS energy capacities are split equally at different
locations, and power capacity remains the same (as in the
experimental setup). The additional BESS units are placed
at nodes 1, 2, 5, 7, 9, 10, and 20, respectively. The MPC was
simulated for real-time operation of day 2. Table 3 reports
the corresponding computation times for both the upper and
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TABLE 4. Data packet-losses.

FIGURE 16. PDC reporting latency comprising of PMU latency,
network latency and PDC latency [37].

lower-layer MPCs. It shows the minimum, average, and max-
imum time. As it can be observed, the computation time of the
upper- and lower-layer MPC scale linearly with an increase
in the number of BESS. When the computation time exceeds
the actuation time-deadline of 30 seconds, the latter can be
increased to accommodate more controllable units (or adopt
a more computational-performing hardware).

B. STATISTICS ON PDC REPORTING LATENCY AND
PACKET LOSSES
To verify the reliability of the communication infrastructure
(mainly related to public internet networks), we look at the
time latency and packet losses by each PMU. We present
statistics on the delays and packet losses per PMUs. Box-
plots show the latency of each PMU in Fig. 16, and the
packet-data loss is shown in Table 4. The statistics are shown
for the experiments conducted on day 2 (22-Mar-2022).
As observed, the delays are in tens of milliseconds which
is much below the control actuation time deadline. Also, the
packet losses are below 0.02% (on average) and 1.67% (with
99 % probability). The reported statistics coincide with those
reported in [37]. Therefore, we can rely on the developed
communication infrastructure for the experimental validation
of the proposed RT-MPC.
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