
Received 8 October 2021; revised 7 January 2022; accepted 9 January 2022.
Date of publication 21 January 2022; date of current version 10 June 2022.

Digital Object Identifier 10.1109/OAJPE.2022.3145520

Decomposition-Residuals Neural Networks:
Hybrid System Identification Applied to

Electricity Demand Forecasting

KONSTANTINOS THEODORAKOS , OSCAR MAURICIO AGUDELO, MARCELO ESPINOZA,
AND BART DE MOOR , (Fellow, IEEE)

STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Department of Electrical Engineering (ESAT), KU Leuven,
3001 Leuven, Belgium

CORRESPONDING AUTHOR: K. THEODORAKOS (konstantinos.theodorakos@esat.kuleuven.be)

This work was supported in part by KU Leuven through the Research Fund under Project C16/15/059, Project C3/19/053, Project
C24/18/022, Project C3/20/117, and Project C3I-21-00316; the Industrial Research Fund under Fellowship 13-0260, Fellowship IOFm/16/004,
and Fellowship IOFm/20/002; and several Leuven Research and Development Bilateral Industrial Projects; in part by Flemish Government
Agencies through Fonds Wetenschappelijk Onderzoek (FWO): EOS Project G0F6718N (SeLMA), SBO Project S005319N, Infrastructure
Project I013218N, and TBM Project T001919N; and Ph.D. Grant SB/1SA1319N, Grant SB/1S93918, and Grant SB/1S1319N; and through
Vlaanderen, Departement Economie Wetenschap en Innovatie (EWI): the Flanders AI Research Program VLAIO: CSBO under Grant
HBC.2021.0076, Baekeland Ph.D. Grant HBC.20192204, and Innovation Mandate Grant HBC.2019.2209; in part by the European

Commission through the European Research Council under the European Union’s Horizon 2020 Research and Innovation Program under
ERC Agreement 885682; and in part by the Foundation
‘‘Kom op tegen Kanker,’’ Christelijke Mutualiteit (CM).

ABSTRACT Day-ahead energy forecasting systems struggle to provide accurate demand predictions due
to pandemic mitigation measures. Decomposition-Residuals Deep Neural Networks (DR-DNN) are hybrid
point-forecasting models that can provide more accurate electricity demand predictions than single models
within the COVID-19 era. DR-DNN is a novel two-layer hybrid architecture with: a decomposition and a
nonlinear layer. Based on statistical tests, decomposition applies robust signal extraction and filtering of input
data into: trend, seasonal and residuals signals. Utilizing calendar information, temporal signals are added:
sinusoidal day/night cycles, weekend/weekday, etc. The nonlinear layer learns unknown complex patterns
from all those signals, with the usage of well-established deep neural networks. DR-DNN outperformed
baselines and state-of-the-art deep neural networks on next-day electricity forecasts within the COVID-19
era (from September 2020 to February 2021), both with fixed and Bayesian optimized hyperparameters.
Additionally, model interpretability is improved, by indicating which endogenous or exogenous inputs
contribute the most to specific hour-ahead forecasts. Residual signals are very important on the first hour
ahead, whereas seasonal patterns on the 24th. Some calendar features also ranked high: whether it is day or
night, weekend or weekday and the hour of the day. Temperature was the most important exogenous factor.

INDEX TERMS Electricity demand forecasting, signal decomposition, deep neural networks, system
identification, COVID-19.

I. INTRODUCTION
Day-ahead forecasts are key elements used in the power mar-
kets for the planning and pricing of the day-ahead operations,
and they are critical for the optimal balance of real-time
operations. Our objective is to improve 24 hours-ahead city-
wide electricity forecasting accuracy within the COVID-19
era.

AutoRegressive Integrated Moving Average (ARIMA) [1]
is a class of forecasting models that contain three main
components: (1) AutoRegression (AR) for the relationship

between current and p lagged (previous) observations, (2)
Integration (I) that applies differencing (subtraction) between
an observation and d previous ones and (3) Moving Aver-
age (MA) that is the linear combination of q previous
predictions. Combinations of statistical and Machine Learn-
ing (ML) models seem to produce more accurate results than
individual methods on forecasting [2]. In a Short-Term Load
Forecasting (STLF) problem, AR-Nonlinear AutoRegressive
eXogenous (AR-NARX) models combined with Fixed-Size
Least-Squares Support Vector Machines (FS-LSSVM) [3]

VOLUME 9, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

241

https://orcid.org/0000-0002-7149-9158
https://orcid.org/0000-0002-1154-5028

gave the best forecasting accuracy. Neural networks in
the past have been characterized as ‘‘not well suited’’ for
time-series forecasting [4]. In the M4 forecasting competi-
tion of 2018 [5], 61 methods were tested against 100,000
time series. Hybrid modelling approaches were the most
performant, with the best approach being: mixed Exponential
Smoothing (ES) with Long Short-Term Memory (LSTM)
networks [6]. LSTM networks have been proven effective
in electricity price forecasting [7] and residential load fore-
casting [8] after tuning their hyperparameters. In a more
recent STLF publication, hybrid machine learning methods
combining support vector regression, random forest mod-
elling, grey catastrophe (avoiding residuals greater than a
threshold) and statistical tests, showed superior forecast-
ing performance against single models [9]. In a literature
review on energy forecasting of the past 10 years, it was
suggested that deep learning and machine learning models
should not blindly include raw and unprocessed data [10].
There is also evidence that common neural networks are
not efficient in learning nonlinear or dynamic patterns that
contain moving average terms [11]. For this reason, in our
proposed architecture we include distinct signals generated
from moving filters. In addition, it was recently found that
Recurrent Neural Networks (RNN) are capable of mod-
elling seasonality, but only if the data possess homoge-
neous seasonal patterns [12]. Our architecture overcomes this
issue by automatically applying Seasonal-Trend decomposi-
tion based on LOWESS (STL) [13]. Attention-based mod-
els, which were initially used in neural machine translation
tasks [14], also achieve high performance in multi-horizon
time series forecasting on real-world load, traffic, retail and
stock market datasets [15], [16]. Temporal Convolutional
Networks (TCN), originally designed as generative models of
raw audio sequences [17], recently managed to successfully
predict months-ahead earth-scale climate phenomena [18].
Nonlinear models, even though they can provide good fore-
casting accuracy, are usually difficult to interpret. Model
interpretability with shapley additive explanations for time
series Deep Neural Network (DNN) models was successfully
applied in the past, in the context of hours-ahead air-pollution
forecasting (atmospheric NO2 concentrations) [19]. Neural
networks have been employed in aggregated power demand
forecasting, for regions with severe COVID-19 pandemic
impact in northern Italy [20]. However, to our knowledge,
very few publications exist that directly tackle the forecasting
difficulties introduced by the pandemic. Finally, many publi-
cations seem to use data from 5 to 10 years ago and very small
time periods for their out-of-sample model testing (only a few
days or weeks at best).

In this paper, we propose Decomposition-Residuals Deep
Neural Networks (DR-DNN), a novel two-layer hybrid archi-
tecture with a decomposition and a nonlinear layer (see
Fig. 1). The decomposition layer extracts trends, seasonal,
lagged, differenced, filtered and temporal signals, based on
statistical tests on the raw time series. The nonlinear layer is
a DNNwith large learning capacity and is explainable via the

FIGURE 1. Decomposition-residuals deep neural networks
(DR-DNN) is a two-layer hybrid architecture with: (1) a
decomposition and (2) a nonlinear layer of a deep neural
network (DNN) model. Given rolling input signals, robust
seasonal-trend decomposition and moving filters extract new
highly contributing signals. The trained DNN produces rolling
forecasts.

game-theoretic SHapley Additive exPlanations (SHAP) [21].
We used five years of real-world data from the IEEEDataPort
contest ‘‘Day-Ahead Electricity Demand Forecasting:
Post-COVID Paradigm’’ [22], which contains city-wide
hourly time series from March 2017 to February 2021. The
main contribution of this paper is the DR-DNN architecture
and its application on a city-wide load forecasting problem.
The primary characteristics and advantages of DR-DNN
are:

• DR-DNN is a two-layered architecture that can be read-
ily applied on existing or future DNN architectures.

• DR layers reduced the power load forecasting error on
all DNN architectures that we tried, by extracting new
highly contributing signals on the fly.

• Minimal manual preprocessing is required with DR.
Instead of discarding the extremes (residuals/noise),
external disturbances are fed to the models, along
with statistically-robust signals. In addition, statistical
tests employ majority voting for the fitting of the DR
layer parameters. Finally, DNN with their high learning
capacity, are able to learn complex nonlinear patterns.

• SHAP aids interpretability, by indicating which endoge-
nous (i.e., power load) or exogenous (e.g., weather data,
calendar information, . . .) inputs contribute the most to
specific hour-ahead forecasts.

• DR-DNN can adapt to the COVID-19 era of electricity
forecasting better than the single DNN models (using 6
months of out-of-sample test data, from September 2020
to February 2021).

This document is divided into 4 sections. Section II pro-
vides a top-level view, a step-by-step flowchart for model
training, as well as a detailed formalism of the DR-DNN
model prototype. It also describes the concepts of mov-
ing filters, seasonal-trend decomposition, neural networks
and feature importance. Section III shows and discusses
the performance of DR-DNN against single DNN models.
Section IV, contains insights and conclusions. Appendix IV
provides details on the development environment, source
code and data repositories.

242 VOLUME 9, 2022

Theodorakos et al.: DR Neural Networks: Hybrid System Identification Applied to Electricity Demand Forecasting

FIGURE 2. Decomposition-residuals deep neural networks (DR-DNN) is a two-layer hybrid architecture with:
(1) a decomposition and (2) a nonlinear layer of a deep neural network (DNN). Robust signal decomposition
on electrical load extracts: residuals, seasonal and trend signals. The trend is fed to moving filters M .
Statistical tests v vote to decide the parameters λ of the extracted signals: lagged L , differenced I and the
cyclical sinusoidal date-time T . All the extracted signals along with the exogenous (weather variables) are
fed to a DNN model (right layer) to learn unknown nonlinearities. Time series analysis and SHapley Additive
exPlanations (SHAP) [21] provide model explainability with ranked feature importance.

II. DR-DNN MODEL
A. DR-DNN TOP LEVEL VIEW
Fig. 2 shows the DR-DNN architecture. Decomposition
extracts highly contributing signals given endogenous (power
load) and exogenous (weather data) time series. DR applies
moving filters, differencing and lag shifting on the endoge-
nous signal (electrical load). Locally Weighted Scatter-
plot Smoothing (LOWESS) [23] is a local regression
smoother, that is robust to outliers and missing values.
Robust Seasonal-Trend decomposition based on LOWESS
(STL) [13], [23] decomposes time series into: (1) trend,
(2) seasonal and (3) residuals signals. To utilize tempo-
ral information (in other words, for the models to learn
patterns in conjunction with the natural passage of time
cycles: exact season, day of week, time of day, . . .), sinu-
soidal calendar signals are extracted (i.e., sin/cosines of
day of week/month/year, weekend/weekday, day/night cycles
etc.). The nonlinear layer is a black-box model that learns
unknown nonlinearities. Ranking the importance of input
features with SHAP [21], assists in model interpretability,
by indicating which inputs contribute the most to specific
hour-ahead forecasts. Extracting too many signals slows
model training [2] and DR avoids it by properly select-
ing signal extraction parameters via statistical tests. Models
use rolling windows of 48 hours: 24 hours input and 24
hours-ahead model output as forecast. Fig. 3 illustrates three
random 24 hour ahead forecasts of a DR-DNN during model
training.

FIGURE 3. Illustration of three random 24-hour ahead forecasts
of city-wide load during model training (x-axis: time in hours,
y-axis: power in kW [normalized]). Model:
Decomposition-Residuals (DR) Long Short-Term Memory
(LSTM) [24]. Input is 24 hours of past data (decomposed signals
from power/weather/calendar features: 38 variables from hour 0
up to hour 23). Output is a single-shot 24 hours-ahead forecast
of electrical load (from hour 24 up to hour 47). DR-DNN models
can also provide intra-day forecasts (24-hour ahead predictions
at any time of a day).

B. DR-DNN FORMALISM
Fig. 4 presents a step-by-step flowchart for the DR-DNN
model training. DR-DNN is a hybrid two-layered model

VOLUME 9, 2022 243

FIGURE 4. Flow chart for the training of a DR-DNN model.
We have two main phases: the DR layer and the nonlinear layer
fitting. For the DR phase we use the train data while we hold-out
our validation and test data from the start. First we apply linear
interpolation to fill in missing values. After fitting an STL model
on the electricity load data, we decompose this endogenous
variable into seasonal, trend and residual signals. Then we
employ statistical tests to find the p,d,q parameters that define
with majority voting: the amount of lags p, degree of
differencing d. q defines the window of the moving filters:
Simple Moving Average (SMA), Exponential Moving Average
(EMA), Moving Variance (MV) and Moving Sum (MS). The
sinusoidal calendar signals extracted depend on the time-step
of the dataset. For the nonlinear phase: using the newly
extracted signals and a set of hyperparameters, we apply
Bayesian optimization to train a specific DNN model type
(minimizing the validation data error). The final model
evaluation is performed on the held-out test data.

architecture, defined as the tuple:

DR-DNN =< DR,DNN,wi,wo, σ > (1)

where DR is the Decomposition-Residuals layer that extracts
signals given time series, wi is the input rolling window
length (24 hours in our case), wo is the output rolling window
length (24 hours) and σ is the window stride (how much
we shift the rolling window: 1 hour in our case). To our

knowledge, traditional 24-hour ahead models in the field
electricity forecasting usually employ strides of 24 hours,
which may not be able to forecast unexpected demand events.
For example, unusually high or low intra-day wind and solar
power generation moments, may lead to unusual intra-day
demand events [10] that may not be forecasted by models
that provide predictions only once per day. DNN can be a
single or multiple input/output Deep Neural Network, acting
as a nonlinear component with large learning capacity that is
able to learn patterns in time from multiple endogenous and
exogenous signals.

1) DECOMPOSITION RESIDUALS LAYER
Nowadays, there exist software packages like tsfresh [25]
that can extract thousands of signals from time series. How-
ever one should be eclectic in formulating new hybrid and
combination methods [2]. Signal extraction should be sparse
and selective. In our experiments, we realized that blindly
decomposing all possible signal combinations is not ideal: too
many signals result to very slow model training and accuracy
improvements will not be significant after a point.

To set up a DR layer, a parameter set λ is needed:

λ = {p, d, q} (2)

where p is the time series shift amount (number of lags),
d is the degree of differencing (how many times past
data have been subtracted) and q is the span of moving
filters. v are statistical tests that decide the p, d , q param-
eters via majority voting. For the majority voting, we use
the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) [26], the
Augmented Dickey–Fuller (ADF) [27] tests, AutoCorrela-
tion Function (ACF) and Partial AutoCorrelation Function
(PACF). KPSS and ADF use null hypothesis testing to deter-
mine the degree of differencing d . For the ADF we use all the
available lag length calculation methods: t-statistic, Akaike
Information Criterion (AIC) and Bayesian Information Cri-
terion (BIC). The amount of lags that has the largest ACF is
set as p and the lag with the largest PACF value is set as q.
DR is a tuple (see Fig. 2):

DR =< STL, v, λ,L ,M ,I ,T > (3)

where STL is the Seasonal-Trend decomposition using
LOWESS, v are the statistical tests that decide the λ parameter
set of the DR layer, L are the time series of maximum lag p,
I is the differenced series of order d , M are the moving
filters of span q, T are the sinusoidal calendar features
(sin/cosines of day of week/month/year, weekend/weekday,
day/night cycles etc.). Due to STL constraints, for train-
ing, the DR layer requires input signals of at least 100
steps. However, it requires only a single pass to compute
the extracted signals (it took 13.2 seconds for our training
data of 24052 hours). The signals that DR extracts (from
7 endogenous/exogenous inputs to 38 output signals in our
case) are then fed toMultiple-InputMultiple-Output (MIMO)
DNN models for gradient descent-based training.

244 VOLUME 9, 2022

Theodorakos et al.: DR Neural Networks: Hybrid System Identification Applied to Electricity Demand Forecasting

The STL tuple consists of the robustly decomposed signals,
extracted from the endogenous time series (electrical load):

STL =< Trend, Seasonal,Residuals > (4)

Seasonal-Trend decomposition based on LOWESS
(STL) [23] is a filtering technique for decomposing
time series into (1) trend, (2) seasonal and (3) residuals
components:

Yt = Tt + St + Rt (5)

where t is the time-step ∈ {1, . . . , s} of span k , Yt is the
original time series, Tt is the trend component (low-frequency
variations along with long-term level changes), St is the
seasonal component (data variations at seasonal frequency),
andRt is the residuals component (remaining data variations).
STL uses two recursive loops, an inner and outer one. Given
an input time series and a seasonal period, the inner loop
updates the seasonal and trend components with a series of:
detrending, low-pass filtering, deseasonalizing and smooth-
ing operations. Each outer loop pass computes robustness
weights that improve the subsequent inner loop passes. STL
can decompose time series with missing values. We applied
robust STL [13] (that uses LOWESS) on the endogenous
variable (electrical load).

We use the tuple of moving filters M of span q:

M =< SMA,MS,MV ,EMA > (6)

where SMA is the SimpleMoving Average,MS is theMoving
Sum,MV is theMovingVariance andEMA is the Exponential
Moving Average.

To detect local variations in time series, we utilize the
Moving Sum (MS). Given a time series xt = {x0, x1, x2, . . .},
MS provides sequences of partial sums of the last k steps:

MSs = xs−k+1 + xs−k+2 + . . .+ xs =
s∑

i=s−k+1

xi (7)

where MSs is the moving sum at time s of the partial
time-series {xs−k+1, xs−k+2, . . . , xs} of k elements, with
k ≥ 1. Moving Average (MA) [28] is a Finite Impulse
Response (FIR) filter, which can smooth out short-term
fluctuations in time series datasets. Simple Moving Aver-
age (SMA) at time-step s is expressed formally as:

SMAs =
xs−k+1 + xs−k+2 + . . .+ xs

k
=

1
k

s∑
i=s−k+1

xi (8)

EMA or Exponential Weighted Moving Average (EWMA)
[29] imposes higher emphasis on most recent samples of a
partial time series {x0, . . . , xs} of span k:

EWMAs

=
xs + (1− α)xs−1 + (1− α)2xs−2 + . . .+ (1− α)sx0

1+ (1− α)+ (1− α)2 + . . .+ (1− α)s

=

∑s
i=0 (1− α)

ixs−i∑s
i=0 (1− α)i

,

α =
2

(k + 1)
, k ≥ 1 (9)

where EWMAs is the exponentially weighted moving average
at time-step s, α is the smoothing factor ∈ (0, 1] and (1− α)i

for i = 0, 1, . . . , s are the exponential weights.
Tomeasure how far electricity readings are spread out from

the moving average of a span k at time s, we use the unbiased
sample Moving Variance (MV):

MVs =

∑s
i=0 (xi − SMAs)

2

k − 1
(10)

where SMAs is the simple moving average at time s of the
partial times-series {x0, . . . , xs}.

2) DEEP NEURAL NETWORK LAYER
Artificial Neural Networks (ANN) are models that mimic
biological neuron activity via mathematical abstractions. The
most common ANN is the multilayer perceptron [30]:

y =Wσ (Vx+ b) (11)

where x ∈ Rm is the vector of m input signals, y ∈ Rl is
the output vector of l outputs, nh is the number of hidden
neurons (units), σ a sigmoid function, b ∈ Rnh is the bias
vector of the hidden neurons andW ∈ Rl×nh , V ∈ Rnh×m are
the interconnection weight matrices. Convolutional Neural
Networks (CNN) [24] are ANN that mask neuron inputs
and outputs via convolution kernels. In other words, CNN
apply the convolution operation instead of general matrix
multiplication in their layers. Recurrent Neural Networks
(RNN) [31] are commonly used as sequence and time series
models. RNN retain sequential patterns as stable entities in
their neurons. Long Short-Term Memory (LSTM) [32] cells
can store temporal information of longer time spans than
RNN. Gated Recurrent Units (GRU) [33] have less trainable
parameters than the LSTM, because they omit output gates.
The LSTM [32] cell equations for feed-forward passes are
defined as:

it = σg(Wixt + Uiht−1 + bi)

ft = σg(Wfxt + Ufht−1 + bf)

ot = σg(Woxt + Uoht−1 + bo)

ht = ot ◦ σh(ct)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (12)

where d is the number of input features, h is the number of
hidden units, ◦ the Hadamard product. xt ∈ Rd is the input
vector to the LSTM unit at time t , it ∈ Rh is the input gate
activation vector, ft ∈ Rh is the forget gate’s activation vector,
ot ∈ Rh is the output gate activation vector, ht ∈ Rh is the
hidden state vector and ct ∈ Rh is the cell state vector. The
W ∈ Rh×d , U ∈ Rh×h weight matrices and the bias vectors
b ∈ Rh, are learned during training. σg is a sigmoid function
and σc, σh are hyperbolic tangent functions.
Attention-based [14] models, take inputs from hidden

states of LSTM and selectively focus (via weight scoring)
on specific time segments. Using the Luong’s additive style
of scoring (with score(ht , h̄s) = h>t Wh̄s), the forecast yt is

VOLUME 9, 2022 245

produced by the attention vector αt :

αts =
exp(score(ht , h̄s))∑S
s′=1 exp(score(ht , h̄s′))

ct =
∑
s

atsh̄s

αt = f (ct ,ht) = tanh(Wc[ct ;ht]) (13)

where h̄s is the source hidden state of total states S, ht is the
target hidden state,W are the trainable attention coefficients,
αts are the attention weights, ct is the context vector and Wc
are the context weights.
Temporal Convolutional Networks (TCN) [34] are exten-

sions of the CNN. By stacking several convolutional layers,
residual blocks and using the concept of receptive fields, TCN
can exhibit even longer memory than recurrent architectures
of similar unit sizes. Formally the TCN receptive field Rfield
(the amount of steps that can be remembered) is defined as:

Rfield = 1+ 2× (Ksize − 1)× Nstack ×
∑
i

di (14)

where Nstack is the number of stacks, di is the dilated con-
volution factor of a residual block of stack i, and Ksize is
the kernel size (length of the convolution filter in steps).
We used TCN with causal convolutions, which is a variant
more suitable for sequence modelling [34] (like with our
time-series forecasting case).

3) FEATURE IMPORTANCE
SHapley Additive exPlanations (SHAP) values [21] is a
game theoretic, model agnostic representation of feature
importance, that provides interpretability to complex models.
In other words, this representation provides a ranking of the
most important inputs in a model, as well as the scale of their
positive or negative impact to the model outputs. Given a
model prediction f (x), the impact of feature i is the weighted
sum:

φi(f , x)

=

∑
S⊆Sall/{i}

1
(M choose |S|)(M − |S|)

[fx(S ∪ {i})− fx(S)]

(15)

where f is a DR-DNN model, x is the input vector
(electricity/weather values), i is a feature, M is the number
of interpretable inputs, S is the feature subset (coalition),
|S| is the feature cardinality, ‘‘M choose |S|’’ is the number
of subsets S that we can sample from M without order and
without replacement and fx(S) is the model prediction given
S. φi (with

∑M
i=0 φi = 1) is a single SHAP numerical value,

impact of feature i of model f , given input x and output f (x).
In practice, there are too many summation terms and models
may not support missing values, so the sum and fx(S) are
approximated using k-medians and random sampling.

III. RESULTS AND DISCUSSION
A. DESCRIPTION OF THE DATA AND THE EXPERIMENTS
The goal of the experiments is to assess if DR-DNN are
more accurate than typical DNN in 24-hours ahead electric-
ity forecasting during the COVID-19 era. In this paper we
refer to hourly electricity load as measured in kW, while
technically it should be understood as kWh/h. We used five
years of real-world data from the IEEE DataPort contest
‘‘Day-Ahead Electricity Demand Forecasting: Post-COVID
Paradigm’’ [22]. This dataset contains seven hourly time
series, from unknown city/country, spanning from 18 March
2017 to 16 February 2021 (34360 timesteps): city-wide
power demand (kW), air pressure (kPa), cloud coverage (%),
humidity (%), temperature (◦C), wind direction (degrees)
and wind speed (km/h). To avoid overfitting, data were split
into three distinct subsets: train (70%: from March 2017
to December 2019), validation (20%: from December 2019
to September 2020), test (10%: COVID-19 timespan from
September 2020 to February 2021). To avoid post-sample
data leakage, data normalization and DR-layers were fitted
on each subset separately. In terms of data preprocessing,
we converted the wind direction/velocity into x and y vector
components because: (1) vectors use polar coordinates that
smooth wind angle transitions from 360◦ to 0◦ and (2) with
weakwinds, wind direction becomes insignificant (most sam-
ples had very low-speed winds). To solve data scaling issues,
we applied Z -score normalization (e.g., cloud cover ranges ∈
[1%, 100%] whereas electrical load (kW) ∈ [0.9, 1.7]×106):

z =
(x − µ)
σ

(16)

where x is a random variable, µ is the sample mean, σ is
the standard deviation. We used nine naive model baselines:
(1) ‘‘repeat24h’’ repeats all the 24 hour values from the
previous day, (2) ‘‘repeat6d24h’’, (3) ‘‘repeat7d24h’’ and
(4) ‘‘repeat8d24h’’ repeat all the 24 hour values from 6, 7
and 8 days ago. (5) ‘‘SMA2h’’ and (6) ‘‘EMA2h’’ are the
simple and the exponential moving average from 2 hours
ago. Finally, (7) ‘‘ARIMA24h’’, (8) ‘‘ARIMA30d’’ and (9)
‘‘ARIMA90d’’ are 24 hour-ahead ARIMA forecasts from
models trained with the last 24 hours, 30 days or 90 days
of rolling data (3437 models for 1 hour stride on the test
data, with manually tuned parameters: p = 2, d = 0,
q = 2). We also compare against seven fixed Artificial
Neural Networks (ANN) [24] model baselines: linear (single-
layered), dense (two-layered ANN of 512 units and the
relu (rectified linear unit) activation function), 1-dimensional
Convolutional Neural Network (CNN) (256 units, relu acti-
vation function and kernel size of 6 steps), Gated Recurrent
Unit (GRU) (64 units, 0.2 dropout rate), Long Short-Term
Memory (LSTM) (64 units, 0.2 dropout rate), Long Short-
Term Memory (LSTM) with Attention (LSTM: 32 units,
Attention: 32 units, 0.2 dropout rate) and Temporal Convo-
lutional Networks (TCN) (64 units, 0.2 dropout rate, kernel
size of 6 steps). By number of units, we mean the number of
hidden neurons of each DNN and by dropout, we mean the

246 VOLUME 9, 2022

Theodorakos et al.: DR Neural Networks: Hybrid System Identification Applied to Electricity Demand Forecasting

TABLE 1. Hyperparameter bounds used in the Bayesian
optimization experiments.

fraction of units to randomly ignore during model training
(helps prevent neuron overfitting). We chose these ARIMA
and ANN parameters via manual tuning, fitted only on the
plainmodel versions (without using anyDR extracted signals,
only using the original 7 features). For a fair comparison, all
fixed models (in both the DR and No DR case) use the same
default Keras framework [35] settings and training setup:
150 max epochs, the adam algorithm [36] and the Mean
Squared Error (MSE) loss function. For overfitting avoidance
we used learning rate reduction after 5 iterations (with 0.2
reduction factor) and early stopping after 8 iterations. For
the optimized models, we used 20 iteration Bayesian opti-
mization [37], with 300 maximum epochs of model training.
Table 1 presents the hyperparameter bounds used in themodel
search.

B. SIGNAL ANALYSIS
Due to COVID-19, electricity consumption patterns have
changed. The magnitude scalogram on Fig. 5, shows a con-
sumption alteration band of electrical load after the 3rd year
(fromMarch 5 toMay 14 of 2020). Load (kW) exhibits hourly
autocorrelation cyclical patterns (Fig. 6). Lag correlations
are at their highest every 24 hours. The first 2-hour lags
are also highly significant (|PACF | > 0.85). According to
the Pearson Correlation Coefficient (PCC), the six weather
variables are strongly correlated between them, with cloud
coverage against humidity being the highest (PCC=0.79).
Out of all the exogenous variables, electrical load had the
highest correlation with temperature (PCC=0.31) and with
wind direction (PCC=0.17). It is worth noting that, on the DR
layer it is possible to set up more than one variable as endoge-
nous, along with the electrical load. In our experiments,
we tried to combine temperature (the exogenous variable
with the highest correlation) along with load as endoge-
nous variables, but we decided to avoid this combination:
we did not empirically notice any forecasting accu-
racy improvements, while the total signal count increased
significantly.

FIGURE 5. Time-frequency analysis with a magnitude scalogram
(of the continuous 1 dimensional Morse wavelet transform). The
x-axis indicates time in hours (spanning from March 2017 to
February 2021), the y-axis indicates the frequency, and the
colour indicates the magnitude intensity. There exists a
frequency alteration band from March to May 2020, indicating
the impact of COVID-19 on city-wide electrical load (kW).

FIGURE 6. Partial autocorrelation function (PACF) weekly plot
(x-axis: lag in hours, y-axis: partial autocorrelation): city-wide
electrical load (kW) exhibits hourly cyclical patterns. Lag
correlations are at their highest every 24 hours. The first 2-hour
lags are also highly significant (|PACF| > 0.85).

C. DECOMPOSITION-RESIDUALS
MODEL PERFORMANCE
FORECASTING ACCURACY METRICS
To compare the performance of DNN against DR-DNN on
a 24-hour forecasting horizon, with a forecasting window
stride σ of 1-hour, we used the Mean Absolute Error (MAE),
the Mean Absolute Percentage Error (MAPE), the symmet-
ric MAPE (sMAPE) and the Mean Absolute Scaled Error
(MASE) (that we adapted from the formulation in [5]) on the
T = 34360 hourly load values:

MAE =
1
N

N∑
n=1

1
h

n+h∑
t=n+1

|y(t)− ŷn(t)| (17)

MAPE =
1
N

N∑
n=1

1
h

n+h∑
t=n+1

|y(t)− ŷn(t)|
y(t)

∗ 100% (18)

sMAPE =
1
N

N∑
n=1

2
h

n+h∑
t=n+1

|y(t)− ŷn(t)|
|y(t)| + |ŷn(t)|

∗ 100% (19)

VOLUME 9, 2022 247

TABLE 2. Ablation study: 24hour-ahead forecasting test error (kW MAE, fixed models, 100 runs, min and mean ± one standard
deviation).

MASE =
1
N

N∑
n=1

1
h

∑n+h
t=n+1 |y(t)− ŷn(t)|∑n+h

t=n+1 |y(t)− y(t − m)|
(20)

where n is the forecasting window index of the total N fore-
casting windows (with a rolling window stride σ = 1 hour),
h is the forecasting horizon (h = 24 hours in our case), y(t)
is the electrical load measurement at time t ∈ T , y(t − m)
is the naive-m seasonal forecast at time t (with season m =
24 hours: the last known observation from 24 hours ago) and
ŷn(t) is the estimated forecast of the window n at time t .

ABLATION STUDY
To examine the performance of individual components of
DR-DNN, we performed an ablation study (Table 2). In other
words, we examine how model performance is affected by
selectively removing components from the full DR-DNN for-
mulation. We examined the following fixed model versions:
• ‘‘No DR’’: Plain models in their original form.
• ‘‘DR: Temporal’’: DR models including only a moving
average filter (applied on the raw load data) and the
cyclical temporal signals (time of day, day of week, . . .).

• ‘‘DR: STL’’: DR models including only the seasonal-
trend decomposition with STL and a moving average
filter (applied on the trend load data).

• ‘‘DR: STL+ Temporal’’: ‘‘DR: STL’’ models including
the cyclical temporal signals.

• ‘‘DR: STL + Temporal + Extra filters’’: ‘‘DR: STL +
Temporal’’ models, including all the filter types (expo-
nential moving average, moving variance and moving
sum) applied on the trend load data.

We can see that most of the performance improvements come
from the STL decomposition (Table 2). On average, the
DR-LSTMusing the STL decomposition had the lowest error.
Some model types benefit the most from the full DR-DNN
formulation (CNN and Linear models), others by omitting
the extra filters (TCN, Dense) or by omitting the temporal
signals too (GRU, LSTM, LSTM Attention). We can see
that the temporal signals are detrimental for DNN model
accuracy (first versus second row for: TCN, GRU, LSTM

TABLE 3. Overall results: 24hour-ahead forecasting test error
(kW MAE, mean ± one standard deviation).

with Attention and CNN) if they are not accompanied by
STL decomposition (first versus fourth row). The best model
overall was a DR-TCN (17352 kW MAE), followed by a
DR-LSTM with Attention (17372 kWMAE) and a DR-GRU
(18016 kWMAE). For our further experiments, we decided to
omit the extra filters and to focus the Bayesian Optimization
experiments on the TCN, LSTM with Attention and GRU
models.

MODELLING RESULTS
For all the data subsets (train, validation and test), the statisti-
cal tests voted that the DR layer should have one lag (p = 1),
no differencing (d = 0) and the moving filters should have a
span of two time steps (q = 2).
In regards to the fixed models we tested (experiments

repeated 100 times), DR-DNN consistently outperform the

248 VOLUME 9, 2022

Theodorakos et al.: DR Neural Networks: Hybrid System Identification Applied to Electricity Demand Forecasting

TABLE 4. All metrics on fixed models (100 runs each, mean ± one standard deviation). The Welch’s t-test of unequal variances
statistic [43] is positive if the ‘‘DR’’ models have lower error than the ‘‘No DR’’ (statistical significance: *** for p-value < .001, ** for
p-value < .01 and * for p-value < .05).

FIGURE 7. Day-ahead forecasting test error of the fixed size
models (x-axis: model, y-axis: load error in kW). All initial
models (left boxplot: No DR), did improve using the
decomposition residuals (DR) layer (right boxplot: DR-DNN).
With the DR layer, model error is reduced by ≈ 30.99%. Data:
70% train (from March 2017 to December 2019), 20% validation
(from December 2019 to September 2020), 10% test (COVID-19
timespan from September 2020 to February 2021).

plain DNN (Fig. 7 and Table 3) on the load (kW) Mean
Absolute Error (MAE). The DR layer reduces the average

error on all model types by ≈ 30.99%, as well as the
variance: all the models without DR layers had an average
MAE of 45288 kW ± 1482 kW, whereas all the DR-DNN
had average MAE 27074 kW ± 994 kW. DR-TCN had the
smallest forecasting error (20749 kW ± 1684 kW). Only the
DR-LSTM with Attention, DR-GRU and DR-TCN consis-
tently surpass the ‘‘Repeat7d24h’’ baseline on average. The
best fixed model overall was a DR-TCN with 17352 kW
MAE. Models perform similarly on all the additional metrics
that we used (MAPE, sMAPE, MASE) (see Table 4). Since
the DR layer introduces several new signals (≈ 5x times
more, from 7 features to 38), the model training times are
significantly increased (for LSTM, LSTM Attention, GRU
and TCN). Especially for the case of the TCN, they become
the slowest to train (from 129 seconds up to 766 seconds per
model). For the Linear, Dense and CNN however, the training
times decrease because these models can converge to a good
global minima faster with the addition of the DR signals.
Finally, the Welch’s t-test of unequal variances [43] shows
that on average, ‘‘No DR’’ models have consistently higher
error against the ‘‘DR’’ variants (high statistical significance
with p-value less than 0.001).

For the optimized models (experiments repeated 10 times),
we focused on TCN, LSTM with Attention and GRU mod-
els, with Bayesian optimization (BO) of 20 iterations [37]
(Table 3). Table 1 contains the hyperparameters that we used.

VOLUME 9, 2022 249

FIGURE 8. Ranked feature importance using SHapley Additive
exPlanations (SHAP) values [21] from a trained DR-TCN model
(y-axis: extracted signal at input timestep t ∈ [0h,23h], x-axis:
absolute feature impact to hour-ahead outputs, color: specific
hour-ahead output contribution). This figure shows the average
absolute contribution of each input feature of a specific hour,
against a specific hour-ahead forecast, as well as the total
contribution on all 24 hours ahead. The extracted signals from
DR (within top 10: residual, lagged and seasonal load, sine of
the hour of day and whether it is daytime or nighttime) have
higher contribution (≈ 0.2− 0.55), than the original raw electric
power load variable (4th feature: ‘‘Load (kW)-7h’’ at ≈ 0.22).
‘‘Load (kW)-23h’’ contributes significantly on 1, 2, 3, 4, 7
hours-ahead but only slightly on 9-15 hours-ahead forecasts.
For forecasts 9-15 hours ahead, the extracted ‘‘Load
(kW)-residual’’ signals (first and second), have the highest
contribution. ‘‘Temperature(C)’’ is the most important
exogenous variable (ranked 18th and 33rd).

The greatest improvement can be seen on the DR-LSTM
with Attention: mean MAE reduction was 40.78% and the
variance was decreased from 26090 kW down to 2946 kW.
Even though LSTM with Attention and GRU belong to the
same model family, Attention-based models had very high
model error and variance without DR on BO. With DR it

FIGURE 9. Ranked feature importance for one hour-ahead
forecasts, from a trained DR-TCN model (y-axis: extracted
signal at input timestep t ∈ [0h,23h], x-axis: feature impact to
the 24th hour-ahead forecast, color: denotes feature value
against the full feature range). This figure shows the positive or
negative contribution of each data sample of the top 20
features, specifically for the 1st hour-ahead forecast. Positive
SHAP values increase the value of the forecast output whereas
negative ones decrease it. Residual values (remainder of the
signal that can not be explained by seasonal or trend) become
the most important factor in the forecasts.

is greatly reduced, but they still fall behind DR-GRU and
DR-TCN. A possible reason is that the LSTM with Attention
models have half of their neurons allocated to the LSTM
model part and the other half on their Attention model part.
In contrast, GRU (and simple LSTM) of similar total neuron
count do not have to split up their neurons, so they allocate
all the trainable parameters within their hidden state part. The
best models on all experiments were the DR-TCN, with an
average MAE of 19248 kW ± 1762 kW. The best single
model was a DR-TCN with a MAE of 16232 kW and the
following hyperparameters: 48 units, 0.1 learning rate, 0.25
dropout rate, kernel size of 6 steps (hours) and the adadelta
optimizer. Worth noting is that, both the fixed and the opti-
mized DR-TCN had similarly good performance, whereas
on average, the plain TCN could barely surpass the baseline
models. One of the disadvantages of TCN is that they required
the longest training times with the addition of the DR layer
(Table 4). As also noted in the literature [34], depending on
the problem domain, TCN may need tuning of their receptive
field. TCN models with the default kernel size of 2 (hours)
performed poorly, that is whywe increased it to 6 steps for the
fixed models, and added the kernel size as a hyperparameter
in the Bayesian optimized TCN models.

Fig. 8 shows the ranked input feature importance using
SHAP values [21]. The DR-layer, using the original 7 signals

250 VOLUME 9, 2022

Theodorakos et al.: DR Neural Networks: Hybrid System Identification Applied to Electricity Demand Forecasting

FIGURE 10. Ranked feature importance for 24 hours-ahead
forecasts, from a trained DR-TCN model (y-axis: extracted
signal at input timestep t ∈ [0h,23h], x-axis: feature impact to
the 24th hour-ahead forecast, color: denotes feature value
against the full feature range). The seasonal signal is the most
important factor in the forecasts, with temperature moving to
the fourth position.

and statistical tests, extracted 38 signals in total for 24 input
steps. Newly extracted signals from the DR layer (e.g., elec-
tric power load: residual, lagged and seasonal, sine of the
hour of day and whether it is daytime or nighttime) have
higher contribution (≈ from 0.2 to 0.55) than the original raw
electric power load variable (4th feature: ‘‘Load (kW)-7h’’ at
≈ 0.22). Fig. 9 examines the feature impact on the 1st hour
that we try to forecast: the residuals and raw load values are
very important for predictions in the first few hours. When
the residuals values are high (1st row, red dots), they increase
the forecast output (positive output impact, with SHAP value
≈ [0.03, 0.12]). The most important calendar features were:
whether it is a day or night (5th feature: ‘‘nighttime’’), the
hour of the day (6th: ‘‘cos_hour’’) andwhether it is a weekend
or weekday (8th: ‘‘weekday’’). Now for forecasts at the 24th
hour-ahead (Fig. 10): the seasonal signal becomes the most
important. Worth noting is that temperature from the 9th
position in the 1st hour-ahead, moves to the 4th position
for the 24th hour-ahead. Day/night cycles, have the oppo-
site effect: when it is night (fifth row, ‘nighttime-23h’’, red
dots), the forecast output decreases (negative SHAP values≈
[−0.05, 0.0]). No exogenous variable other than temperature
reached the top 20 features.

IV. CONCLUSION
In this paper we have applied DR-DNN to the problem
of short-term load forecasting. Our findings indicate that
DR-DNN outperformed baselines and typical DNN types
on 24 hour-ahead electricity forecasts during the COVID-19

era (test data: last 143 days, from September 2020 to February
2021). By decomposing electrical load and using calendar
information, new, highly contributing signals are extracted
on the fly. DNN on the nonlinear layer utilize unknown
disturbances, outliers, noise and cyclical pattern signals. Per-
formance increased because instead of discarding extremes,
unknown nonlinearities can be learned. SHAP increases
model explainability by providing a ranking of themost influ-
ential input signals at specific hour-ahead forecasts, while
showcasing the significance of the extracted signal contri-
bution. The DR-TCN were the most accurate, but also the
slowest to train.

Residual signals are very important on the first hours
of predictions, whereas seasonal patterns help the most
on the last forecasting hours. Some calendar features also
ranked high in importance: whether it is day or night,
weekend or weekday and the hour of the day. However,
temporal signals can be detrimental for DNN model accu-
racy if they are not accompanied by STL decomposi-
tion. Temperature ranked as the most important exogenous
factor.

For future work, we would like to assess if there is a
suggested cut-off SHAP value, below which a feature can
be omitted during the training of a model. We would like
to also examine the performance of DR-DNN in similar
domains like wind/solar energy forecasting, or in vastly dif-
ferent domains like air-quality and atmospheric pollutant
forecasting. Finally, we plan to release an open public code
repository with DR-DNN as an Application Programmable
Interface (API), for the research community to experiment
with.

APPENDIX A
DEVELOPMENT AND REPOSITORIES
Hardware:

• CPU: Intel i9 10850K @ 3.6-5.2GHz with 10 cores.
• System memory: 64GB DDR4 3600MHz.
• Storage: Samsung 980 Pro 1TB M.2 drive.
• GPU: Gigabyte RTX 3090 24GB (Ampere architecture).
• GPU driver: version 497.29.
• Operating system: Windows 11 version 21H2 (build
22000.376).

Software:

• Languages: Python 3.8.8, Matlab 2020b.
• Libraries and frameworks:

– Pandas 1.3.2 [44], SciPy 1.7.1, Numpy 1.19.5.
– TensorFlow 2.6.0.
– Cuda: 11.2 v11.2.152, cuDNN library: v6.5.0.

Source code:

• Base source code adapted from the TensorFlow tutorial
‘‘Time series forecasting’’ [45].

• DR-DNN source code Github repository (work in
progress): https://github.com/temp3rr0r/
DR-DNN/.

VOLUME 9, 2022 251

https://github.com/temp3rr0r/DR-DNN/
https://github.com/temp3rr0r/DR-DNN/

Dataset:
• Hourly time series of electrical load and weather
variables were accessed from the IEEE DataPort
contest ‘‘Day-Ahead Electricity Demand Forecasting:
Post-COVID Paradigm’’ [22].

REFERENCES
[1] J. Brownlee, Introduction to Time Series Forecasting With Python.

Vermont, VIC, Australia: Machine Learning Mastery, 2013.
[2] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, ‘‘Statistical and

machine learning forecastingmethods: Concerns andways forward,’’PLoS
ONE, vol. 13, no. 3, pp. 1–26, Mar. 2018.

[3] M. Espinoza, J. A. K. Suykens, R. Belmans, and B. D.Moor, ‘‘Electric load
forecasting,’’ IEEE Control Syst., vol. 27, no. 5, pp. 43–57, Oct. 2007.

[4] R. J. Hyndman. (2018). A Brief History of Time Series Forecasting
Competitions. [Online]. Available: https://robjhyndman.com/hyndsight/
forecasting-competitions/

[5] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, ‘‘The m4 competition:
100,000 time series and 61 forecasting methods,’’ Int. J. Forecasting,
vol. 36, no. 1, pp. 54–74, Jan. 2020.

[6] S. Smyl, ‘‘A hybrid method of exponential smoothing and recurrent neu-
ral networks for time series forecasting,’’ Int. J. Forecasting, vol. 36,
pp. 75–85, Jan. 2020.

[7] L. Peng, S. Liu, R. Liu, and L. Wang, ‘‘Effective long short-term mem-
ory with differential evolution algorithm for electricity price prediction,’’
Energy, vol. 162, pp. 1301–1314, Nov. 2018.

[8] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, ‘‘Short-term
residential load forecasting based on LSTM recurrent neural network,’’
IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 841–851, Jan. 2019.

[9] G.-F. Fan, M. Yu, S.-Q. Dong, Y.-H. Yeh, and W.-C. Hong, ‘‘Forecasting
short-term electricity load using hybrid support vector regression with
grey catastrophe and random forest modeling,’’ Utilities Policy, vol. 73,
Dec. 2021, Art. no. 101294.

[10] T. Hong, P. Pinson, Y. Wang, R. Weron, D. Yang, and H. Zareipour,
‘‘Energy forecasting: A review and outlook,’’ IEEE Open Access J. Power
Energy, vol. 7, pp. 376–388, 2020.

[11] A. Tealab, H. Hefny, and A. Badr, ‘‘Forecasting of nonlinear time series
using ANN,’’ Future Comput. Informat. J., vol. 2, no. 1, pp. 39–47,
Jun. 2017.

[12] H.Hewamalage, C. Bergmeir, andK. Bandara, ‘‘Recurrent neural networks
for time series forecasting: Current status and future directions,’’ Int.
J. Forecasting, vol. 37, no. 1, pp. 388–427, 2021.

[13] S. Seabold and J. Perktold, ‘‘Statsmodels: Econometric and statisti-
cal modeling with Python,’’ in Proc. 9th Python Sci. Conf., 2010,
pp. 92–96.

[14] T. Luong, H. Pham, and C. D. Manning, ‘‘Effective approaches to
attention-based neural machine translation,’’ in Proc. Conf. Empirical
Methods Natural Lang. Process. Stroudsburg, PA, USA: ACL, 2015,
pp. 1412–1421.

[15] B. Lim, S. Ö. Arık, N. Loeff, and T. Pfister, ‘‘Temporal fusion transformers
for interpretable multi-horizon time series forecasting,’’ Int. J. Forecasting,
vol. 37, no. 4, pp. 1748–1764, Oct. 2021.

[16] Y. Chen, Y. Kang, Y. Chen, and Z. Wang, ‘‘Probabilistic forecasting
with temporal convolutional neural network,’’ Neurocomputing, vol. 399,
pp. 491–501, Jul. 2020.

[17] A. van den Oord et al., ‘‘WaveNet: A generative model for raw audio,’’
2016, arXiv:1609.03499.

[18] J. Yan, L. Mu, L. Wang, R. Ranjan, and A. Y. Zomaya, ‘‘Temporal convo-
lutional networks for the advance prediction of ENSO,’’ Sci. Rep., vol. 10,
no. 1, May 2020, Art. no. 8055.

[19] M. V. García and J. L. Aznarte, ‘‘Shapley additive explanations for NO2
forecasting,’’ Ecological Informat., vol. 56, Mar. 2020, Art. no. 101039.

[20] P. Scarabaggio, M. La Scala, R. Carli, and M. Dotoli, ‘‘Analyzing the
effects of COVID-19 pandemic on the energy demand: The case of north-
ern Italy,’’ in Proc. AEIT Int. Annu. Conf. (AEIT), Sep. 2020, pp. 1–6.

[21] S. M. Lundberg et al., ‘‘Explainable machine-learning predictions for the
prevention of hypoxaemia during surgery,’’ Nature Biomed. Eng., vol. 2,
no. 10, pp. 749–760, Oct. 2018.

[22] M. Farrokhabadi, Day-Ahead Electricity Demand Forecasting: Post-
COVID Paradigm. IEEE Dataport, 2020, doi: 10.21227/67vy-bs34.

[23] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning,
‘‘STL: A seasonal-trend decomposition procedure based on
loess (with discussion),’’ J. Off. Statist., vol. 6, no. 1, pp. 3–33,
1990.

[24] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016. [Online]. Available: http://www.
deeplearningbook.org

[25] M. Christ, A. W. Kempa-Liehr, and M. Feindt, ‘‘Distributed and parallel
time series feature extraction for industrial big data applications,’’ 2016,
arXiv:1610.07717.

[26] D. Kwiatkowski, P. C. B. Phillips, P. Schmidt, and Y. Shin, ‘‘Testing the
null hypothesis of stationarity against the alternative of a unit root: How
sure are we that economic time series have a unit root?’’ J. Econometrics,
vol. 54, nos. 1–3, pp. 159–178, 1992.

[27] S. E. Said and D. A. Dickey, ‘‘Testing for unit roots in autoregressive-
moving average models of unknown order,’’ Biometrika, vol. 71, no. 3,
pp. 599–607, 1984.

[28] R. J. Hyndman, ‘‘Moving averages,’’ in International Encyclopedia of
Statistical Science, M. Lovric, Ed. Berlin, Germany: Springer, 2011,
pp. 866–869, doi: 10.1007/978-3-642-04898-2_380.

[29] M. B. Perry, ‘‘The exponentially weighted moving average,’’ in Wiley
Encyclopedia of Operations Research and Management Science. Atlanta,
CA, USA: American Cancer Society, Feb. 2011.

[30] W. S. McCulloch and W. Pitts, ‘‘A logical calculus of the ideas immanent
in nervous activity,’’ Bull. Math. Biophys., vol. 5, no. 4, pp. 115–133,
1943.

[31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning repre-
sentations by back-propagating errors,’’ Nature, vol. 323, pp. 533–536,
Oct. 1986.

[32] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[33] K. Cho et al., ‘‘Learning phrase representations using RNN
encoder–decoder for statistical machine translation,’’ in Proc.
Conf. Empirical Methods Natural Lang. Process. (EMNLP), 2014,
pp. 1–15.

[34] S. Bai, J. Z. Kolter, and V. Koltun, ‘‘An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,’’ 2018,
arXiv:1803.01271.

[35] F. Chollet et al. (2015). Keras. [Online]. Available: https://keras.io
[36] D. P. Kingma and J. L. Ba, ‘‘Adam: Amethod for stochastic optimization,’’

in Proc. 3rd Int. Conf. Learn. Represent., San Diego, CA, USA, 2015,
pp. 1–15.

[37] T. O’Malley et al. (2019). Keras Tuner. [Online]. Available: https://
github.com/keras-team/keras-tuner

[38] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, ‘‘On the impor-
tance of initialization and momentum in deep learning,’’ in Proc.
30th Int. Conf. Mach. Learn., no. 3, Atlanta, GA, USA, 2013,
pp. 1139–1147.

[39] S. J. Reddi, S. Kale, and S. Kumar, ‘‘On the convergence of adam
and beyond,’’ in Proc. Int. Conf. Learn. Represent. (ICLR), 2018,
pp. 1–23.

[40] J. Duchi, E. Hazan, and Y. Singer, ‘‘Adaptive subgradient methods for
online learning and stochastic optimization,’’ in Proc. 23rd Conf. Learn.
Theory, vol. 12, 2010, pp. 257–269.

[41] M. D. Zeiler, ‘‘ADADELTA: An adaptive learning rate method,’’ 2012,
arXiv:1212.5701.

[42] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 56, pp. 1929–1958,
2014.

[43] B. L. Welch, ‘‘The generalization of ‘STUDENT’S’problem when several
different population varlances are involved,’’ Biometrika, vol. 34, nos. 1–2,
pp. 28–35, 1947.

[44] W. McKinney, ‘‘Data structures for statistical computing in Python,’’ in
Proc. 9th Python Sci. Conf., S. van der Walt and J. Millman, Eds., 2010,
pp. 56–61.

[45] (2020). Time series forecasting | TensorFlow Core. [Online]. Available:
https://www.tensorflow.org/tutorials/structured_data/time_series

252 VOLUME 9, 2022

http://dx.doi.org/10.21227/67vy-bs34
http://dx.doi.org/10.1007/978-3-642-04898-2_380

Theodorakos et al.: DR Neural Networks: Hybrid System Identification Applied to Electricity Demand Forecasting

KONSTANTINOS THEODORAKOS received
the B.Sc. degree in informatics engineering from
the Technological Educational Institute (TEI)
of Crete (Technical College), Greece, in 2013,
and the Master of Computer Science degree
in software engineering from the Universiteit
Antwerpen, Belgium, in 2017. He is currently
pursuing the Ph.D. degree in engineering science
with the STADIUSCenter for Dynamical Systems,
Signal Processing, and Data Analytics, Depart-

ment of Electrical Engineering (ESAT), KU Leuven, Belgium.
He worked as an Electronic Hardware Technician from 2008 to 2011 and

a Numerics Software Developer for spatial and spatio-temporal machine
learning on geographic information systems from 2013 to 2018. He is
working on time series analysis and modeling in data science applications.

Mr. Theodorakos received the Microsoft Azure Credits for Research
Award in 2017 and the Third Place on the Amazon Web Services IoT APP
Challenge Contest in 2017.

OSCAR MAURICIO AGUDELO received the
B.S. degree in electronics engineering from
the Universidad Autónoma de Occidente, Cali,
Colombia, in 1997, the M.S. degree in indus-
trial control engineering from the Universidad de
Ibagué (in cooperation with KU Leuven and Uni-
versiteit Gent), Ibagué, Colombia, in 2004, and the
Ph.D. degree in electrical engineering from KU
Leuven, Leuven, Belgium, in 2009.

He worked with the Universidad Autónoma de
Occidente from 1997 to 2004, as a full time Professor of control and
automation. After his Ph.D., he held a post-doctoral position and later on the
Research Manager position at the Research Group STADIUS, Department
of Electrical Engineering, KU Leuven, where he is currently a Project
Coordinator on systems and control. His research interests are in model
reduction techniques, systems and control theory, machine learning, model
predictive control, data assimilation, deep learning, polynomial optimization,
system identification, and analysis and design of intelligent control systems.

MARCELO ESPINOZA received the M.Sc.
degree in applied economics and the M.Sc. degree
in civil engineer from the Universidad de Chile in
1998, the master’s degree in artificial intelligence
from KU Leuven, Belgium, in 2002, and the Ph.D.
degree from KU Leuven in 2006, working in the
field of nonlinear system identification.

He was a Post-Doctoral Researcher with
the Department of Electrical Engineering,
KULeuven, from 2006 to 2008. Since 2008, he has

been holding several analysis positions in global energy companies.

BART DE MOOR (Fellow, IEEE) received
the Doctoral degree in applied sciences from
KU Leuven, Belgium, in 1988.

He was a Research Associate with Stanford
University. He is currently a Full Professor
with the Department of Electrical Engineering,
KU Leuven, and a Guest Professor with the Uni-
versita di Siena, Italy. He served several times as
the Head of the Cabinet of Ministers of Science
and Socio-Economic Policy in Belgium/Flanders

and acted as a Vice-Rector of the International Policy of KU Leuven. He co-
founded eight spin-off companies (four in Health 2.0 and four in Industry
4.0). His fields of research are numerical linear algebra, system theory and
control, machine learning, and data science, in which he has been guiding
more than 80 Ph.D. students and coauthored more than 400 scientific papers
and 11 books.

Dr. De Moor was awarded with numerous scientific prizes and recogni-
tions (a.o., the ERC Advanced Grant) and honors (the Fellowship of IEEE
and SIAM), as a member of the Royal Academy. In 2010, he received
the Science Excellence Award from the King Albert II of Belgium and
was nominated a Commander in the Order of Leopold by the King Filip
I in 2020. He has been serving on numerous international scientific and
science policy assessment committees, and is a member/the head of the
board of several (inter)national scientific institutes (including the Flanders
Biotech Institute) and funding agencies. Since 2019, he has been one of
the architects and coordinators of the large Flanders AI Program. He is
the Chairperson of the Capricorn Digital Growth Fund (venture capital),
the Health-House (a high-tech science outreach center), and the Alamire
Foundation (digital humanities and polyphonic music), and co-founded the
Technopolis (children’s science center).

VOLUME 9, 2022 253

