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ABSTRACT This paper introduces a new framework of deep reinforcement learning based protective
relay design in power distribution systems with many distributed energy resources (DERs). With increasing
penetration of power electronically-interfaced resources, conventional overcurrent relays’ performance is
rendered less effective due to the two-way uncertainties in power flow patterns. In this paper, a machine
learning-based protective relay that is designed for adaptively deciding the threshold for relay action is
proposed. The particular algorithm used is an Long Short-Term Memory (LSTM) enhanced deep neural
network that is highly accurate, communication-free and easy to implement. The proposed relay design is
tested in OpenDSS simulation on the IEEE 34-node test feeder and a collection of large synthetic feeders in
Austin, Texas area. By designing adaptability upfront, the proposed relay is shown to substantially improve
the performance of relay in terms of failure rate, robustness, and response speed, in particular in scenarios

with high level of distributed energy resources.

INDEX TERMS  Power distribution systems, protective relaying, reinforcement learning.

. INTRODUCTION

HIS paper introduces a novel Deep Reinforcement

Learning (Deep RL) based approach for robust pro-
tective relay control design in distribution grids. Recent
developments in photovoltaic (PV) and power electronics
technology have led to an increase of penetration of
distributed energy resources (DER) in distribution grids.
DERs, especially solar PVs, can provide a number of benefits
to the power system operation efficiency such as peak
load reduction and improved power quality [1]. However,
DER and emerging grid edge-level devices are increasing
the complexity of the interactions between end users and
distribution grid operators substantially, such as low or
non-existent system inertia, islanded operation and load-
side voltage security. These additional complexities pose
significant challenges for the operation and protection of the
distribution grid.

Protective relays are the safeguards of distribution systems.
The role of protective relays is to protect the grid from
sustaining faults by disconnecting the smallest practically
available faulty segment from the rest of the grid. During

the operation, a relay monitors the power grid and looks for
patterns that are associated with faults. Typical measurements
include current (over-current and differential relay), voltage
and current (distance relay), frequency or electromagnetic
wave from transients (traveling-wave relay). In power
distribution systems, time delayed, coordinated overcurrent
relays are most commonly used since many other methods
are impractical due to cost, infrastructure and grid topology
limitations.

However, it is very difficult for overcurrent relays to
accommodate the vastly different operational conditions in
real distribution grids. For feeder recloser relays, the presence
of DER within the feeder can reduce the fault current
measured at the recloser and make faults harder to detect.
The fault current contribution from DERSs to the fault will
also make the fault current observed at the fuse higher
than the current at the recloser, making coordination based
on inverse-time curves difficult [2], [3]. Moreover, even in
current distribution grids, factors like fault impedance and
load profile change are not taken into account in traditional
overcurrent protection design, resulting in problems such as
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FIGURE 1. Concept of Overcurrent and RL Protection.
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FIGURE 2. Diagram of a Simple Distribution System.

failing to detect faults near the end of a feeder, a.k.a. under-
reaching. Fig. 1 shows a conceptual comparison between
threshold-based overcurrent protection and our proposed RL
protection. Where overcurrent relays may be affected by low
fault current magnitude, our method does not suffer the same
limitation as it detects faults using the waveform patterns in
measurements.

Conventional protective relays are also designed to
function under two crucial assumptions: (i) power flow is
unidirectional from the substation towards the end users,
and (ii) the difference between operating conditions (currents
and voltages) between normal and faulted conditions are mea-
surable and significant. With the increasing popularity and
penetration of DER and grid-edge devices, both assumptions
will likely be rendered invalid [2]. For example, in the simple
circuit shown in Fig. 2, there is a distributed generator feeding
power into the grid at bus B. Under conditions where the
net power absorption of the loads at bus B and C is low,
or the output of the distributed generator at B is having a
high peak, the power flow direction in the line between A
and B will be from B to A, which violates assumption (i).
For a fault to the right of bus B as indicated in the figure, the
fault current contribution of the distributed generator could
decrease the magnitude of fault current measured at bus A
to the range of peak load current under normal conditions
and potentially violating assumption (ii). In fact, reliable
protection is becoming an Achilles’ heel that limits the
growth of DER integration for future grids.

Here we illustrate the challenges posed by DER on
the protection system using a simple numerical example.
Consider the same radial feeder in Fig. 2. This circuit has
only one load at bus C, a distributed generator is placed at bus
B. This generator is modeled as constant for the purpose of
this example with current limit to roughly mimic an inverter
based supply. The line parameters are adopted from the IEEE
4 bus feeder system. The rated current is calculated without
the distributed generator and all power are supplied by the
substation through the transmission grid. Under this simple
illustrative setting, we vary the capacity of the distributed
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TABLE 1. Fault current level under various DER fraction of total
load and fault impedance.

DER % \ Z;(Q) 0.01 0.1 1 5
0 3841 | 3.676 | 2.197 | 1.283
25 3.875 | 3.653 | 1.995 | 1.074
50 3913 | 3.629 | 1.794 | 0.877
75 3956 | 3.603 | 1.596 | 0.697

generator as a percentage of the total load, add a single-phase
fault with various level of fault impedance and record the
current at bus A. The ratio between fault current and load
current is listed in Table 1.

It can be seen that the presence of distributed generator
and fault impedance may greatly reduce the magnitude of
fault current. Usually, for overcurrent relays, the fault current
needs to be at least 2 to 3 times higher than the normal
operation current under maximum load level to detect faults
reliably. Under the impact of DER or fault impedance,
or both, the fault current magnitude can be too low to detect
for overcurrent relays. In contrast, for this simple example,
we will demonstrate that our proposed RL relay is able to
successfully detect faults under all scenarios above.

A. LITERATURE REVIEW

The improvement of protective relays in DER-rich systems
has led to a large body of literature. Most of them focus on
improving the performance of commonly used overcurrent
relays by better fault detection [4] and coordination [5].
Neural networks have been used in setting the parameters
of overcurrent relays [6]. Support Vector Machine (SVM)
can be trained to distinguish the normal and fault conditions
directly [7], [8]. A recent work [9] uses tabular Q-learning to
find the optimal setting for overcurrent relays. Most proposed
methods are still confined within the framework of inverse-
time overcurrent protection, which is considered not enough
for the future distribution grid with high DER and EV
penetration [2].

Reinforcement Learning (RL) is a branch of machine
learning that addresses the problem of learning optimal
control policies for unknown dynamical systems. RL algo-
rithms using deep neural networks [10], known as Deep RL
algorithms, have made significant achievements in the past
few years in areas like robotics, games, and autonomous
driving [11]. RL has also been applied to various power
system control problems including voltage regulation [12],
frequency regulation [13], reactive power control [14], power
quality control [15] and generator control [16]. Our previous
paper [17] was the first work to use deep RL for power system
protection. A comprehensive survey of RL applications in
power system is detailed in a recent review paper [18].

B. MAIN CONTRIBUTIONS

In this paper, we present a novel deep RL based framework to
design for robust protective relays in distribution grids with
many DERs. Key contributions are suggested as follows:
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o We formulate the design of protective relay in radial
distributed systems as a nested RL problem.

« Based on the new formulation, we proposed a novel
Long-Short-Term-Memory (LSTM)-enhanced RL algo-
rithm that leads to much more reliable and accurate
coordination of protective relays as compared to conven-
tional inverse time over-current relays.

« We develop a fully automated software interface that
complies with OpenAl Gym that is readily available to
integrate state-of-the-art machine learning packages and
commercial grade power system simulators.

This work is substantial expansion of the preliminary work
reported in [17]. Major improvements includes detailed
formulation to three-phase unbalanced scenarios, an LSTM
enhanced network model, a diverse set of test scenarios
involving large realistic systems. This paper is organized
as follows: Section II formulates the protection prob-
lem using the RL framework and introduces our nested
reinforcement learning algorithm. Section III presents the
simulation environment and test-beds used in training
and evaluation, Section IV analyzes and discusses simu-
lation results. Section V summarizes and concludes the

paper.

Il. PROBLEM FORMULATION

A. RELAY OPERATION

Here we briefly present typical operation of protective
devices using a simple distribution line in Fig. 2. There are
3 protective devices marked as red boxes along the line. The
purpose of these devices is to protect the upstream from short-
circuit fault current by breaking the electric connection using
a circuit breaker. The upstream protection device closest to
the fault (i.e. red box B for the fault shown in the diagram)
should trip to disrupt as fewer load as possible. The protective
devices are designed to coordinate with each other to provide
backup protection to improve reliability. Typically, there
are two general coordination setups for different types of
distribution systems. In long mid-voltage sub-transmission
lines where multiple relays are installed along the line, the
relays are programmed with different inverse-time curves
such that they trip with different time delays. In the above
example, the trip delay for relay A is longer than that of B by
a fraction of a second, to allow the closer relay B to trip first;
Relay A will only trip if B fails to work properly. In end-
level low voltage distribution feeders it is more common to
employ a recloser-fuse coordination in which only one relay
is placed near the source (A) and the rest of the systems are
protected by fuses (B and C). It is desired that after faults
the recloser would perform reclosing operations before the
fuses melts for transient faults, as the melting of fuses is
irreversible and introduce addition cost. This coordination
is usually implemented using slow-fast curves such that the
recloser attempts to clear transient faults by quickly opening
and reclosing, and if the fault is persistent, the fuse will melt
to clear the fault shortly after. If the fuse fails to melt, the
recloser will be locked open as backup protection.
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B. REINFORCEMENT LEARNING AND MODELING

OF RL RELAY

In RL formulations, a control problem is modelled as an
active interaction between the controller, a.k.a. Agent, and
the system, or environment, to be controlled. The system is
represented by a Markov Chain whose state evolves based
on a deterministic or stochastic transition kernel as well as
the actions of the agent. The agent observes the state of the
system and give control actions based on its policy. Each
action is assigned a reward that is based on the effect of
the action and the resulting state transition. In the process of
solving an RL problem, the agent learns a control policy that
gives the most optimal action corresponding to each observed
system state in order to maximize total expected reward.
Unlike traditional control problems in which the controller
is derived from analytical development of an explicit model
of the plant, an RL agent learns its optimal policy through
extensive observation under perturbations of the system state.
The RL agent typically assume no prior knowledge about
the system model at the beginning of learning, it then gather
experience about the system state transition and reward
by attempting different actions under different states. After
enough experience is collected, the agent will be able to
choose the actions that results in the highest long-term reward
based on the observations it receives.

We propose a RL based relay control strategy that is
adaptive and robust even in DER-rich distribution grids. The
RL relay can take the same or more measurements available
to traditional overcurrent relays and output a tripping signal
with a time delay for coordination without communication
when it detects a fault. Unlike the threshold-based fault
detection logic that are designed from a finite set of scenarios
and strong assumptions, the RL relay can learn a policy that
is based on not only the instantaneous post-fault current,
but also pre-fault condition and system dynamics from the
transient response. A flow diagram for comparison of the
concept of standard overcurrent relay and our RL relay design
is shown in Fig. 3. During the training of the RL relay policy,
the agent explores a large number of current measurement
around the time of fault events and learn the pattern
associated with those events as well as the correct response.
To facilitate the training process, a synthetic model is needed
to produce the large amount of training data. This is achieved
by building a simulation environment that can generate
random fault scenarios and adjust according to the agent’s
actions. The minutiae of implementation are discussed
in section 3.

This formulation using reinforcement learning, compared
to other machine learning based methods, has several
advantages that are especially appropriate for the decision
making of protective relays. First, most methods such as
support vector machine or artificial neural network take a
supervised learning approach, which attempts to develop
a best classifier to distinguish normal and fault conditions
from the training data-set. These methods require all training
data to be properly labeled in advance which, in this case,
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FIGURE 3. Conceptual Comparison Diagram between Overcurrent and RL relay.

means the optimal relay action and associated time delay
for each series of current measurement in the training data.
Although supervised learning methods work reasonably well
in identifying faults, it state-less structure is inherently not
compatible with consecutive and inter-dependent decisions in
online control problems. In contrast, in RL explicit labeling
of the training data is not required. The agent only need
to be told that if the action it performs is desirable, which
can be easily determined based on the status of the circuit.
In short, supervised learning is an instructive process where
the teacher need give step-by-step instructions to tell the
agent exactly what to do during training, while RL is an
evaluative process where the trainer only need to provide an
evaluation of the actions taken by the agent based on the final
outcome. The latter is more suitable in a dynamic control
problem such as in the electric grid where typically a well-
formulated objective need to be achieved. Second, it can be
difficult to incorporate the underlying model of the system
in other data-driven techniques. Consecutive measurement
taken at the current/potential transformer by relays are
determined by the network model, which is usually very
complex or computationally intensive to obtain and utilize.
However, an underlying system model is included in the
formulation of RL, and during the learning process it learns
the patterns in state transition and evolution in order to make
a series of consecutive actions to achieve a desirable final
objective.

C. MATHEMATICAL FORMULATION OF MARKOV
DECISION PROCESSES AND REINFORCEMENT
LEARNING

Next, we will proceed to give a brief review of the basic
concepts of Markov Decision Process (MDP) and RL and
then present a mathematical formulation of the protective
relay problem. This formalism will be expanded later to
formulate the optimal control for relay protection problem
under the framework of multi-agent reinforcement learning.
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A concise but more comprehensive introduction of MDP,
Dynamic Programming (DP) and RL could be found at [19].

Markov Decision Processes (MDP) is a mathematical
framework for stochastic control problems. This framework
models a control problem as a sequential decision making
problem where the environment varies partly random and
partly based on the control actions. An MDP is modeled as a
tuple with 5 elements: (S, A, R, P, y) in which S is the state
space, A is the action space. P = (P(:|s, a), (s,a) € S x A)
is the transition probabilities that corresponds to probability
of transitioning to state s’ from state s as a result of action
a.R : § x A — R is the reward function and y € [0, 1)
the discount factor. Under the RL framework, for a protective
relay, its state space S will include all information available
for observation (e.g. voltage, current or frequency); its action
space A will include all possible breaker operation; P will
be determined by the model of the distribution grid where
the relay is deployed; reward R and discount factor y will be
chosen before training to promote desirable operations.

Under each state, the action of an agent is given by its
policy 7 : & — A. A policy is usually evaluated using the
value function, V.

o
Va(s) =E[Y_ y'Rilso = s,

t=0
where R; = R(sy, w(sy)) and s;41 ~ P(st, a;). The optimal
value function, V* is the value function of the optimal policy
that gives the highest value function: V*(s) = max,; Vz(s).
The optimal policy 7* can also be obtained from V* using
the Bellman equation:

T*(s) = arg zrgi( (R(s,a) + y Z P(s'|s, a)V*(5)).

seS
The Q-value function of a policy @, O, is defined
as Qr(s,a) = E[)20y'Rilso = s,ap = al. The

Optimal Q-value function Q* is also defined similarly,
0*(s,a) = max; Qr(s,a). The optimal policy could be
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directly obtained using the optimal Q-value function as
w*(s) = argmax,cq QF(s,a) Specifically, the optimal
Q-value for tripping the breaker will be the highest when a
fault is present on the feeder, which improves the reliability
of relays; the optimal Q-value for staying closed will be the
highest when the system is under normal conditions, which
enhances the dependability of relays.

For MDP formulations, the optimal value/Q-value function
or the optimal control policy can be computed using dynamic
programming methods [20]. These explicit methods requires
the full transition probability matrix P for all possible state
variable combinations. However, in realistic problems the
exact system model is usually difficult to obtain. Specifically,
in the protective relay problem, the transition probability
represents all possible stochastic variations in the phasor
voltage and current in the network caused by uncertainties
in load profile and DER generation. Fault parameters
such as fault impedance and location are also rendering
difficult accurate determination of that probability because
some parameters of the model can vary widely from one
fault to another. Learning based methods are generally
more appropriate for such problems with high level of
uncertainties.

Reinforcement learning is a method for learning the
optimal policy for an MDP when a explicit model is not
available. In RL, the optimal policy is learned through
sequential observations and interactions with the system.
In Q-learning, which is the most commonly used algorithm
for RL, the optimal Q-value function is learned from a
sequence of interactions (s;, a;, R, s;+1). Specifically, the
Q-value function Q; is updated at each time step ¢ as:

Or1(81, ar) = O (s, ar) + as[Ry
+VI}71631§( Oi(st41, D) — Oi(st,a))] (D

where «; is the step size, or learning rate, that determines
how fast newly collected information gets incorporated to
the existing model. With an appropriately chosen o, Q; will
converge to the optimal Q-function Q* after each state-action
pair has been visited sufficiently often [20].

The standard Q-learning algorithm as described cannot
be directly used in problems with continuous state/action
space. For continuous problems, a deep neural network is
usually used as a replacement for an explicit Q-function:
0(s, a) = Q,(s, a) and n represents parameters of the neural
network. The neural network for Q-learning is usually called
Deep-Q-Networks (DQN).The ability of neural networks to
approximate any function using only input-output samples
has enabled tremendous success in many reinforcement
learning problems in different fields.

For each state-action pair (s;, a;, Ry, s;+1), the parameters
of the DQN can be updated using stochastic gradient descent:

n=n+aVQu(s,a;)
R +vy max On(st41, D) — On(st, ar))  (2)
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FIGURE 4. Model Structure of an RL Relay.

Q-learning with neural network can be improved by
implementing various upgrade techniques. Experience replay
is used as a buffer to store a batch of observations and
shuffle them before each gradient upgrade. This can help to
avoid the bias introduced by the temporal correlation among
observations obtained in a sequence. Target network is a
separate neural network model only used to temporarily fix
the gradient descent target for several steps to avoid potential
instability caused by chasing a moving target.

An Long-Short-Term-Memory(LSTM) layer [21] is used
before the fully-connected layers to extract features from
time series inputs. Using LSTM with deep reinforcement
learning [22] has received increasing attention in recent years
in time-correlated control problems. LSTM has a unique
advantage over other non-recurrent neural network models,
that is, the ability to remember what has happened in the
past. Each LSTM cell has a internal state that can be either
kept/changed/forgot for every observation it receives. This
feature is particularly useful for assessing the current state
of power systems, as it is able to adapt to the change of states
incurred by other disturbances that does not need protection
to operate (e.g. daily load curve, renewable generation
profile, etc.). Our algorithm is based upon the combination
of deep neural networks, experience replay, target network
and LSTM feature extraction as illustrated by the flowchart
in Fig. 4.

D. PROTECTIVE RELAY CONTROL AS AN RL PROBLEM

We formulate the distribution system transient process as an
MDP environment and model the relays as RL agents. For
consistency with the current protection infrastructure, each
relay is set to only observe its local current measurements
(si,), although if additional information(voltage, frequency,
etc.) is added in to the state space the RL relay would
easily accommodate them without changing the formulation
and potentially achieve even better performance. Each relay
knows the status of the local current breaker circuits, i.e.,
if it is open or closed (sﬁ ;). Each relay has a local counter
that ensures the necessary time delay in its operation as a
backup relay (sf[). These variables constitute the state s; ; =
(sf’t, sf.f . sf{t) of each relay i at time ¢. Table 2 summarizes
this state space representation. Each state also uses the past
m measurements to form a timeseries of measurement with
length m + 1. An appropriate combination of sampling rate
and length of the timeseries allow one to deal with some
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TABLE 2. Relay State Space.

State Description

B Local current measurements of past m timesteps
s?’t Status of breaker (open (0) or closed (1))
Sit Value of the countdown timer

TABLE 3. Relay Action Space.

Action Description
Qset Set the counter value to the desired number of delay steps
ag Decrease the value the counter by one

Qreset Stop and reset the counter

classes of transients that cannot be identified from phasor
measurements (such as inverter controls and limiters) in order
to determine post-transient state.

Relay should operate after faults occur. However, since
each relay is able to observe only its local state and no
communication is assumed between the relays, some implicit
coordination between relays is necessary. In traditional
overcurrent protection scheme, the coordination is achieved
using inverse-time curves that add a time delay between
the detection of fault and actual breaker operation, based
on the variation among fault current magnitudes at different
locations of the circuit. However, fault current magnitudes
can be unpredictable across different scenarios, especially
with DER and smart edge-devices. We propose another
approach (that is also amenable to RL) as follows. Instead of
tripping the breaker instantaneously, it controls a countdown
timer to indirectly operate the breaker. If a fault is detected,
the relay can set the counter to a value such that the breaker
trip after a certain time delay. The counter could be cancelled
prematurely if the fault is cleared by another protective
device. The action of each relay i at time ¢, a; ; is summarized
in table 3.

The reward given to each relay is a measure of success
for its most recent action. A positive reward is given to an
RL relay if: i) it remains closed during normal conditions,
ii) it trips the breaker after a fault in the downstream circuit
where it is the closest protection device, or when other closer
protections fail to operate. A negative reward is given if:
i) tripping the breaker when there is no fault, or the fault is
outside of its assigned region; 2) fail to trip the breaker when
a fault is present in its assigned region. The magnitude of the
rewards are designed to implicitly signify relative importance
of false positives (lack of dependability) and false negatives
(lack of reliability). The reward function for each relay is
shown in Table 4.

The transition probability in a distribution feeder with
multiple RL relays relates the change in power flow states
to the measurement and operation of RL relays. Formally, let
the global state at time ¢, 5, = (S1, 82,4, ..., Snt), denote
all nodal voltage and branch current in the system; let the
combined action at time ¢, a; = (a1, az ¢, - - . , an,t), denote
the action of every RL relay in the system. Then, the state
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TABLE 4. Reward for Different Operations.

Condition
Tripping when a fault is present
in its assigned protection region
Tripping when there is no fault
or the fault is outside its assigned region
Stay closed when there is no fault
or the fault is outside its assigned region
Stay closed when a fault is present
in its assigned protection region

Reward

Large Positive

Large Negative

Small Positive

Small Negative

of the system s; evolves stochastically based on a; plus the
variation in load profile, DER output and circuit connectivity.
Note that the global state evolution cannot be described by
local transition probabilities of individual relays because the
action of any relay can affect the states of other relays.
The global system dynamics is represented by the transition
probability P(5,41]5;, ar).

The goal in the multi-agent RL formulation is to achieve
a global optimum which maximizes the expected sum of
reward received by all relays, using only local control laws
m; on local observations s; ;: max () E[Z?io y’R‘,], ai; =
mi(s;¢). Local policies m; needs to be computed individually
as a centralized policy would not be possible due to lack of
communication.

E. ALGORITHM AND EXPANSION FOR MULTI-AGENT
PROBLEMS

Some distribution systems have multiple active protection
devices coordinating with each other. However, obtaining
the policies for a network of distributed RL relays operating
in the same system could be difficult because, 1) Normal
RL methods require the environment to appear stationary
to the agent; 2) The whole system state in a power grid is
not observable using measurements collected from only one
location. Multi-Agent-RL(MARL) [23] problems are often
untrackable and the performance of available algorithm is
generally not reliable.

We proposed a Nested Reinforcement Learning algorithm
in Algorithm 1 that cleverly takes advantage of the radial
structure of distribution systems to simplify the otherwise
difficult MARL problem. In radial distribution systems, the
dependency between the operation of coordinating relays is
uni-directional, i.e., only upstream relays need to provide
backup for a downstream relay but not vice-versa. Also,
the last relay at the load side does not need to coordinate
with others. In our nested RL algorithm, we start the RL
training from the the most remote relay from the distribution
transformer whose ideal operation is not affected by the
operation of other relays, thus can be trained using a single-
agent algorithm. Then, we can fix the trained policy for
this last relay and train the relays at one-level closer to the
substation that need to provide backup for the last relay. Since
the policy of the furthest relay is fixed, it appears like a part
of the stationary environment to its upstream neighbors which
can learn to accommodate its operation. This process can be
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repeated for all the relays upstream to the substation. This
method is analogous to how the coordination of time-delayed
overcurrent relays is performed. The order of training can be
determined by network tracing using a post-order depth-first
tree traversal with the substation being the root. This nested
training approach which exploits the nested structure of the
underlying physical system allows us to overcome the non-
stationarity in generic multi-agent RL settings. This approach
is also used to help the RL recloser relay learn to coordinate
with fuses by learning their operation patterns during training
to achieve a fuse-saving scheme.

Algorithm 1 Nested Reinforcement Learning Algorithm

Initialize DQN of each relay i with random weights
Sort all relays based on system topology
for relay i = 1ton do
for episode k = 1to K do
Initialize simulation with random system parameters
for time stepr = 1 to T do
Observe the state s;; for all relays
for relay j = 1 to i (Trained Relays) do
Select action using the trained policy as:
aj,r = argmaxy Ops (5j,r, @)
end for
forrelayj =i+ 1tondo
Select do nothing action, aj; = 0
end for
With probability € select a random action a;,
otherwise select the action with the highest Q value:
aj; = argmaxg On, (i, @)
Observe reward R; ; and next state s; ;41
Store (s ¢, ait, Rit, $i.1+1) in the replay
buffer of relay i
Sample a batch of past transitions from replay
buffer and update the DQN parameter w;
end for
end for
end for

lll. EXPERIMENT ENVIRONMENT AND TEST CASES

A. SIMULATION ENVIRONMENT

The simulation environment is built by packing the OpenDSS
APIs in a Python class inherited from the OpenAl Gym [24]
to improve accessibility. We note that this setting can
potentially be used in a number of other research problems
addressing the distribution systems operation using machine
learning. The RL algorithm is programmed in Python using
open-source machine learning packages Tensorflow [25]. The
hyper-parameters of the DQN for each relay are selected
through random search are are listed in Table 5 to serve as
a starting point for potential replications of the works.

B. TEST SYSTEM MODELING
We first use a common benchmark, the IEEE 34-bus test
feeder (Fig. 5), to test the performance of RL based recloser
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TABLE 5. DQN Hyper-parameters.

Hyper-parameter Value
LSTM Cell Number 70
Hidden Layers 256/128
Activation ReLU/ReLU/Linear
Target Network Update Rate 0.005
Optimizer and Learning Rate Adam, 0.0001
48
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FIGURE 5. IEEE 34 node test feeder.

TABLE 6. Difference Between OpenDSS and IEEE Solution.

% Error Va Vi Ve
Average 0.179 0.240 0.023
Maximum 0.637 0.554 0.066

relay control. The test cases are replicated in OpenDSS using
the same parameters provided in IEEE publications [26].
Overall, OpenDSS power flow result and IEEE results agree
closely, while the difference is mainly caused by aggregating
distributed loads in a dummy bus at the midpoint of each
branch. The percentage difference of node voltages between
the OpenDSS simulations and IEEE published values are
listed in Table 6. We also test our RL relay algorithm
in a collection of large realistic synthetic distribution
feeders in Syn-Austin-TDgrid-v03 [27]. This dataset contains
448 feeders around 140 substations in Austin, TX, most are
low-voltage end level distribution circuits with detailed fuse
configurations. The RL recloser relay is trained to coordinate
with the fuses specified in the dataset for each feeder. Since
the test cases do not specify the short-circuit current capacity
of the source, the baseline values are selected accordingly
from the IEC 60076-5 standard based on the voltage level of
each circuit.

Modifications to the original cases are done when
initializing each episode to simulate the real fluctuations
of distribution grids. An episode is defined as a short
simulation segment that contains a fault. A scenario is
generated for each episode using a Monte-Carlo approach
with a random combination of load and DER generation
profile, fault parameter and fault location. The load and
DER generation capacities are sampled from the COVID-
EMDA+ dataset [28], which has the real hourly renewable
generation and load data for cities within each RTO region.
In the beginning of each episode, a random hour is chosen
from the year 2019, and the recorded load profile and PV
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TABLE 7. Performance of Overcurrent Relays in Base Case.

Type [[ Occurrences [| Probability
1IEEE34
False Alarm 0/ 5000 0 %
Fail to Detect 45 / 5000 0.9 %
Synthetic Austin

False Alarm 0/ 5000 0 %

Fail to Detect 168 / 5000 3.36 %
Failed Coordination 494 / 5000 9.88 %

capacity for Houston, Texas corresponding to that time is
used to scale the load and PV generators. The locations are
randomly scattered throughout all single-phase loads. The
randomization of DER placement is only meant to provide
singular experimental scenarios, although we are aware of
the fact that the placement will have an impact on relay
performance and would require more thorough analyses. For
larger systems, techniques in [29] could be used to reduce the
amount of computation power required.

In the middle of an episode, a random fault is added to the
system. The fault will occur in a random line and phase(s),
have a random impedance from 0.001 ohm to 20 ohm.
All types of faults (SLG, LL, LLG, 3-phase) are possible.
To match realistic scenarios in distribution lines, single phase
faults have the highest chance to be selected and 3-phase
faults have the lowest chance. The performance of the RL
relays are evaluated by running a large number of random
episodes. In the following demonstration, 5000 independent
episodes was used for evaluation under each type of scenario.

C. OVERCURRENT PROTECTION

To establish a baseline for comparison, a simple overcurrent
recloser is placed at the substation and is configured to
respond to faults in the distribution feeder. The settings of the
overcurrent recloser relay is assumed to be twice the nominal
current under the base case with a time dial of 0.1, in which
the load capacities are the same as original numbers in the test
cases and the substation transformer is the only power supply
for the feeder. Since load profiles are normalized between
0 and 1, the original load capacities will be the maximum
load in all simulated scenarios.

The fault detection of the overcurrent relays are tested
under the basic IEEE 34 node feeder and one synthetic Austin
feeder without considering any DER or load variation. The
results in Table 7 shows the overcurrent relays are quite
reliable under the static environment for a simple circuit.
More specifically, the few times the overcurrent relays fail
to detect faults in the IEEE 34 bus case are for single-phase
faults in the 4.16 kV buses (888 and 890) with a relatively
high fault impedance. However, for a larger system (the one
used has 379 buses) with many branches, the performance of
overcurrent protection becomes less desirable.

IV. SIMULATION RESULTS

A. PERFORMANCE METRICS

In this section we present and discuss the performance of our
Nested RL algorithm for protective relays. We compare the
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TABLE 8. Failure Rate of Relays Under 30% DER in IEEE 34 Bus
Feeder.

RL Based Relay
Scenario False Operation Occurrences Probability
No Fault Trip 0/ 5000 0.00 %
Faulted No Response 24/ 5000 0.48 %
Overcurrent Relay
Scenario False Operation Occurrences Probability
No Fault Trip 0/ 5000 0.00 %
Faulted No Response 826 / 5000 16.52 %

performance with conventional overcurrent relay protection
strategy. The performance is evaluated in three aspects:

Failure Rate: A relay failure happens when a relay fails to
operate as it is expected to do. For each episode, we determine
the optimal relay action from the type, time, and location of
the fault, and compare it to the action taken by the RL based
relay. We evaluate the percentage of the operation failures of
the relays from 3 different aspects: when there is (i) no fault
in the system; (ii) detection of faults; (iii) coordination with
other protection equipment.

Robustness: The load profiles in power distribution
systems is a combined result from factors including renew-
able generation, load ramping, weather and social events.
Moreover, both the total load capacity and renewable
penetration are expected to grow consistently each year.
Increase in the load capacity can cause a higher peak load
and high renewable penetration can increase the variance
of the load profile. The rating and capacity of transmission
and substation equipment, which is reflected in simulation
as the short-circuit capacity (SCMVA), also changes alone
the upgrade and reconfiguration of transmission system and
substation equipment. It would be desirable if the protection
system is robust against such changes to avoid the additional
cost introduced by re-analyzing and re-programming the
relays after deployment. We evaluate the performance of RL
relays when the operating condition exceeds the nominal
range.

Response Time: The response time of RL relay is defined
as the time difference between the inception of the fault
and the relay action. Response time is extremely critical in
preventing hazards from cascading failures as well as saving
fuses from melting unnecessarily. We compare the response
time of the RL based relays with the conventional overcurrent
relays.

B. PERFORMANCE: BENCHMARK CIRCUIT - IEEE 34

We first test the fault detection performance of our RL
algorithm for a single recloser control in a common
benchmark system. The IEEE 34 bus feeder as shown in Fig. 5
is used in this experiment. The simulations are conducted
separately with overcurrent protection and RL protection
programmed in the same simulation setting. The simulation is
run for 5000 randomly generated episodes and the operation
of RL relay and overcurrent relay is logged and compared.
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FIGURE 6. Pre-fault and Faulted Current Distribution at Bus 800,
Estimated from Samples Recorded in 5000 Scenarios.

TABLE 9. Robustness Against Peak Load and DER Increase in
IEEE 34 Bus Feeder.

Peak Load Increase +10 % +20 % +30 %
RL Failure Rate 0.22 % 0.16 % 0.04 %
Overcurrent Failure Rate 3.28 % 2.76 % 2.34 %
Peak DER Increase +10 % +20 % +30 %
RL Failure Rate 0.52 % 0.56 % 0.62 %
Overcurrent Failure Rate 20.96 % 22.36 % 23.8 %
SCMVA Variation 60 % 80 % 120%
RL Failure Rate 0.52 % 0.48 % 0.50 %
Overcurrent Failure Rate 17.12 % 16.80 % 16.02 %

Table 8 summarizes the failure rate performance of both
the RL relay and overcurrent relay in 34 bus test feeder. The
RL based relays are extremely accurate even under very high
DER penetration levels. The fault current contribution from
DER and fault impedance can, under many cases, reduce
the magnitude of fault current measured at the substation
(bus 800) considerably. As shown in Fig. 6, the fault current
magnitude can be very close tho the normal load current range
for faults near the end of the feeder, high-impedance faults or
faults in the two 4.16kV buses. Under these scenarios, a fixed
pickup current can never completely separate the normal and
fault condition because their distributions are overlapping.

To quantify the robustness of RL based algorithm against
peak load variations, the total load capacity the system is
increased to up to 30% more than the peak capacity used
to generate the training data. In creating the validation data
for robustness assessment, we focus on the robustness only
when the system load is around the peak. For evaluating
the robustness at 10% higher load, the data is only selected
when the system load is between 100% and 110% of the
original capacity. Note that the model and policy of the RL
relay remain unchanged, which means the data samples at
the higher load are not used in training. The performance
of RL and overcurrent relay under higher peak is shown
in Table 9.

Similarly, we evaluate the robustness against potential
increases in DER penetration and variation in SCM VA rating
of the source. As the capacity of DERSs in distribution systems
is expected to increase over time, it is desirable that protection
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TABLE 10. RL Response Speed in IEEE 34 Bus Feeder.

Delay 1 Step
Occurrences 0/ 5000

2 Step
4981 / 5000

3 Step
17 / 5000

4 Steps
2/ 5000

devices can reliably function without the need to re-configure
their settings. In this experiment, the RL relays are trained
using data created assuming an up to 30% DER penetration
as described in Sec. IV, B. The obtained policy is tested under
scenarios where the DER penetration is increased above
30%. The results are shown in the bottom half of Table 9.
In all episodes where RL relay failed, the fault is located in
the two 4.16 kV buses 888 and 890 with a relatively high
fault impedance. In these cases, the rising edge in the fault
current measured by the RL relay is not distinct enough to be
detected. This location dependency may explain why the RL
failure rate is not sensitive to change in DER and SCMVA
level.

We also measure the response time during the tests,
quantified in terms of the number of simulation steps where
each simulation step is 20 ms. This step length is limited by
the computation speed of the deep neural network model,
which could be significantly improved with highly likely
advances in hardware and software. The RL relays have
shown a fast response time as listed in Table 10, the
longest delay is 4 simulation steps which corresponds to
80 ms. Moreover, the fault detection time of RL relay is
not explicitly correlated with fault current magnitude, and
is much faster than the melting curve of typical time-delay
fuses under all scenarios. We note that, in practice however,
the response time could be limited by the data acquisition
rate of measurements instruments. This fast response time
also allows an ample time window for additional confidence
checks, during which successive flags can be used to reduce
false-positives even further.

C. PERFORMANCE: LARGE CIRCUITS - SYNTHETIC
AUSTIN FEEDERS

Many real low-voltage distribution feeders have a large cir-
cuit with multiple long branches. These large feeders usually
have multiple fuses along the feeder lines that coordinate with
the recloser at the source to provide additional reliability. The
coordination between the recloser and fuses, i.e. the “fuse-
saving scheme”, consists a vital part of the proper functioning
of feeder protection. Faults in distribution systems can be
roughly classified as transient or persistent fault. Transients
faults (e.g. arc, lighting current surge, animal contact) can be
cleared by briefly de-energizing the circuit, a.k.a reclosing,
for a very short time and re-connect; persistent faults (e.g.
downed conductors, exposed cable) are present regardless of
whether the circuit is energized and thus can not be restored
by reclosing operations. During faults, it is usually desirable
for the substation recloser to quickly operate for a few times
to clear transient faults and prevent the fuses from blowing
unnecessarily. For reclosers, the quick detection of faults is
the key to successful coordination.
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FIGURE 7. Network Diagram of a Synthetic Austin Feeder (One of
the Five Used in the Experiment).

TABLE 11. Failure Rate of Relays Under 30% DER in Synthetic
Austin Feeders.

RL Based Relay
Scenario False Operation Occurrences Probability
No Fault Trip 0/ 25000 0.00 %
Faulted No Response 0/ 25000 0.00 %
Faulted Failed Coordination 61 /25000 0.24 %
Overcurrent Relay
Scenario False Operation Occurrences Probability
No Fault Trip 0 /25000 0.00 %
Faulted No Response 2881 / 25000 11.52 %
Faulted Failed Coordination 2194 /25000 8.77 %

For faults deep in large and long feeders the impedance
between substation and the grounding point can be significant
enough to cause the fault current seen by the recloser
relatively low. Additional energy sources (DERs) can even
cause the current measured at the fuse larger than at the
substation. These scenarios can cause problem in mis-
coordination if the recloser delay is longer than the fuse
melting time. Even for instantaneous recloser configurations
itis still possible that the fault current is lower than the pickup
current to trigger operation (under-reaching). Under heavy
DER penetration these two problems become much more
frequent and obvious.

We select five representative feeder circuits from the
synthetic Austin dataset and test the performance of the RL
recloser relay algorithm. Figure 7 shows the topology and
fuse placements of one of the circuits. Each circuit has a
recloser placed at the source bus that is controlled based
on either RL or overcurrent mechanism. The recloser is
expected to respond to faults in the feeder before any fuse
in the downstream blows. During training, the RL agent
is given a negative reward if its operation is slower than
the melting curve of any fuses along the feeder. Similar
to the experiment presented above, random fault scenarios
generated from Monte-Carlo simulation is used to evaluate
the relay operations. Table 11 shows the total failure rate
summary in the 5 selected feeder circuits, each of which are
simulated for 5000 random scenarios.

Similarly, the robustness is assessed by varying the load
capacity, percentage of DER output and SCMVA. It can
be observed in Table 12 that the failure rate of overcurrent
relay deteriorates faster in much larger feeders used in
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TABLE 12. Robustness Against Peak Load, DER and SCMVA
Increase in Synthetic Austin Feeders.

Peak Load Increase +10 % +20 % +30 %
RL Failure Rate 0.28 % 0.32 % 0.34 %
Overcurrent Failure Rate 13.2 % 10.49 % 10.12 %
Peak DER Increase +10 % +20 % +30%
RL Failure Rate 0.22 % 0.27 % 0.24 %
Overcurrent Failure Rate 20.69 % 21.16 % 22.52 %
SCMVA Variation 60 % 80 % 120%
RL Failure Rate 0.24 % 0.25 % 0.25 %
Overcurrent Failure Rate 21.58 % 20.55 % 20.03 %
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FIGURE 8. Actual Trip Delay of RL Relay and Fault Current
Magnitude.

this simulation. Note that as the load level increases, the
performance of overcurrent improves while RL relay drops
slightly. This may be attributed to that most failed episodes for
RL relay are false positive or coordination failures, in contrast
to all false negatives from overcurrent, which implies RL
model in this case is more prone to mis-identify ‘‘normal”
measurements as faults.

We plot the response speed of RL relay against the
observed maximum fault current in all the simulated sce-
narios in Fig. 8 to illustrate the response speed. It can
be seen that the speed of RL relay in most scenarios is
near constant, except for some cases when the fault current
is almost indistinguishable from normal load current. This
feature is especially suitable for the protection of large
feeder circuits as the fast fault detection leaves a ample
time window for coordination reclosing with fuses, while
remaining less susceptible to coordination failures compared
to instantaneous overcurrent.

V. CONCLUDING REMARKS

This paper introduces and thoroughly tests a deep reinforce-
ment learning based protective relay control strategy for
distribution grids with many DERs. It is shown that the
proposed algorithm that builds upon existing hardware and
uses the same information available to today’s overcurrent
protection yields faster and more consistent performance.
This algorithm can be easily applied in both a standalone
relay and in coordination with fuses. The trained RL relays
can accurately detect faults under situations where the
performance of traditional overcurrent protection deteriorates
heavily. The RL relays are robust against unexpected changes
in operating conditions of the distribution grid at the time
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of planning, reducing the need to re-train the relays after
deployments. The fast and consistent response speed provides
ample time for coordination and breaker operation.

The proposed deep RL relays will be easy to implement
with the currently available distribution infrastructure. A par-
ticularly attractive feature is that the proposed algorithm
for relays can operate in a completely decentralized manner
without any communication. This communication-free set-
ting is not only easy to implement for currently available
distribution grid infrastructure, but also less vulnerable to
potential cyber-attacks. The input to the RL relays are the
same as traditional relays so the instrument transformers
can be retained during deployment. The training process
does not require human intervention since the production of
training data and computation of optimal control policy can
be fully automated. The weights of the DQN obtained during
training can be saved into a general-purpose micro-controller
or potentially a more optimized machine learning chip.

In the future, we plan to provide a theoretical guarantee
for the convergence of our sequential RL algorithm. We will
conduct a thorough and careful investigation of the operation
of RL relays under various realistic scenarios by running
year-long simulations under variety of stochastic variation of
the operational and fault parameters of networks. We will
explore potential performance or robustness improvement
by using more inputs parameters such as voltage, frequency
or apparent impedance. We are working with time domain
simulators for more detailed training data generation and fault
study with the most realistic models for components includ-
ing control loops and electromagnetic transients. We will
also investigate the possibility of hardware prototyping and
Hardware-in-the-Loop test with Real-Time Digital Simulator
(RTDS).
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