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ABSTRACT Load forecasting is an essential task performed within the energy industry to help balance
supply with demand and maintain a stable load on the electricity grid. As supply transitions towards less
reliable renewable energy generation, smart meters will prove a vital component to facilitate these forecasting
tasks. However, smart meter adoption is low among privacy-conscious consumers that fear intrusion upon
their fine-grained consumption data. In this work we propose and explore a federated learning (FL) based
approach for training forecasting models in a distributed, collaborative manner whilst retaining the privacy of
the underlying data. We compare two approaches: FL, and a clustered variant, FL+HC against a non-private,
centralised learning approach and a fully private, localised learning approach. Within these approaches,
we measure model performance using RMSE and computational efficiency. In addition, we suggest the FL
strategies are followed by a personalisation step and show that model performance can be improved by doing
so.We show that FL+HC followed by personalisation can achieve a∼5% improvement inmodel performance
with a∼10x reduction in computation compared to localised learning. Finally we provide advice on private
aggregation of predictions for building a private end-to-end load forecasting application.

INDEX TERMS Federated learning, load forecasting, distributed machine learning, deep learning, data
privacy, Internet-of-Things.

I. INTRODUCTION
Smart meters are being deployed in many countries across
the world for the purpose of optimising efficiency within
electricity grids and providing consumers with insights into
their energy usage. The meters record energy consumption
within a building directly from the electricity supply and
periodically communicate this data to energy suppliers and
other entities in the energy sector. Smart meter data contain
an enormous amount of potential predictive power that will
aid the transition from fossil fuel technologies to cleaner
and renewable technologies [1]. However this high-resolution
data is particularly sensitive as it can easily enable inference
about household occupancy, lifestyle habits or even what and
when specific appliances are being used in a household [2].

A large contribution of renewables in the energy mix poses
a significant challenge for balancing supply and demand.
If peak demand coincides with low wind/solar inputs, energy
must be provided by reliable backup generation, such as
idling gas turbines. Such solutions are very costly, both

economically and environmentally and serve to discourage
the installation of large amounts of renewable energy gener-
ation. Reliable forecasting will provide opportunity for more
efficient optimisation of electricity grids to cope with varying
energy demand.

Despite the benefits for promoting a greener energy sector,
smart meter installation in most countries is an opt-in process
and levels of adoption of smart meters are beginning to
stagnate. Data privacy and security concerns are among the
most cited reasons consumers give for rejecting a smart meter
installation [3]. Specific privacy concerns with smart meters
include government surveillance, energy companies selling
data and illegal data acquisition/use [2].

Deep learning [4] - a subset of machine learning that makes
use of multi-layered neural networks for classification and
regression tasks, among others - has shown great promise in
many applications in recent years. Time-series forecasting is
one such strength of deep learning [5] using specific archi-
tectures such as recurrent neural networks (RNNs) that are
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designed to capture temporal dependencies during training.
Among the most successful RNN architectures for forecast-
ing are Long-Short Term Memory networks (LSTMs), that
learn long-range dependencies particularly well.

In this paper, we propose the use of a modern distributed
machine learning setting known as federated learning (FL) [6]
to train load forecasting LSTM models while preserving the
privacy of consumer energy consumption data that could
enable greater adoption of smart meters by privacy-conscious
consumers. Our main contributions are: (a) a thorough com-
parison of how FL training strategies and non-FL benchmarks
affect a model’s forecasting performance (b) a comparative
analysis of FL to a FL variant, designed specifically to
perform well over non-iid data, applied to load forecasting,
(c) an evaluation of computational efficiency issues arising
in the FL forecasting system, and (d) the identification of the
necessity of a personalisation step in FL-based forecasting to
improve model performance beyond training individual local
models in isolation.

The remainder of this paper is organised as follows. A short
literature study is presented in section II. We explore proper-
ties of the smart meter energy demand dataset used in our
experiments in section III. In section IV we provide our
methodology and in section V we present our results along
with discussion. Finally we conclude our work in section VI.

II. LITERATURE REVIEW
In the literature, AI and machine learning have been adopted
for load forecasting since 1990s. In particular, artificial neural
networks have been the most popular technique during the
past three decades [7], while fuzzy logic and support vector
machines (SVM) have also been used in many papers [8], [9].
Since 2015 there has been a huge increase of applying deep
learning to load forecasting, e.g. [10], [11], [12]. Notably,
the authors of [11] have developed a bespoke deep learning
application for household load forecasting and the method
was tested on 920 smart metered customers from Ireland. It is
shown to outperform some of the state-of-the-art techniques
in household load forecasting, such as ARIMA (AutoRegres-
sive Integrated Moving Average) and SVR (support vector
regression) in terms of RMSE (Root Mean Square Error).

Despite the above technical advancements, as pointed out
by the authors of [7], load forecasting is still an evolving
field, and ‘‘no technique is superior to all other methods
in load forecasting’’. Therefore, power system academics
should work together with industry as well as researchers
in other disciplines, such as big data, computer science, and
meteorology, to facilitate wide deployment of better load
forecasting models in practice.

The most successful neural network architectures for fore-
casting are based on recurrent neural networks (RNNs), such
as Long-Short TermMemory networks (LSTMs) [13]. These
architectures can learn what long and short term information
to pay attention to during the training process. Recent surveys
compare and contrast traditional and modern approaches to
load forecasting and conclude that AI-based methods (such

as those that utilise neural networks) offer the greatest pre-
dictive performance across all forecasting horizons [14], [15].
Kong et al. [16] investigate the use of an LSTM architecture
to predict short-term electrical load for residential properties.
The authors show that forecasting with an LSTM outper-
forms other statistical and machine learning methods for
this purpose. We draw inspiration from this work to form
our comparative centralised learning approach and thus the
architecture for our FL training scenarios.

The key drawback to how both traditional and AI-based
methods have been applied in the load forecasting literature
is the need for data to be centralised. Clearly the privacy of
consumer energy consumption data can easily be violated in
such cases. FL provides a key mechanism to tackle the issue
of training a model over private data. FL research has its
roots in distributed optimisation within the datacentre to deal
with very large datasets [17]. The term ‘federated learning’
was coined in a paper by researchers at Google who pre-
sented a simple distributed stochastic gradient descent (SGD)
procedure known as federated averaging [6] which allows
a selection of devices to train on local data and contribute
updates to a shared, global model. The procedure keeps raw
data private but requires significantly greater wall-clock time
to train models that can compete with models trained in the
more conventional centralised fashion. One key concern with
training models under FL is degraded optimisation perfor-
mance and/or reduced model performance in the presence of
non-IID data [18]. Several approaches have been suggested
to tackle this issue. One idea is to regularise the updates from
individual devices to constrain the distance between local
models and the global model [5]. Another approach is to
abandon the idea of training a single global model in favour
of multiple specialised models to fit divergent data. Such
ideas include federated multi-task learning [19] and clustered
FL [20]. In this paper we explore the effect of a variant of FL
using hierarchical clustering (HC) known as FL+HC [21],
that introduces a hierarchical clustering algorithm during the
FL procedure to partition devices by update similarity.

For load forecasting applications, few works exist that
consider the use of FL. The authors in [22] investigate how
to predict chiller efficiency in HVAC systems with the goal
of reducing energy consumption. The work compares a cen-
tralised learning approach with FL, concluding that FLmodel
performance suffers when training over all installation sites
but can be improved when data is grouped by installation
site. In [23], the authors apply FL to predict energy demand
in the scenario of electric vehicle charging networks. They
show that clustering charging stations geographically prior to
learning improved model performance and reduced commu-
nication overhead.

On smart meter data, the authors of [24] apply FL to
privately predict the value of various socio-demographic data
features of each household in order for energy utilities to
offer diversified services to their consumers. The work most
similar to our own in [25] provides a simple study of Fl for
load forecasting using household energy consumption data.
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Where our work differs is the depth of our analysis and our
comparison of training strategies including multiple model
approaches to tackle the known issue of poor FL performance
on non-IID datasets. We additionally benchmark against both
centralised learning and localised learning - the latter already
provides a fully-private forecast, so is very important to com-
pare an FL system against. Finally we test a wide variety of
time-series sequence lengths to understand how this affects
learning in all our different approaches.

III. EXPLORATORY DATA ANALYSIS
In order to test an application for short-term energy load
forecasting, a suitable dataset with reliable real-world high to
medium resolution electricity meter readings was required.
Additionally, summarising and visualising the data and dis-
tribution of various facets of a dataset will allow us to draw
insights about individual households’ energy demand over
time. This section briefly describes the dataset used, our
sub-sample of the dataset and provides some exploratory
visualisations of the sampled data.

A. DATASET
The dataset used for our experiments was gathered under
the Low Carbon London project delivered by UK Power
networks [26]. This 4 year project was designed to support
low carbon energy solutions within the UK and was con-
ducted between 2011 and 2014. The project made available
the smart electricity meter readings for a sample of 5,567
London households, many of which cover 1 or more years of
the duration of the project. The data is provided as discretised
30-minute meter readings showing total energy consumption
(in kWh) recorded within each interval.

In order to carry out a detailed comparative study between
different training methods, a small sample of 100 house-
holds was randomly selected over the period 1st Jan 2013 to
30th June 2013. The selection criteria for these 100 house-
holds required that meter readings should cover the period
described above and that the meters were gathering consump-
tion data under a standard flat-rate electricity billing tariff
(as opposed to a dynamic time of use tariff that was also
present in the dataset). This final criterion was applied to
reduce the behavioural bias that time of use tariffs induce in
energy consumption habits within a household. The resulting
sample was therefore expected to contain households who use
energy with no influence other than their normal daily habits
and occupancy.

In conjunction with the energy consumption data, we also
considered how weather related data might impact on fore-
casting models trained under different scenarios. As all the
consumption data is collected within the greater London area,
it was possible to collect weather readings that could be
easily fused with the consumption data. These included the
air temperature (in degrees Celsius) and relative humidity (as
a percentage) recorded by the Met Office [27]. As the exact
location of each household is not recorded in the dataset,
the London Heathrow weather station was selected as it

FIGURE 1. An example of the hourly energy consumption
profiles for 3 random households in the sampled dataset over a
7 day period between 15th January 2013 and 22nd January 2013.

contained a full set of hourly readings for the duration of the
study period.

A detailed description of all specific data pre-processing
techniques that were applied to the resulting data sample in
our study are provided in subsection IV-A.

B. DATA VISUALISATION
The hourly and daily energy consumption profiles of 3 ran-
dom households from our sampled dataset (over 7 days and
6 month respectively) are presented in Figure 1 and Figure 2.
From the hourly profiles, each household uses more energy
during the day than at night as would be expected for most
people. However, the maximum level of energy consumption
is quite different among the households, as is the time of day
when most energy is used. Houses 1 and 2 show 2 or 3 peaks
roughly corresponding with increased energy consumption
in the morning and evening, whereas House 3 uses energy
more consistently throughout the day. Another insight that
becomes clear from visualising the hourly data is that private
habitual activity is visible at this granularity. For example,
low energy consumption inHouse 1 on the evening of the 17th
might suggest low or zero occupancy at that time, especially
considering high energy consumption in the evenings of all
other days in this time window.

Visualising the daily energy consumption profiles reveals
that longer term energy usage is quite different over these
same 3 households as well. House 1 uses more energy for 7-
14 day periods followed by lower energy use. House 2 used
more or less energy sporadically day to day with a consid-
erable drop in energy use in early April (perhaps indicating
electric heating use in the coldermonthswhichwould account
for the relatively high daily energy consumption). Finally,
House 3 is incredibly consistent in its energy usage habits at
this granularity, as was the case at the hourly resolution.

Visualising just 3 households from the sample reveals the
non-iid nature of individual household energy consumption at
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FIGURE 2. An example of the daily energy consumption profiles
for the same 3 random households as in Figure 1 in the
sampled dataset over a 6 month period between 1st January
2013 and 30th June 2013.

FIGURE 3. Aggregated daily energy consumption per household
in the sampled dataset. The heatmap presents energy
consumption as min-max normalised values (by household)
between 0 and 1. Households are sorted (top to bottom) by total
energy consumption.

both a high and low resolution. Clearly, any forecastingmodel
built on this data will need to capture this variability in energy
usage between households. More broadly, we have produced
heatmaps showing the aggregated daily energy consumption
per household (Figure 3) and the mean energy consumption
by hour of the day for each houshold (Figure 4). Both plots
showmin-max normalised energy consumption profiles (nor-
malisation applied to each household individually) and are
sorted by total energy consumption for each household.

Figure 3 reveals a large variance in aggregated daily energy
consumption between households. Additionally, households
where energy consumption remains consistent day to day are
visible, in contrast with households that display an irregular
distribution of energy usage depending on the day. Figure 4
shows that peak energy demand tends to occur between
7am and 9am and 5pm until 10pm, likely consistent with

FIGURE 4. Mean hourly energy consumption per household in
the sampled dataset. The heatmap presents energy
consumption as min-max normalised values (by household)
between 0 and 1. Households are sorted (top to bottom) by total
energy consumption.

occupancy and waking hours. However, the hour of peak
energy demand shifts slightly from household to household
which may prove difficult for a single joint forecasting model
to represent. In this paper wewill investigate howwell several
machine learning training approaches affect the ability of
a model to produce accurate forecasts under the described
non-iid data distribution over individual households’ energy
consumption habits.

IV. METHODOLOGY
A. DATASET PREPARATION
After selecting 100 households from the LowCarbon London
dataset (see subsection III-A for selection criteria), the raw
energy consumption readings were passed though a pipeline
of transformations to clean the data. For each individual
household, this included dropping duplicated readings, for-
ward filling empty readings and resampling the reading inter-
vals to give an hourly record of energy consumption. A design
matrix Xc was then built for each household c based on
this transformed data containing feature vectors of the form
xt = {et , yt ,wt , dt , ht } for each time index t composed of:

1) the energy consumption value et in kWh
2) the year yt corresponding with the time index
3) the week of the year wt in the range 0-51
4) the day of the week dt in the range 0-6
5) the hour of the day ht in the range 0-23
A second design matrixWc was also built for each house-

hold c that included weather data from the Met Office (dis-
cussed in more detail in subsection III-A). The feature vectors
of the form wt = {et , yt ,wt , dt , ht , at , rt } comprising this
design matrix were additionally composed of:

1) the recorded air temperature at in degrees Celsius cor-
responding with the time index

2) the calculated relative humidity rt (as a percentage)
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Finally both Xc and Wc for each household c were parti-
tioned into training, validation and testing datasets according
to 0.7/0.2/0.1 split. As the time series data is sequential by
its very nature, the validation split contains time indices
strictly greater than those in the training split and the test
split contains time indices strictly greater than those in the
validation split.

B. FORECASTING TASK
The forecasting task is designed specifically for how LSTMs
ingest data to be trained to perform predictions. As such, the
initial design matrices for each household are transformed
into consecutive rolling sequences of K feature vectors. For
example, each sequence St ∈ S drawn from the design matrix
Xc takes the form St = {xt−K , . . . , xt−2, xt−1}. This forms a
single input sequence to the LSTM. The corresponding label
for this sequence is the energy consumption et at time index
t . The task of the LSTM is therefore to learn an appropriate
mapping from S → êt by minimising the error between
the observed energy consumption et and the predicted or
forecasted energy consumption êt . For all our experiments
we report the root mean squared error (RMSE) to compare
the different training strategies set out in this paper:

RMSE =

√∑
(êt − et )2/N (1)

We chose to create sequence datasets for K = 6, K =
12 and K = 24 hours. As we started with two design
matrices (with and without weather data fused), this results
in 6 sequence datasets for each household which we denote:

• SK=6,+weather
• SK=12,+weather
• SK=24,+weather

• SK=6,-weather
• SK=12,-weather
• SK=24,-weather

The forecasting task can be formally verbalised as: ‘‘Pre-
dict the current energy consumption from the preceding K
hour’s energy consumption readings’’.

As LSTMs are more efficiently optimised when the data in
different dimensions are equally scaled, we apply a min-max
normalisation (independently in each dimension) to the data
to ensure all values fall between 0 and 1. The minimum and
maximum values for et are drawn globally from across all
the household datasets and therefore each sequence dataset
S makes use of the same normalisation operation across all
households.

C. LSTM FRAMEWORK
The long short termmemory (LTSM) [13] network belongs to
a family of neural network architectures known as recurrent
neural networks (RNNs). Such networks are designed to
handle sequential data such as time series data or language
fragments such as sentences. The major distinction between
RNNs and standard feed forward neural networks is the abil-
ity to pass the output of hidden units back into themselves
as well as incorporating gates to control the flow of past and

FIGURE 5. Schematic of the operations associated within an
LSTM hidden unit. The computed internal state ct , and output ht
calculated at time step t form the next inputs to the same cell at
time step t + 1 along with the next input vector xt+1 in the
sequence.

current information. These conditions allow for learning of
temporal patterns. For an energy forecasting problem a RNN
can potentially learn how daily patterns of energy consump-
tion affect future consumption by way of the memory built
into RNNs.

The LSTM is one of the most sophisticated RNN architec-
tures in that it works exceptionally well to store long-term
temporal dependencies. Earlier RNN architectural designs
are plagued with issues related to vanishing or exploding
gradients during training via backpropagation [28]. Such
issues resulted in the network becoming unable to learn
anything from information earlier in the sequence beyond
the preceding few time steps. LSTMs introduce an internal
memory state that can persist over many time steps allowing
the network to learn from long-term patterns.

In each LSTM cell, an internal state ct is regulated by a
forget gate f t controlling the weight of information from the
output during the previous time step ht−1 and the input for the
current time step xt . The input feature for the current time step
it is accumulated into the internal state under the influence
of the input gate gt . Finally the output gate ot governs the
output ht formed from the inputs and the internal cell state.
The new internal state ct and cell output ht become inputs for
the the cell at the next time step (additionally the final cell
output ht is passed to the next layer in a deep network). The
memory cell state ct and output activation ht are calculated

VOLUME 9, 2022 577



using equations 2 to 7.

f t = σ (W fxxt +W fhht−1 + bf ) (2)

it = σ (W ixxt +W ihht−1 + bi) (3)

ot = σ (Woxxt +Wohht−1 + bo) (4)

gt = tanh(Wgxxt +Wghht−1 + bg) (5)

ct = ct−1 � f t + it � gt (6)

ht = tanh(ct � ot ) (7)

The weight matrices associated with the inputs xt and ht−1
destined for each gate are given byW fx ,W fh,W ix ,W ih,Wox ,
Woh,Wgx andWgh and the bias vectors are given by bf , bi, bo
and bg. The � operator denotes element-wise multiplication
and σ is an application of the sigmoid function. A schematic
of the internal workings of an individual LSTM cell is given
in Figure 5.

For our experiments we took inspiration from [16] and
designed our LSTM network using 2 connected layers, each
containing 20 hidden LTSM cells followed by a single linear
feed-forward layer. The loss function used for optimisation
was a simple mean squared error. The Adam optimiser was
used for training the network in all experiments using the rec-
ommended default hyperparameters in [29] combined with
a fixed learning rate of 0.001 and a fixed batch size of
256 sequences.

D. TRAINING SCENARIOS
In order to test the effectiveness of applying FL to load fore-
casting, we provide benchmarks against centralised learning,
local-only learning and various FL training scenarios. These
different training approaches are summarised in Table 1 and
described diagrammatically in Figure 6.
Firstly we developed a non-distributed, centralised learn-

ing approach that is most commonly applied where the pri-
vacy of data is not a major concern during training. This
approach pools individual household datasets together and
training is conducted in a single location. This approach
provides a baseline for what a single, joint forecasting model
can achieve in a non-private setting. In this scenario, the same
network parameters are used by all households at the infer-
ence stage. Under this centralised approach we train models
for 500 epochs with early stopping based on the lowest error
achieved on the validation set.

The most important benchmark we developed is a
fully-private localised learning setting. All individual datasets
remain private and unseen by other data owners under this
scenario and the training procedure is isolated to each house-
hold. This approach results in unique forecasting models
tailored to each household but cannot benefit from knowledge
that could be embedded in data owned by other households.
As per the centralised learning approach, training was con-
ducted for a maximum of 500 epochs with early stopping.

Any FL system needs to offer benefits above and beyond
what can be achieved in the localised learning setting as this is
already a fully private approach. In this paper we investigate

TABLE 1. Summary of training scenarios, the forecasting models
produced by each scenario and the privacy associated with
each scenario.

how individual learners can benefit from patterns in energy
usage from other households in the population.

The goal of FL is the same as centralised learning - to
learn a single, joint model that generalises well enough to
provide accurate forecasts for all individual households. In FL
however, the training data belonging to each household (or
client in the parlance of FL) is not pooled as in centralised
learning. Instead, the training data remains private to each
local client. Whereas centralised learning seeks to optimise
a global objective of the form: min f (w), FL optimises an
objective as the finite sum of local objectives taking the form:
min 1

m

∑m
i=1 fi(w).

Training proceeds via communication rounds, beginning
with an initialised model statewt that is transmitted to a small
set of clients K . Each client k ∈ K computes an update wkt+1
to the model state based on their dataset by optimising a local
forecasting objective fk (wt ). In practice this usually involves
training just a few epochs on each client. Each client then
transmits their update to a centralised server that aggregates
the updates into a new model wt+1. For our experiments we
apply federated averaging (FedAvg) [6] as the FL algorithm
for aggregating client updates. FedAvg aggregates incoming
client model updates via a data weighted average such that:

wt+1 =
K∑
k=1

nk
n
wkt+1 (8)

Here, nk
n represents the number of samples available to

client k compared to the total number of samples used for
training in round t , thus determining the data-weighted con-
tribution of client k . In the FL training scenario, model per-
formance is affected by additional hyperparameters that we
also test for:
• fraction of clients participating in each communication
round: 0.1, 0.2 & 0.3

• Number of epochs of training on clients: 1, 3 & 5
All FL training runs are capped at 500 communication

rounds with early stopping based on the best average vali-
dation set performance across all clients.

Models trained via FL have been shown to suffer under
non-IID distributions. As we have explored, the individual
household datasets exhibit differing data distributions due
to the varied ways in which household occupants consume
energy. As such, we investigate the use of a modification
of FedAvg known as FL+HC [21] (our previous work) that
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FIGURE 6. Diagrams detailing the the different training scenarios. a) Centralised learning - data is sent from clients to server, model
and training is on the server. b) Localised training - data, model and training are isolated to each client. c) FL - data and training
isolated to each client, model is aggregated from client updates at the server. d) FL+HC - after n rounds of FL, clients are clustered
and model updates from each cluster are aggregated to specialised cluster models at the server (colours represent clusters). e) Local
fine-tuning (LFT) - an extra step after either FL or FL+HC where training is isolated to each client starting with the model produced at
the FL stage.
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incorporates a clustering step into the FL protocol. In FL,
the local objectives are expected to approximate the global
objective, however if data among clients is distributed non-
IID, this expectation over data available to client Dk is not
valid: EDk [fk (w)] 6= f (w). In FL+HC, clients are assigned to
a cluster c ∈ C , where the goal is to train a specialised model
fc tailored to clients that share a similar data distribution.
We use client updates as a proxy for client similarity in order
to preserve the privacy of the raw training data. A hierarchical
clustering algorithm is run at communication round n taking
as input the weight updates from all clients. Clients that
produce similar updates are clustered together and further
training via FL proceeds for each cluster in isolation. For
a good clustering under FL+HC, the expectation of local
objectives (clients) assigned to a cluster c approximates the
cluster objective:

∀c ∈ C,EDk [fk (w)] = fc(w) where k ∈ c (9)

FL+HC introduces more hyperparameters to control the
clustering process which we test for:
• clustering distance threshold: 0.8, 1.4 & 2.0
• hierarchical clustering linkage mechanism: ward, aver-
age, complete & single

• number of rounds of FL prior to clustering step n: 3, 5
& 10

To keep the number of permutations of experiments for
the FL+HC scenario manageable, we fix the client fraction
at 0.1, the number of epochs to 3 and exclusively use the
Euclidean (L2) clustering distance metric. All FL+HC train-
ing runs are capped at 200 communication rounds with early
stopping based on the best average validation set performance
per cluster.

Finally, we also test scenarios where the models produced
by FL and FL+HC are further fine-tuned on the local clients
for a small number of epochs (a process known as personal-
isation). These local fine-tuning (LFT) scenarios are termed
FL→ LFT and FL+HC→ LFT. We test whether personali-
sation produces more accurate, highly specialised models for
each household that also builds on the wisdom of the private
data of other households. The fine-tuning step is limited to
25 epochs on all clients with early stopping based on the best
validation set performance.

E. RUNNING THE EXPERIMENTS
All experiments are run in the PyTorch deep learning frame-
work [30] on the Google Cloud Computing (GCP) platform
using a single NVIDIA Tesla K80 GPU attached to 30GB of
memory, a 128GB SSD and 8 virtual CPUs on an Intel Xeon
processor (n1-standard-8GCPmachine type). The distributed
training scenarios are all simulated on a single machine.

V. RESULTS & DISCUSSION
A. FORECASTING PERFORMANCE
To understand how the different training approaches perform
compared to one another, we report the RMSE achieved

on the test set for each of the 6 datasets, SK=6,+weather,
SK=12,+weather, SK=24,+weather, SK=6,-weather, SK=12,-weather
and SK=24,-weather. The RMSE reported is an average over all
clients (in distributed approaches) or over all sequences (in
the centralised approach). For experiments that involve tuning
hyperparameters (namely those that involve FL), we report
the test set RMSE for the best performing model based on the
lowest error on the validation set. We also report the mean
RMSE and lowest RMSE over all datasets for each train-
ing approach along with a percentage difference to compare
with the fully private localised approach. Model performance
results are detailed in Table 2.

In the centralised approach, the training procedure has
access to all sequences pooled from across the individ-
ual household datasets. Therefore model performance might
be expected to be relatively high compared to the other
approaches where there is much less data to learn from.
Conversely, we show that average model performance in the
centralised approach is actually 4.8%worse than the localised
approach and the best centralised model is 8.0% worse than
the best localised model. This is somewhat surprising given
that the localised models only have access to 1/100 the
amount of data. This implies that the centralised models (and
possibly single, joint models in general) struggle to capture
individual household behaviours in energy usage and/or suf-
fer from trying to optimise for competing objectives. Larger
models might allow for learning more individual behaviours
but as data has to be gathered into a single location, the
privacy risk to energy consumers is by far the highest in this
training approach. The 24-step sequence (1 whole of day of
prior readings) provides the model with the most information
with which to make a prediction, resulting in the lowest
RMSE in the centralised approach (followed by the 12-step,
then 6-step).

In the localised learning approach, a model for each house-
hold is trained in isolation using only the data available to
that household. Model performance is exceptionally good in
this approach and the simple LSTM architecture is sufficient
to learn more nuanced energy demand behaviours unique
to each household. This approach represents a fully private
setting in that nothing is shared between households. Datasets
formed around 12-step sequences result in models that sig-
nificantly outperform 6-step and 24-step sequence datasets
in this approach. We see a similar pattern for the remaining
training approaches, suggesting that a 12-hour time window
is optimal for local learners to most accurately predict future
energy demand.

In the FL approach, only a fraction of clients are selected
for each round of training (and each client trains on its local
data set in isolation for a small number of epochs). Addi-
tionally a single, joint model is being co-trained by these
selected clients when model updates are aggregated. As such,
we see that the RMSE for FL models suffers in the same
way as centralised models when we compare to the localised
approach. Additionally, as FL has been shown to perform
sub-optimally in cases where the training data is non-IID
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TABLE 2. Forecasting error (RMSE) values for the 6 datasets and 6 training scenarios. ‘Mean’ and ‘Best’ columns show percentage
difference compared to fully-private localised learning.

as is the case with the individual household datasets, the
RMSE suffers even more so than in the centralised learn-
ing approach. Compared with localised learning the average
model performance in the FL approach was 7.6% worse with
the best FL model significantly worse (10.5% higher RMSE)
than the best localised learning model.

The FL+HC approach produces specialised models for
a number of clusters of clients that can more specifically
tailor forecasts for groups of households that provide similar
model updates (a proxy for similar underlying energy demand
distributions across clients). As such, the average RMSE of
clients is no longer tied to a single, joint model as in the FL
training approach, but rather to a specialised cluster model.
In the average case across the 6 datasets, FL+HC produces
models 4.7% worse than the localised approach - comparable
to centralised learning. However, the best model trained with
FL+HC significantly outperforms models trained with FL or
centralised learning but remains 3.5% worse than localised
learning. Although the FL approaches (FL and FL+HC) do
occasionally produce a slightly better model than the cen-
tralised training scenario, the mean RMSE across all datasets
shows that on average FL performance is degraded compared
to centralised learning, consistent with the findings of most
previous FL literature.

Although the base models trained with FL and FL+HC
show a higher RMSE than those trained with fully private
localised learning, we now show how the situation can be
improved if we treat FL or FL+HC as a pre-training task
to be followed by further fine-tuning on the local clients in
isolation. In the FL → LFT approach, we use each joint
model trained under FL on each of the 6 datasets and perform
a small amount of further training per client to produce
highly specialised models. The trained parameters of the
base models serve as a good initialisation point for rapid
training on the clients which often converge within just a few
epochs of fine-tuning. These personalised models exhibit a
lower RMSE than the other approaches across all datasets.
On average FL→ LFT produces models with a 4.5% lower
RMSE than localised training with the best model performing
4.9% better than the best localised model. In FL+HC →
LFT approach, clients initialise their personalised models
from the specialised model trained within the cluster each

client belongs to. This approach produces similarly perform-
ing models (4.5% better than the average and best localised
model). These personalisation approaches clearly show that
local models can benefit by learning from the energy demand
patterns of other users. FL allows for energy consumers to
contribute to the shared learning task whilst retaining the
privacy of their raw consumption data prior to privately
fine-tuning their own models to produce more accurate fore-
casts.

The datasets that included weather features (SK=6,+weather,
SK=12,+weather and SK=24,+weather) show a small improvement
in model performance in almost all scenarios compared to
datasets without such features. We would therefore recom-
mend that a load forecasting system should make use of
weather related features if possible as these indicators can
help the model to make better predictions on the whole.

B. COMPUTATIONAL EFFICIENCY
In addition to measuring the accuracy of forecasts produced
by the various training approaches, we note the computa-
tional efficiency via the number of samples passing through
the optimiser during training. In this sense we can under-
stand how many data samples are required to train the best
performing model for each training scenario/dataset. Fewer
training samples corresponds with models that can be trained
with less computational effort - a desirable characteristic if
the forecasting task is to be run at the network edge on
low-compute smart meter devices in the homes of energy
consumers. In FL it is also very desireable to reduce the
amount of communication during training which would oth-
erwise require large amounts of bandwidth. In a practical
implementation of FL, communicating large models between
household smart meters and entities coordinating the model
training could become a bottleneck in the learning process.
Any measures to reduce the total number of communication
rounds will be beneficial, therefore we present a study of
the computational efficiency of each training method within
this section. We provide results for computational efficiency
(measured in millions of samples) in Table 3. We also bench-
mark each method against the fully private localised case,
reporting average savings in computation and the savings
for the best performing models for each training scenario.
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TABLE 3. Computational efficiency (measured in millions of samples required to train top performing models) for the 6 datasets and
6 training scenarios. ‘Mean’ and ‘Best’ columns show savings in computation compared to fully-private localised learning.

In all scenarios wheremultiple specialisedmodels are trained,
we report the total number of samples required to train all
models (be they clustered or individual to each client).

Although non-private we noted that 36.6 million samples
were required on average to train the single, joint centralised
model. The fewest samples (15.6 million) were required for
the model trained using the SK=6,-weather dataset. Training
the best performing centralised model required 1.4x fewer
samples than were required to train all the localised models.
Training the individual localised models required 71.0 mil-
lion samples on average and 79.5 million samples for the best
performing model using the SK=12,+weather dataset.

Under the FL training scenario, many hundreds of commu-
nication rounds were required to reach the minimum training
loss before overfitting. Although only a fraction of clients are
selected during each communication round, training proceeds
on each client for a number of epochs. These factors lead
to a significant amount of computation in total over the
whole training operation. On average 5x more computation
is required to train the FL models vs the localised models.
The best performing FL model required nearly 4x more com-
putation to train vs the best localised models.

The FL+HC training scenario only trains a single, joint
model for a small number of rounds prior to producing
specialised models at the clustering step. Post-clustering,
each specialised model is exclusively trained on the cluster’s
subset of clients. This has the effect of drastically reducing
the amount of computation required to train each model.
In Table 3 we report the total number of samples required
to train the FL+HC models across all the clusters. There is
a drastic saving in computation in this training scenario as
FL+HC strikes a good balance between learning from all
clients initially to produce specialised models that are quick
to train. On average FL+HC requires 12.7x fewer samples to
train models vs localised training and 13.1x fewer samples to
train the best performing models.

Where FL and FL+HC are followed by a fine tuning step,
only a few epochs of training are required to produce the best
performing personalised models. Therefore very little extra
computation is required to fine-tune. As we showed earlier,

these personalised models exhibit the lowest error of all the
models we tested and FL+HC→ LFT in particular produces
low error models with ∼10x reduction in computation com-
pared to localised training.

VI. CONCLUSION
In this paper, we explored the use of FL for the purpose of pri-
vate load forecasting using an LSTM network. We compared
our results with benchmarks - a non-private centralised train-
ing approach and a fully private localised learning approach.
Additionally we investigated the use of FL+HC - a clus-
tered variant of FL shown to perform well on non-IID data.
We determined that FL approaches can outperform cen-
tralised learning but perform worse than localised learning.
We presented favourable results however, when a personalisa-
tion step is applied to the models trained by FL and FL+HC.
In this case model performance can be improved by up to
5% compared to localised learning while still retaining the
privacy of the raw energy consumption data.We also reported
the computational efficiency of the various training methods,
concluding that FL+HCand FL+HC followed by fine-tuning
result in vast computational savings (on the order of 10x
reduction) in the number of samples required to train the best
models. Finally we provide some brief advice on aggrega-
tion of predictions after the training procedure to inform the
design of a complete privacy-preserving training/inference
framework for load forecasting.
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