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ABSTRACT In light of the energy transition, it becomes a widespread solution to decentralize and to
decarbonize energy systems. However, limited transformer capacities are a hurdle for large-scale integration
of solar energy in the electricity grid. The aim of this paper is to define a novel concept of renewable
energy hubs and to optimize its design strategy at the district scale in an appropriate computational time.
To overcome runtime issues, the Dantzig–Wolfe decomposition method is applied to a mixed-integer linear
programming framework of the renewable energy hub. Distributed energy units as well as centralized district
units are considered. In addition, a method to perform multi-objective optimization as well as respecting
district grid constraints in the decomposition algorithm is presented. The decomposed formulation leads to a
convergence below 20 min for 31 buildings and a mip gap lower than 0.2%. The centralized design enhances
the photovoltaic penetration in the energy mix and reduces the global warming potential and necessary
curtailment in order to respect transformer capacity constraints.

INDEX TERMS Renewable energy hub, decomposition, solar energy integration, district energy system,
multi–objective optimization, transformer capacity.

ACRONYMS
ADMM alternating direction method of multipliers.
AR annual revenues.
BES building energy system.
CAPEX capital expenses.
DWD Dantzig-Wolfe decomposition.
GU grid usage.
GWP global warming potential.
KPI key performance indicator.
MILP mixedinteger linear programming.
MOO multi-objective optimization.
MP master problem.
OPEX operational expenses.
PV photovoltaic.
PVC PV curtailment.
PVP PV penetration.
SC self-consumption.
SP subproblem.
SS self-sufficiency.
TOTEX total expenses.

I. INTRODUCTION

THE electrification of the building sector and the simul-
taneous increase of locally generated electricity from

renewable energy sources, is one of the most promising mit-
igation pathways in the battle of climate change. However,
50% of the global final energy use in residential buildings
is related to thermal not electrical end-use [1]. This shows
that the plan of decarbonizating the building stock requires
a holistic concept, following a multi-energy approach. Addi-
tionally, the volatile power generation, which is caused by
the fluctuation of solar irradiation, challenges the capacity
of the electrical power grid [2]. Therefore, in addition to
maximizing the solar integration, it is important to reduce
the interaction of building energy systems (BESs) with the
electrical power grid. These requirements are fulfilled by the
concept of energy hubs. However, the precise definition is
difficult to pin-point.

A review with more than 100 contributions in the field
of energy hubs has been provided by Mohammadi et al. [3].
The demonstrated consensus was that an energy hub is
a place, which has in-flows, out-flows and considers the
interconnection of multiple energy carriers. Additionally, the
aspect of optimally controlling the operation of an energy
hub has been included in most studies. The optimal invest-
ment of equipment for the energy hub was in general
not considered. Nevertheless, Maroufmashat et al. [4] have
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TABLE 1. Limitation of decomposition approaches.

considered different pre-defined energy hub scenarios and
the interaction between a collection of energy hubs. The
result has shown that the importance of the interactions
increased with the number of integrated hubs. A maximum
of three interconnected energy hubs have been studied by
Maroufmashat et al. [4].

Upscaling a collection to contain several interconnected
energy hubs is computationally problematic as the runtime
increases exponentially with the number of buildings. The
goal is to find an algorithm, which can optimize, with suf-
ficient speed and accuracy, the schedule and the design of
an energy system considering several dozen buildings. It is
indeed an ongoing discussion in the field that researchers seek
for the most suitable method to reach this goal. An overview
of the state-of-the-art is presented in Table 1 and further
discussed in the following.

One option is the reduction of the spatial resolution
using typical buildings as demonstrated by Stadler et al.
[5]. Whereas these aggregation methods effectively decrease
the computation time, they often oversimplify the problem
and render the individual BES design impossible. There-
fore, this approach is not suitable for distributed energy
systems that require a low level of detail. Decomposition
methods are seen as the best candidates to handle the increas-
ing complexity of energy system models. A good overview
about mathematical decomposition methods has been pro-
vided by Grossmann et al. [11]. The main and most common
approaches are bi-level, Benders and Lagrangean decomposi-
tion [11]. A popular method to investigate the scheduling and
design of energy systems is the bi-level decomposition [6].
The method relies on a heuristic approach and has, therefore,
a high computational time. Morvaj et al. [7] have reported a
runtime between 12h-30h for an optimization of 5 buildings.
In contrast, the Benders and Lagrangean decomposition effi-
ciently decrease the optimization runtime. The difference
between the two methods is that the former deals with linking
variables and the latter deals with linking constraints. These
linking terms are the main reason for the optimization to
become computationally expensive since they are linking
several independent problems. The basic principle of these
decomposition methods is that the problem is split into a mas-
ter problem (MP), handling the linking terms, and subprob-
lems (SPs), which are the resulting, independent sub-parts
of the original problem. The advantages of the Lagrangean
and Benders decomposition are the convergence guarantee,
the speed and the ease to scale up the optimization problem

with the parallelization of solving the SPs [12]. The drawback
of the Benders decomposition is the incapability to handle
integer variables in the SPs [8], which are a requirement for
taking decisions about the energy system. There are proposed
solutions that overcome the issue for a limited number of inte-
gers, such as by Fakhi et al. [8], but these remain insufficient
for the optimization of district size energy hubs.

The Lagrangean decomposition has been further developed
to the alternating direction method of multipliers (ADMM)
and Dantzig-Wolfe decomposition (DWD) [13]. The ADMM
is an extended version of the augmented Lagrangean method.
It handles optimization problems that can be split into two
main objective functions. The convergence is guaranteed [14]
but only for the limited number of two splits [9]. Addi-
tionally, the ADMM is computationally outperformed by the
DWD [10].

The DWD algorithm allows individual design and schedul-
ing of distributed and centralized energy units within entire
district energy systems. It overcomes the scalability issue
of the ADMM [12] as well as the limitations of presented
state-of-the-art methods in Table 1. In addition, the algorithm
is straightforward to implement as the SPs require minor
adaptations during the re-formulation in order to obtain the
decomposed problem [15]. Historically the DWD has been
designed for linear problems. However, Harb et al. [16] and
Schütz et al. [15] have demonstrated how it can be applied to
mixed-integer linear programming (MILP) problems. Neither
of both studies has considered a multi-objective optimization
(MOO) framework in its optimization of energy hubs at the
district scale.

Literature in the field of the coordinated design and
operational scheduling of energy hubs at the district
scale has revealed that the computational effort remains
a major hurdle. Even with the great simplification of
aggregating down to 4 buildings, the runtime reported by
Yang et al. [17] is close to 6 hours. Applying decomposition
strategies Wakui et al. [18] have reported a runtime between
2-55.5 hours for a single optimization of 5-100 buildings.
Schütz et al. have required [15] 2.6 hours for an optimization
of 10 buildings. Reviewed studies have often oversimplified
the model considering only the grid operation or the electric-
ity layer [3].

Based on the main findings reported in the aforemen-
tioned literature review, this work contributes to the following
research topics:
• How can an optimization framework of an entire district
be solved in acceptable runtime and accuracy using the
DWD?How canmulti-objective optimization be applied
to the DWD?

• What is the benefit of a community-based design and
operation of energy hubs? Thereby, including the fol-
lowing aspects:
– investment decisions for central and distributed

energy units;
– multi-energy systems, integrating not only electri-

cal but also thermal energy demands;
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– interactions of distributed energy systems within
the community for both the optimal design as well
as optimal scheduling;

– the potential of synergies within distributed renew-
able energy hubs with respect to grid-aware design
and to overcome limitations imposed by the power
grid;

II. MATERIALS AND METHODS
A. OVERVIEW OF THE COMPACT MILP FORMULATION
The novelty of this work is based on the concept of renew-
able energy hubs at different scales that includes investment
decisions. A renewable energy hub is defined as a center of
optimally interconnected energy carriers that contains con-
version and storage units and maximizes its own usage of
renewable energy sources. A renewable energy hub is embed-
ded in a superior network and considered at different scales.
The decisive factor is the level at which investment decisions
are made.

The MILP problem formulation of the renewable
energy hub is based on the modeling technique of BES
by Stadler et al. [5], which was further developed by
Middelhauve et al. [19]. Three types of energy demands are
considered: space heating, domestic hot water and electricity.
Each BES is connected to utility grids (natural gas, fresh
water and electricity) and contains energy conversion and
storage units. A smart space heating management is con-
sidered based on a thermal 1R1C model of the buildings.
Optimal scheduling is included while respecting energy and
resource balances as well as the heat cascade. The main
decision variables are the decision to install a unit (binary
variables), the size of the unit in case it is installed (con-
tinuous variables) and the orientation of photovoltaic (PV)
modules. Space heating and domestic hot water demands
can be supplied by a gas boiler, an air-water heat pump or
two electrical heaters and two thermal storage tanks, one for
each thermal demand. Electricity can be generated by PV
panels, which can be mounted on the roofs and facades of
buildings, and stored in lithium batteries. Annual time series
are aggregated to typical and extreme operating periods with
the K-medoids clustering algorithm. Daily cyclic constraints
are applied to the storage technologies. In the following the
main modeling equations are outlined based on four main
sets, which are the unit U, the typical period P, the timestep
of the typical period T and the building B.

As the scale of the renewable energy hub is defined by
the level at which the investment decisions are taken, there
are two different scales considered in this work: the building
and the district scale. If the investment decisions are taken
from the perspective of the building’s owner, the energy hub
is at the building scale. In case the investment decisions are
taken from the perspective of the community, the renewable
energy hub is considered at the district scale. Therefore, a dis-
trict can either be considered as a collection of energy hubs
at the building scale or as one energy hub at the district scale.

FIGURE 1. Application of the DWD principle [10] to the design
and operation optimization of centralized energy systems.

The former corresponds to a decentralized design strategy, the
latter to a centralized one. Since a compact formulation of the
centralized strategy is computationally infeasible, the model
is decomposed.

B. GENERAL STRUCTURE OF THE DECOMPOSITION
Similar to other decomposition strategies, the problem is
split into a MP and several SPs, when performing the
DWD. The MP is a reformulation of the original problem,
whereas the SPs are independent parts within the original
problem. The SPs are usually linked to the overall problem
with only a few constraints. Thus, independent subblocks and
their linking constraints need to be identified in the compact
formulation in a first step. In the case of district energy sys-
tems, it translates into building energy systems as subblocks
and network balances as their linking constraints (Figure 1).
In a second step, the SPs are substituted in the MP by a linear
combination of their extreme points. The Minkowski’s repre-
sentation theorem states that a bounded problem is identical
when only described with its extreme points [12]. In the
DWD method, this behavior is exploited for moving most of
the constraints to the SPs, leaving only the linking constraints
and the linear combination of extreme points in the MP. For
the application to district energy systems, this translates into
the network model as MP, which considers different optimal
solutions from the SPs (Figure 1). The connection of the MP
to the SPs is established in two ways: the SPs send their
optimal design proposals to the MP, whereas the MP sends
price signals to the SPs. The price signals represent incentives
to change the design of the SPs in order to improve the overall
objective of the district.

The application of the DWD algorithm to the framework
of renewable energy hubs is summarized in Table 2. The SPs
correspond to individual BESs and the MP to the district
model. The latter considers all network constraints, such
as the electricity balance at the transformer and electricity
exchanges within the district.

The advantage of this method is that it exploits the natural
structure of a district energy system and single buildings
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TABLE 2. DWD Algorithm and the corresponding part in the
decomposition of renewable energy hubs at the district scale.
Interpretation of dual values depends on the corresponding
constraints.

can be included with their own characteristics. Furthermore,
this structure conveniently allows for using the decentralized
approach, which is detailed in [19]. Only the objective func-
tions have to be adjusted in order to formulate the SPs.

C. MASTER PROBLEM
The MP consists of all aspects which are linking the SPs.
Thus, in the application of centralized planning of renewable
energy hubs, the MP contains all network-related equations,
such as the electricity grid, and centralized units or con-
straints. The overall aim of the MP is to coordinate operation
and design proposals within the district and to minimize
exchanges to/from the district. The design proposals include
the investment decisions of technologies, the natural gas costs
and the exchange schedule of the SPs within the district
network.

In the following, the MP is detailed. The main sets remain
unchanged, the additional set I keeps track of all iterations of
the algorithm. Dual variables are linked to their specific equa-
tion with the expression v [ ] and addressed at a later point
in this section. Variables are specified with bold characters.

0 ≤ λi,b ≤ 1 ∀i ∈ I, ∀b ∈ B (1a)∑
i∈I

λi,b = 1 ∀b ∈ B v [µb] (1b)

The new decision variable of the MP is λ, which decides
for (λ = 1) or against (λ = 0) proposals. The optimal solu-
tion is a linear combination of these points [12]. Convexity
Equations 1a and 1b ensure that a proposal can be chosen
maximal once and that the linear combination of all selected
proposals does not exceed one. The dual variable associated
to (1b) is µ.∑

i∈I

∑
b∈B

λi,b ·
(
Ėgr,+i,b,p,t − Ė

gr,−
i,b,p,t

)
· dp · dt = Etr,+p,t − E

tr,-
p,t

∀p ∈ P, ∀t ∈ T v [πp,t ] (2)

The main linking constraint is the electricity balance at
the transformer tr of the district (2). The MP receives the
grid exchange Egr,± from each building b in each iteration
i, and balances the load on the transformer level. The asso-
ciated dual variable of the network constraint is π . Since the
frequency dp of the period and the timestep duration dt are
considered in (2), π and E tr,± are evaluated with their annual

impact.

Cel
=

∑
p∈P

∑
t∈T

(
cel,+p,t · E

tr,+
p,t − c

el,−
p,t · E

tr,−
p,t

)
(3)

The annual cost for electricity Cel of the district is calculated
in Equation (3). The cost is based on the total electricity
purchase of the system E tr,+ and the purchase price cel,+ as
well as the feed-in revenues cel,− · E tr,−.

Cop
= Cel

+

∑
i∈I

∑
b∈B

λi,b · C
gas
i,b (4a)

Ccap
=

∑
i∈I

∑
b∈B

λi,b · C
cap
i,b (4b)

C tot
= Ccap

+ Cop (4c)

The implemented objectives of the MP are presented in
(4a-4c). Objectives can be the operational expenses (OPEX)
(4a), the capital expenses (CAPEX) (4b) or the total expenses
(TOTEX) (4c). Input parameters coming from the design
proposals of the SPs are the capital costs of each BES (Ccap)
and the operational expenses connected to the purchase of
natural gas (Cgas).

D. DUAL VARIABLES
The dual variables in the DWD are used as communication
between the MP and the SPs. They signal each SP how the
overall objective value of the MP would improve if they
change their contribution to a specific linking constraint.

[µb] =
1obj

1
(∑

i∈I λi,b
) ∀b ∈ B (5)

The dual variable [µ] is associated to (1b) and has the
same physical unit as the objective function. As (1b) is
defined for each building b, it translates to a dual variable
which is specific to each building b and indicates how the
network objective value changes if the SP modifies its design
proposal (5).

[πp,t ] =
1obj

1
(
Etr,+p,t − E

tr,−
p,t

) ∀p ∈ P, ∀t ∈ T (6)

The dual variable [π ] in (6) is related to the electricity
balance at the transformer (2). It indicates how much the
overall objective function changes if the electricity exchange
at the transformer varies at the timestep t in period p. If the
objective function of the MP is the OPEX, the variable [π ]
can be interpreted as electricity price (currency / kWh) within
the community. In this case, the lower bound of [π ] is the
feed-in tariff and the upper bound is the retail tariff. For
example, in times of net import at the transformer, the district
purchases additional electricity at the retail tariff. In contrast,
if a building is consuming less electricity, it would overall
save the amount corresponding to the retail tariff.
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E. SUBPROBLEM
One major advantage of the DWD is that the decentralized
MILP formulation can be used, with an adjustment of the
objective functions, to formulate the SPs. The basis of the
BES is described in [5], individual orientation of the roof sur-
faces are detailed in [20] and shadow casting among buildings
and solar integration is considered according to [19]. In the
following, the modified objective functions are detailed.

objb = min(Cop
b − µb) ∀b ∈ B (7a)

Cop
b =

∑
p∈P

∑
t∈T

(
πp,t · Ė

gr,+
b,p,t − πp,t · Ė

gr,−
b,p,t

+cng,+p,t · Ḣ
gr,+
b,p,t

)
· dt · dp ∀b ∈ B (7b)

The dual variable [π ] replaces the electricity tariffs in the
calculation of operational costs Cop (7b). The objective func-
tion for each SP (7a) is the modified OPEX subtracted with
the dual variable [µ], which is also called the reduced cost of
operation. The SP can still improve the overall objective of
the MP if the reduced cost is negative. Whereas, the SP is not
able to propose a solution improving the objective of the MP
in case of a positive value [12].

objb = min(Ccap
b − µb) ∀b ∈ B (8)

The reduced cost of investment are formulated with the dual
variable [µ], in order to minimize capital expenses Ccap.
The capital expenses calculation of a single BES is detailed
in [21]. As the linking constraint of the electricity grid plays
no role in a problem with (8) as objective, the reduced cost of
investment is independent from the dual variable [π ].

objb = min(Cop
b + C

cap
b − µb) ∀b ∈ B (9)

The reduced cost of total expenses is detailed in (9). The
incentive to change the operation schedule is accounted for
with the dual variable [π ] in the operational costs Cop, which
are calculated according to (7b).

F. TRANSFORMER CONSTRAINT
The centralized design strategy enables the usage of cen-
tralized constraints and limitations, such as the maximum
capacity of the local low-voltage transformer (10a). Since the
transformer constraint is a linking constraint, it is included
in the MP. Additional dual variables are not necessary as
the dual variable [π ] accounts for this limitation. In order
to send feasible design proposals to the MP, the SPs are
initialized with the equivalent grid usage (GU) (10b, 10c).
The GU is the ratio of the transformer capacity to the maxi-
mum uncontrollable load of the buildings Ėbui,− [22]. These
constraints (10b, 10c) are only required during the initiation
of the algorithm and are removed during the iterative process.

Ė
tr,±
p,t ≤ Ė tr,max ∀p ∈ P, ∀t ∈ T (10a)

GU± = Ė tr,max/max
p,t

(
∑
b∈B

Ėbui,−b,p,t ) (10b)

Ė
gr,±
b,p,t ≤ GU± ·max

p,t
(Ėbui,−b,p,t ) ∀b, p, t ∈ B, P, T (10c)

TABLE 3. Adjustments for the CAPEX - OPEX MOO using
ε-constraints. Objective of MP remains unchanged, the
ε-constraint is added to the MP and its dual variable is included
in the objective function of the SPs.

G. MULTI-OBJECTIVE OPTIMIZATION
Multi-objective optimization is in general necessary to detect
a selection of optimal solutions for two, or more, conflicting
objective functions. These can be used to generate path-
ways and analyze trade-offs to reach an ultimate goal. In the
decentralized approach, the MOO is an algorithm which uses
ε-constraints to generate a Pareto curve [19]. While the first
objective is optimized, ε-constraints serve as incrementally
increasing upper bounds of the second objective function.
Then, the position of the first and second objective is inverted.
In the context of the DWD, the ε-constraint translates into a
linking constraint, which impacts the entire network.

Table 3 provides an overview about the necessary changes
for generating the OPEX - CAPEX pareto curve with the
DWD. The objective function of the MP needs no adjust-
ments. The ε-constraint is added to theMP. Its connected dual
variable is [β] and it indicates how much the objective of the
MP improves in case the respective ε limit is relaxed. The
dual variable [β] is included in the corresponding objective
function of the SPs, where it serves as weight between the
conflicting objectives.

H. ALGORITHM
The DWD is an algorithm, where the set of possible solutions
in the MP increases with iteration. During the MOO all
detected proposals of one Pareto point are kept for the calcu-
lation of further points. The algorithm can be separated in four
main parts, the initialization, the iteration, the termination and
the finalization. Each part is further discussed in the following
paragraphs.

a: INITIATION
The goal of the initiation is to detect the first values of the
dual variables. The dual variable [β] is used to initialize
3 different solutions with varying CAPEX-OPEX weights of
each SP. In case of a TOTEX single-objective optimization,
[β] is initialized with the values 0.8, 1 and 1.1. The results are
communicated as first design proposals to the MP. In order
to initialize the MOO, the dual variable [β] is passed with the
values 50, 1, and 0.1 to mark the characteristic points of the
Pareto curve.

b: ITERATION
The iteration process is described in Figure 1. After the first
execution of the MP, the dual variables are sent to the SPs
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as incentive to update their proposals. All SPs are optimized
with their modified objective functions (7), (8), (9) or as in
Table 3. The new design proposals are added to the pool of
design proposals of the MP. Afterwards, the relaxed opti-
mization of the MP (continuous λ) is executed and a new set
of dual variables are calculated. The iteration continues until
a termination criteria is reached.

c: TERMINATION CRITERIA
Four termination criteria are implemented. To check the opti-
mality, the reduced cost of the last optimal proposal of each
SP is calculated. If the reduced costs of every SP are greater
than or equal to zero, no BESs can improve the overall objec-
tive any further by changing their design proposal. Thus, the
optimum is found and the algorithm is terminated [12]. Three
additional termination criteria are implemented for security
reasons: (i) the total CPU time reaches a predefined limit
(ii) the total number of iterations reaches a predefined limit
(iii) last iterations did not lead to a significant improvement
of the overall objective function.

d: FINALIZATION
When one termination criterion is satisfied, the iteration
breaks and the algorithm enters its final stage. The MP is
executed with binary decision variables λi ∈ {0; 1}. This step
is necessary to choose discrete integer decisions of the SPs.
The integrality constraints are already respected in the SPs,
this final step also respects them in the MP [15]. The final
decision for a design proposal is returned and the algorithm
ends.

I. KEY PERFORMANCE INDICATORS
In addition to the objective value, six key performance
indicators (KPIs) are used (11a)-(11f). For the sake of
readability, the values are expressed in annual terms. The
self-consumption (SC) is the share of the onsite generated
electricity Esite,+, that is consumed by the district itself (11a).
The self-sufficiency (SS) (11b) is the share of electricity
demand, that is covered by onsite generated electricity. The
PV penetration (PVP) (11c) measures the amount of onsite
generated electricity with respect to the total electricity
demand. The PV curtailment (PVC) (11d) is the share of
the onsite generated electricity that is curtailed. The annual
revenues (AR) (11e) is the benefit from selling onsite gen-
erated electricity to the grid and from avoiding electricity
imports. Finally, the global warming potential (GWP) (11f)
is the sum of the emissions related to the operation Gop (11f)
and constructionGbes of the BES.A dynamic emission profile
is taken for the carbon content of the electricity from the grid.
More information on the KPIs calculation is given in previous
work [23].

SC = (Esite,+ − E tr,−)/(Esite,+) (11a)

SS = (Esite,+ − E tr,−)/(Esite,+ − E tr,− + E tr,+) (11b)

PVP = Esite,gen/(Esite,+ − E tr,− + E tr,+) (11c)

PVC = (Esite,gen − Esite,+)/Esite,gen (11d)

AR = (cel,+ · SC − cel,− · (1− SC)) · (Esite,+) (11e)

Gop
=

∑
p∈P
t∈T

(
gel,TRp,t · (E

tr,+
− E tr,−)+

∑
b∈B

gngp,t · H
gr,+
b,p,t

)

(11f)

J. APPLICATION
The general modeling framework presented in the previous
sections A-J is applied to a specific district. The aim of the
application is not necessarily to arrive at generally applicable
results, but rather to demonstrate the potential of the proposed
algorithm and show the benefits of centralized optimiza-
tion of distributed energy systems. The DWD algorithm was
applied to a residential district with a mix of 31 single- and
multi-family houses, all connected to the same low-voltage
transformer. The district is located in the climatic zone of
Geneva, Switzerland. Weather data were clustered into ten
typical days. All roof surfaces of the district were integrated
with their individual orientation as described in [20]. The
sources of the buildings and weather data have been further
detailed in [19]. The four termination criteria were set to
1) a maximum of 9 iterations 2) a maximum runtime of
20 minutes 3) an improvement of less than 0.005% during
the last 5 iterations and 4) the reduced costs of all SPs
greater or equal 0. The problem was formulated in AMPL
Version 20210220 and solved with CPLEX 20.1.0.0 on a
local machine with the following processor details: Intel(R)
Core(TM) i7-9700KCPU@3.60GHz. The relative tolerance
between relaxed linear problem and best integer solution was
set to mipgap=5e-7.

III. RESULTS AND DISCUSSION
The goal of the results section is first to validate the decom-
position algorithm and second to demonstrate its potential
on a real-world application. The validation is carried out
by comparing the result of the decomposed optimization to
the corresponding result of the compact formulation. These
two solving strategies of the same problem should ideally
result in the same outcome. The goal of the second part of
the results section is to highlight the benefits of considering
renewable energy hubs at the district scale. Special focus
is given to the grid-aware integration of solar energy. The
benefits of coordinated design of distributed energy systems
are highlighted by the comparison of the centralized design
strategy to the decentralized design strategy, as analyzed
in [19].

A. CONVERGENCE AND VALIDATION
The motivation to use a decomposition algorithm is to
ease computational effort while keeping the optimality and
accuracy of the solution. The validation of the algorithm
was achieved by the comparison to the compact problem.
Figure 2 shows the runtime comparison of the compact
formulation with the corresponding decomposed problem
for the different district sizes. The objective function was
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FIGURE 2. Comparison of the computational effort with and
without decomposition of the problem.

FIGURE 3. Convergence of the DWD. Percentage error of the
objective function with respect to the corresponding compact
model for each iteration.

TOTEX. The runtime of the compact formulation followed
an exponential trend, whereas the effort of the decomposed
formulation increased linearly (Figure 2). Minor variations
of the CPU time from the linear trend line are explained by
the different number of iterations needed to terminate the
algorithm. The analysis of an entire low-voltage grid requires
the integration of several dozen buildings. Therefore, The
optimization of the renewable hub at the district scale is
only possible with the decomposed formulation. Figure 3
shows the convergence of the iterative decomposition pro-
cess. At each iteration, the current objective function was
compared to the final objective function of the correspond-
ing compact formulation (Figure 3). The initialization was
already close to the optimum with less than 2% divergence.
It can be observed that the bigger the problem size, the
smaller was the error in the first iterations. In general, the
error dropped below 0.25% already in the first two iterations.
The algorithm was terminated after between 5 and 9 itera-
tions. The latter is the maximum of allowed iterations, which
was set as termination criterion. In Figure 3, one additional
iteration was added for each optimization to visualize the
impact of the finalization. During the finalization, the MP
is executed one more time with binary instead of continuous
variables. This introduced an error that is neglectfully small
and decreased with an increase of the problem size. The

FIGURE 4. Validation of the decomposed formulation.
CAPEX - OPEX Pareto curve of the MOO for a district size of
11 buildings.

result of the MOO between the CAPEX and the OPEX for a
district containing eleven buildings is shown in Figure 4. The
decomposition can be validated as also the Pareto frontier was
well detected.

B. BENEFIT OF CENTRAL DESIGN STRATEGIES
The ongoing discussion in the field of planning and con-
trolling urban energy systems comprises two fundamentally
different strategies. Both strategies are mirrored in the two
different optimization approaches of the paper. The decen-
tralized optimization considers the renewable energy hub
optimal from the perspective of building owners and the
centralized optimization from perspective of the entire com-
munity. To reach the optimum with a centralized approach it
is assumed that a central actor is investing and operating the
district. Such actors correspond to distribution system oper-
ators, private companies or community associations, whose
benefits are the improved operation and investment strategy
of the district. The aim of this section is to analyze the
magnitude of these benefits.

The result of MOO of both optimization strategies is dis-
played in Figure 5. The annual OPEX ranged from 31 to
10 CHF/m2. TheminimumCAPEX and themaximumOPEX
were the same for both strategies, around 1.4 and 31 CHF
per energy reference area, respectively. This is because there
are no centralized or interacting units between buildings
in the solution with the lowest CAPEX. As a result, the
cheapest investment for each building is also the cheap-
est investment for the community. The centralized strategy
remained non-dominated in each scenario along the Pareto
curve. Using the centralized strategy, a 5% increase in the
CAPEX allowed for a 30% decrease in the OPEX. In contrast,
the decentralized design strategy required an increase in the
CAPEX bymore than 180% (from 1.4 CHF/m2 to 4 CHF/m2)
for the same reduction in the OPEX. This behavior can be
explained in part by how generated electricity is used in both
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FIGURE 5. TOTEX and share of re-imports of generated
electricity for increasing OPEX.

strategies. Initial reductions in the OPEX were characterized
by switching from natural gas resources to electricity, fol-
lowed by the integration of renewable energy sources, and
finally by the installation of electricity storage systems (i.e.,
batteries). The centralized design strategy produced results
with a higher share of re-imports. Hence, the centralized
strategy allowed an improved coordination of the district. The
share of re-imports remained higher for the centralized design
strategy, even when electricity production is increased in the
district. To decrease the annual OPEX below 12 CHF/m2,
electrical storage systems were used, demonstrating another
benefit of the centralized approach: whereas re-import share
further decreased to 0 when using the decentralized strategy,
the coordinated operation allowed the share of re-imports to
be increased to 30%.

In MILP optimization, even a small difference in objec-
tive values can lead to very different system configurations.
To have a clearer picture of the potential of centralized opti-
mization, a comparison was made with identical objective
values. As the centralized optimization was non-dominated
along the Pareto frontier, the objective value of the centralized
strategy was increased in order to meet the minimum TOTEX
of the decentralized strategy.

The KPIs obtained from this analysis are shown in
Figure 6. The PVP and SS of the centralized solution was
40% and 20% higher than in the solution identified using the
decentralized strategy, respectively. The centralized design
strategy of the distributed energy system allowed a reduc-
tion of the GWP of more than 20% for the same TOTEX.
The coordinated investment strategy of PV panels and the
improved utilization of generated electricity allowed for an
electrification of the system without increasing the TOTEX.

With the aim of increasing the share of renewable energy
sources, the economically feasible range of solar energy in
the district is a matter of interest. From the perspective of
the investors, this includes the number of PV panels that can
be fully paid back by the end of their lifetime. From the

FIGURE 6. Comparison of optimal solutions with identical
TOTEX for a residential district with 31 buildings.

FIGURE 7. Variation of the PV yearly generation to achieve
break-even as a function of feed-in and demand prices. Point of
self-sufficiency with ideal storage, carbon neutrality with life
cycle assessment of the equipment and dynamic emission
profiles.

perspective of policymakers, this translates into the question,
how to establish energy tariffs to create incentives for a
desired PVP in the electricity grid. The cost of PV panels
per generated electricity increased with the PV investments.
In later investment stages, all profitable surfaces are covered
and less profitable surfaces, like north facades, were the only
options left. At the same time, the annual revenues decreased
with increasing investment into PV panels. The last econom-
ically feasible point occurs when the investment cost of the
PV panel and their revenues break-even.

This economic analysis was extended to a wide range
of tariffs in Figure 7. The analysis shows that PV invest-
ments started to be economically feasible at tariffs as low
as 0/12 ct/kWh or 3/10 ct/kWh for feed-in and demand price,
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FIGURE 8. Load duration curve on the local low-voltage
transformer. Comparison of three different system scenarios:
the current system, the identified system, which would be
self-sufficient with a grid round tip efficiency of 70% and the
latter system with modifications to be feasible at the
transformer.

respectively. At a feed-in price of 12ct/kWh, all PV instal-
lations were economically feasible, even at demand price
as low as 10 ct/kWh. The economic bounds of the decen-
tralized design strategy are also indicated in Figure 7. The
economically feasible region begins at much higher tariffs
(10/10 ct/kWh and 0/22 ct/kWh), further demonstrating the
benefit of a centralized, coordinated design strategy. Addi-
tionally, three points are added in Figure 7, which are the
points where the available roof surfaces, self-sufficiency and
carbon neutrality are achieved. As the amount of electricity
generated was linearly correlated with the electricity tariffs,
these points lie along a straight line. To achieve SS with
PV panels alone, storage systems are required to balance the
mismatch between electricity generation and consumption.
The point of SS therefore depends on the round-trip efficiency
of these storage systems. The SS was considered with ideal
storage systems in Figure 7. More realistic cases of SS lie
above the indicated line (8/10 ct/kWh and 0/25 ct/kWh for
combination of feed-in/demand price).

Another benefit of the centralized design strategy is the
possibility to include centralized requirements that concern
the entire system, such as the maximum capacity of the
local low–voltage transformer. The load duration curves for
different energy system scenarios are shown in Figure 8.
The energy system design, which is currently installed in
the district, lied clearly within the feasibility range of the
transformer. The current system is characterized by the
usage of gas boilers, a few heat pumps, and PV penetra-
tion so low that generated electricity is mainly consumed
within the district. The aim in coming years is to drasti-
cally increase the level of PV integration, as it has been
identified to be key on the way towards carbon neutrality
[24]. Recent studies have demonstrated that the medium
voltage level of the grid cannot host a large amount of PV
installations [2].

FIGURE 9. Peak reduction for decentralized and centralized
design strategy. a) Impact on related costs of the system and
b) resulting PVC, PVP and storage system installations.

Hence, the previously identified self-sufficient system
including grid-aware PV integration and a storage system
with a round-trip efficiency of 70% is further analyzed here.
With a peak feed-in of 1200 kW, the system exceeds the
400 kW capacity of the local transformer. A central grid
constraint limiting the exchange to a maximum of 400 kW
was imposed while maintaining the PV panel integration.
This analysis provided feasible results using the centralized
design strategy, as shown in Figure 8; however, this central
constraint cannot be imposed using the decentralized design
strategy. Therefore, the grid usage limit was split according
to the magnitude of the uncontrollable load of the buildings
(Equation 10b). This procedure did lead to feasible solu-
tions on the transformer but over-constrainted the system.
Imposing the transformer limits allowed feasible integration
of PV, but came with certain costs, which are further detailed
in Figure 9.

Peak reduction techniques are compared in Figure 9. The
cost–optimal solution for the decentralized design strategy
was to curtail excess electricity. More than 25% of PV elec-
tricity was curtailed, which decreased the PVP by 4% and
increased the OPEX by 70% at current feed-in tariffs of
8 ct/kWh. Using the centralized design strategy, however,
allowed the peak exchange to be reduced by 25% by strategi-
cally operating the district, without requiring additional PVC
or storage units. In this case, the capacity of the thermal
tanks wasmarginally increased. The remaining reduction was
achieved by a coordinated operation of the heat pumps, pre-
heating the buildings, and using west-facing facades instead
of south-facing facades as the preferred choice for PV panel
installations. However, PV curtailment was still required,
as this was not enough to be feasible at the transformer.
However, the most cost-effective solution was not to curtail
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FIGURE 10. Options for overcoming limitations imposed by the
local transformer discussed in terms of increased operation
costs and needed round-trip efficiency to remain self-sufficient.

the excess completely, but purchase a central battery for peak
shaving. This purchase increased the overall CAPEX of the
energy system by less than 1%.

The baseline system is the already analyzed system, con-
sidering the current building stock with a high level of elec-
trification. Additionally to this baseline scenario, the need
of PV panels to become self-sufficient was analyzed for
different district scenarios. The identified energy systems that
are required to meet SS with a round-trip efficiency of 70%
all exceeded the capacity of the transformer. Given that the
curtailed electricity cannot be sold at feed-in price to the grid,
the OPEX increased (Figure 10).

The PVC was the most economic solution. However, once
the PV panels are purchased, curtailing the electricity or using
it within the district has the same outcome. For example,
the electricity can be used to power already installed heat
pumps in reverse mode to supply cooling demand in sum-
mer. As cooling must also be supplied during hours that are
feasible at the transformer, the cost increase of this solu-
tion compared to the baseline scenario, without cooling is
800 CHF/kWyr/yr instead of 600 CHF/kWyr/yr of capacity
shortage at the transformer. This is a benchmark price for the
reinforcements of the system or for additional investments,
which make a better use of the curtailed electricity. As elec-
tricity was curtailed in all analyzed systems, the round-tip
efficiency needed to be increased to allow the system to
remain self-sufficient. The baseline scenario required an ideal
storage system to reach SS, whereas refurbishing the building
stock led to a more realistic required round-trip efficiency
of 85%.

IV. CONCLUSION
The aim of this paper was to demonstrate the benefit of
community-based design for distributed renewable energy
hubs at the district scale. This centralized strategy is in
contrast to the decentralized strategy which focuses on the
optimal design and operation of a collection of buildings
scale hubs. The Dantzig–Wolfe decomposition method was
applied to the compact MILP formulation to access the
centralized optimal solutions in a feasible computational

time. The proposed centralized design strategy was applied to
a MOO framework of a typical central European residential
district in Switzerland; the results were then compared with
those obtained using a decentralized strategy, which focuses
on the optimal design and operation of single buildings. The
main findings are listed below and were discussed in terms
of 1) objective value, 2) PV penetration and 3) grid-aware
integration of PV units.

1) The centralized optimization led to non-dominated
solutions on the Pareto frontier and outperformed the
decentralized strategy in each scenario. The improve-
ment was especially apparent in low-investment
scenarios.

2) With the centralized, coordinated investment and oper-
ation strategy, PV panel installations were economi-
cally feasible for a wide range of tariffs, starting as
low as 3/10 ct/kWh to 0/12.5 ct/kWh for feed-in and
demand price, respectively. In general the integration
of renewable energy technologies at the district scale
was enhanced compared to the decentralized strategy.

3) The centralization of the optimization allowed a
grid-aware integration of renewable energy units. The
coordinated operation, the adaptation of the PV orien-
tations and the battery investments minimized the nec-
essary PV curtailment to respect the local low-voltage
transformer capacity.

The methodology contributed to the state-of-the art in
district energy modeling, as entire low-voltage grids can be
considered in a deterministic approach. Furthermore, the cen-
tralized strategy allowed for the consideration of centralized
as well as distributed energy units and constraints in the
renewable energy hub. A possible expansion of this work is
to integrate seasonal storage systems or district heating and
cooling network, which enable the inclusion of centralized
cogeneration units and thermal energy exchange between
buildings.
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