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ABSTRACT In the usual practice, the evaluation of overvoltages due to direct lightning strikes to overhead
power lines is focused on the representation of the effects of the lightning current injection, whilst the effects
of the coupling between the conductors and the lightning electromagnetic pulse (LEMP) is disregarded.
Motivated by recent results obtained for the case of a medium voltage line configuration with a shield
wire, this paper extends the analysis to assess the contribution of the LEMP on the lightning performance of
an overhead distribution line with and without periodically grounded wires and surge arresters. Moreover,
the paper deals with the LEMP effect on the occurrence probability of flashovers on different phases,
which is an important information on the service continuity of networks with isolated or compensated
neutral earthing. A validation of the results is obtained by comparing the overvoltages calculated by the
electromagnetic transient program including the model of the line illuminated by the LEMP and those

obtained by a three-dimensional finite difference time-domain approach.

INDEX TERMS

lightning protection.

Distribution line, direct lightning, lightning electro-magnetic pulse, flashover rate,

NOMENCLATURE

i(r) current waveform at the channel base

lo, 71, T2, n, n Heidler function parameters

Iy, tr, Sy, th peak value, equivalent front time, max-
imum steepness, and time to half value
of i(t)

v(t) voltage across insulators at time ¢

D(t) value of the flashover model integral at
time ¢

Vo, to, k parameters of the integration model

DEx flashover value of D

Fp annual number of flashovers

A, Niot, Nd Monte Carlo events: collecting area,
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total number and number of direct events
causing a flashover.

. INTRODUCTION
HE assessment of the expected rate of lightning-
T originate flashovers and damages to the equipment con-
nected to power distribution lines requires considering the
effects of both direct and indirect lightning strokes [1]-[4].
Although field observations suggest that many of the
lightning-related disturbances occurring in MV-lines are due
to lightning striking the ground near the line [1], [5], direct
events are possible cause of line faults as well, unless
surge arresters (SAs) are regularly installed at close dis-
tance [6]-[8]. In several studies e.g., [9], EMTP (electro-
magnetic transient program) calculation models, in which
the lightning strike is represented by an equivalent generator,
i.e., a current source in parallel with the wave impedance of
the lightning channel [4], [10], are shown to be adequately
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accurate for reproducing overvoltages originated by direct
lightning strikes. This approach, typically adopted for cal-
culating the backflashover rate of transmission lines [11],
implies disregarding the effect of the lightning electromag-
netic pulse (LEMP) radiated from the lightning channel with
respect to that of the current injection.

The results of the recent analysis presented in [12] sug-
gest that the LEMP effect may have an important effect
on the lightning performance of distribution lines, espe-
cially in presence of periodically grounded wires. The aim
of this paper is to extend the results of [12] and to com-
pute the LEMP contribution also in case of a direct strike
to the phase conductors of a line not equipped with a
shield-wire. The analysis is initially performed by means
of time domain comparisons to analyze the polarity and
the magnitude of the two contributions (LEMP and cur-
rent injection) to the total overvoltage. Furthermore, this
paper compares the lightning performance against direct
strikes of an overhead distribution line with and without
grounded shield wires and with and without surge arresters
(SAs). The occurrence probability of multi-phase flashovers,
i.e., flashovers on insulators of different phases, is also
assessed. This is an important information for networks with
isolated or compensated neutral earthing, in which flashovers
on insulators of the same phase may not require circuit
breaker operations if the power-follow current extinguishes
spontaneously [6].

Several approaches for calculating the induced voltages
on overhead lines have been proposed in the literature
e.g., [13]-[21]. In many of these approaches, the calculation
of the overvoltages induced by lightning events terminating
on the ground or hitting objects close to the line is per-
formed by first evaluating the lightning electromagnetic pulse
(LEMP) and then by assessing the line response through the
solution of the field-to-line coupling equations [22], within
the basic assumption of the transmission line (TL) theory,
i.e., by assuming the response of the line is quasi-transverse
electromagnetic (quasi-TEM).

Several of the abovementioned calculation methods are
conceived to be integrated in EMTP-like simulation envi-
ronments to assess the effects of lightning strikes on real
power systems. The advantages and limits of these models
based on circuit theory for lightning surge analysis are dis-
cussed in e.g., [23]. Full-wave computational approaches,
such as the finite-difference time-domain (FDTD) method,
do not require the assumption of TEM response. For the
case of 3D structures, such as high voltage line tow-
ers [9], [24], it is shown that the non-TEM characteristics
may have a significant influence on the overvoltages cal-
culation. A three-dimensional finite difference time-domain
(3D-FDTD) that calculates the overvoltages due to direct
strikes to transmission lines and substations considering the
LEMP effects is presented in [25].

This paper presents the calculation results of the response
of a power distribution overhead line to a direct lightning
strike, obtained by means of the following methods:
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- FDTD which intrinsically considers both the effects of
the current injection and the LEMP-coupling with the line
conductors,

- EMTP which simulates the line response assuming the
direct strike can be modelled by means of an equivalent
current source, thus, neglecting the LEMP effect,

- LIOV-EMTP in which the LEMP effect is also taken into
account by using the LIOV-EMTP code [26], [27].

Since the use of 3D models requires a significant compu-
tational effort that makes them unsuitable for the statistical
assessment of the flashover rate for realistic configurations,
as in [12], the lightning performance is finally evaluated by
means of the latter two aforementioned methods.

The structure of the paper is the following. Section II
presents the case study and the calculation method. Section 11T
presents some time domain transient overvoltages due to
direct strikes to a line without and with SAs. Section III
deals with the assessment of the flashover rate and the occur-
rence of multi-phase flashovers. Section IV is devoted to the
conclusions.

Il. CASE STUDY AND OVERVOLTAGE CALCULATION
METHODS

The analysis of the LEMP contribution on the overvoltages
due to direct strikes is presented for two pole configurations,
shown in Fig. 1, having identical geometry of the phase
wires, but one equipped with a shield-wire, i.e., the same
configuration discussed in [12], and the other one with no
shield-wire installed.

Shieldwire  Metallic support for the shield wire
R

0.5m[40.5m 0.5m 0.5m 0.5m 0.5m
— b

%
0.75m Phase

wire —» — wire ~» CY —
.L1 .L1 | L2 L3
/' T A T
Metallic 2.0m Metallic 2.0m
crossarm crossarm
11.25m 11.25m
Reinforced Reinforced
concrete pole concrete pole
14m 14m
2.5m 2.5m
1 | v 2 v

FIGURE 1. Arrangement of the poles: Configuration 1 — with
shield-wire and Configuration 2 — without shield-wire.
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FIGURE 2. Line topology and lightning strike locations LA at
pole No. 1 and LB 20 m away from pole No. 1.

The case study refers to a 1-km long distribution line
with a span length of 40 m. Fig. 2 shows the line topology,
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the observed pole and location of the considered direct strikes
locations.

The voltage at the utility frequency (6.6 kV for the con-
sidered line) is disregarded, since it is much smaller than the
critical flashover voltage of the insulators.

The analysis presented is limited to negative flashes.
In Section III, the time domain voltage transients are cal-
culated for two different channel-base current waveforms,
assumed to be representative of a typical first and subsequent
negative stroke, respectively.

As mentioned in the Introduction, the overvoltages due to a
direct strike can be ascribed to the lightning current injection
and to the effect of the LEMP-coupling to the line conductors.
In the EMTP calculations, the lightning current injection is
modelled by means of an ideal current source. The negative
terminal of the current generator is connected to the line
conductors (or shield wire for configuration 1), while the
positive terminal is grounded. In the FDTD model and in the
LEMP calculation of the LIOV-EMTP code, the return stroke
is represented by a current distribution along the channel
according to the so-called transmission line model [28].

The value of the ground conductivity is 0.01 S/m. The
relative permittivity is 10.

In the LIOV-EMTP code, the LEMP and the line response
to the external electromagnetic field are calculated by adopt-
ing the Agrawal ef al. LEMP-to-line conductors coupling
model [22] and the Cooray-Rubinstein formula [29], [30]
to represent the effect of finite ground conductivity on the
LEMP propagation. Only the coupling of the LEMP with
the horizontal conductors is considered. The strike is con-
sidered as a lightning channel very close to the line (10 m
far from the line in the calculations presented in this paper).
As discussed in [12], this simplifying assumption allows a
good compromise between numerical stability and accuracy
of the results, assessed with respect to the ones provided by
the FDTD model.

The detailed description of the FDTD model, including
the domain discretization and the boundaries setup, can be
found in [12]. The FDTD model is implemented and solved
by using the 3D surge simulation code developed by CRIEPI
called Virtual Surge Test Lab (VSTL). The Restructured and
Extended Version (VSTL REV) described in [31] and [32],
can deal with several important components for lightning
surge analysis such as thin wires, SAs, lightning channels,
and so forth.

In the EMTP calculations, the pole is represented by a
15 m-long single-conductor lossless constant-parameter line
in series to a grounding resistance. According to the exper-
imental results presented in [33] and [34], the pole surge
impedance is set to 300 2 and the grounding resistance is
assumed equal to 20 2. These assumptions are also sup-
ported by the results of step response calculation by means
of the FDTD method presented in [35]. The current wave is
assumed to propagate along the pole at the speed of light [36].
The soil ionization and the frequency dependence of the
grounding electrode are neglected.
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The soil resistivity affects the grounding resistance of the
poles, the line parameters, and the propagation of the LEMP
over the soil. The 20 €2 grounding resistance value of the poles
is areasonable value for the assumed grounding arrangements
of the poles and the 0.01-S/m ground conductivity value.
As the adopted Cooray-Rubinstein approximation becomes
less accurate at very close distance and very low ground
conductivities [37], the analysis at higher soil resistivity is
outside the scope of this paper.

The insulators are mounted on a metallic crossarm, which
is explicitly represented only in the FDTD model. The Inte-
gration Model (IM) [38] is used to represent the withstand
capabilities of the line insulators and to discriminate between
single-phase and multi-phase faults. A flashover occurs if the
time integral D of the insulator voltage exceeds a given value
DE*. Integral D is given by the following expression

t
D(t) = / ()] = Vot di )
fo

where v(¢) is the voltage across the pole insulator, Vj is
the minimum voltage to be exceeded before any breakdown
process can start, k is a dimensionless factor, and #g is the time
at which |v()| becomes greater than V.

The assumed parameters for the IM assumed are: Vy =
132 kV, k = 1 and DE* = 66 kV us. These values have been
inferred in [12] on the basis of voltage-time-to-breakdown
experimental results for positive polarity standard lightning
impulse voltages applied to a 6.6-kV solid core type insulator.

lll. TIME DOMAIN TRANSIENTS

In this Section the waveforms of the overvoltages across insu-
lators due to direct strikes on the distribution lines are shown.
The aim of the following comparisons is to highlight the
polarity and the incidence of the two contributions to the total
overvoltage (LEMP and current injection), and to compare
the results obtained by the three abovementioned calculation
methods. To avoid the occurrence of sharp variations and
spikes in the voltage waveforms due to flashovers, in this
Section we assume ideal insulators, i.e., characterized by a
withstand voltage so high that no flashovers can occur.

Two lightning current waveshapes are considered, corre-
sponding, as above mentioned, to a typical first stroke and
subsequent stroke. The current waveforms are modelled by
means of Heidler functions [39]:

. Iy (t/7)"

ity = —————exp(—t/tT 2

() DTt an) p(=t/2) (2)
where n = eT/@@W/T"" The values of the Heidler

function parameters are reported in TABLE 1; the subsequent
stroke is represented by the sum of two functions. All the
waveforms refer to the phase 1.

The polarity difference of the LEMP effect in the two cases
with and without ground wire is illustrated by Fig. 3 and
Fig. 4. For a direct strike to the shield wire (configuration 1 of
Fig. 1), Fig. 3 shows the overvoltage across phase-1 insulator
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TABLE 1. Heidler current waveforms parameters.

Heidler function parameters

Waveform
Iy TI 72 n
First 31.1kA 7.8 ps 97.6 ps 10
10.7 kA 0.25 ps 2.5 s 2
Subscquent 6.5 kA 2.1 ps 230 s 2

Total

0 2 4 6 8 10 12 14 16 18 20
Time (ps)
a)
600 Total
500 Current
400
s
< 300
E
= 200
>
100
0
-100
0 0.5 1 1.5 2 25 3 35 4 45 5
Time (us)
b)

FIGURE 3. Voltage across an ideal insulator of a pole struck by a
first (a) and a subsequent stroke (b) for the line with shield wire
(configuration 1, pole No. 1, strike location LA): total voltage,
current contribution, and LEMP contribution.

of the struck pole. The figure includes three curves, all cal-
culated by the LIOV-EMTP model for the strike location LA
of Fig. 2 and the current waveshape of a first (Fig. 3.a) and
subsequent stroke (Fig. 3.b): the total overvoltage waveform,
the component due to the lightning current injection and the
one due to the LEMP only. The latter two contributions have
the same polarity, therefore the LEMP contribution increases
the voltage across the insulators of a line equipped with a
shield-wire.

An analogous comparison is shown in Fig. 4 for a direct
strike to a line without shield wire (configuration 2 of Fig. 1).
In this case, the overvoltage due to the current injection has
negative polarity, while the LEMP contribution has positive
polarity. Therefore, the LEMP effect slightly reduces the total
voltage across phase insulators, but its contribution is less
important than for configuration 1, especially for the case of
a first stroke (Fig. 4.a).

These considerations are valid also in case of positive
strikes. The opposite lightning current polarity would change
the polarity of both the injected current and the induced
voltages [40].
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FIGURE 4. Voltage across an ideal insulator of the pole struck by
a first (a) and a subsequent (b) stroke for the line without shield
wire (configuration 2, pole No. 1, strike location LA): total
voltage, current contribution and LEMP contribution.
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FIGURE 5. Voltage across an ideal insulator 20 m away from a
first stroke (configuration 2, pole No. 1, strike location LB).
Comparison between the different models.

The considerations for the line without shield wire are
confirmed by the comparison of the results obtained by
using the 3D-FDTD approach, the LIOV-EMTP code, and
the EMTP without including the LEMP effect, as shown in
the following subsections for the case without and with surge
arresters. For all the considered cases, the results obtained
by the LIOV-EMTP model are in good agreement with those
obtained by means of the FDTD calculations.

A. WITHOUT SURGE ARRESTERS
For the case of a direct strike to pole No. 1 of line config-
uration 2 and first-stroke current, Fig. 5 shows the voltage
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FIGURE 6. Voltage across an ideal insulator 20 m away from a
subsequent stroke (configuration 2, pole No. 1, strike location
LB). Comparison between the different models.

across the insulator 20 m away from the struck pole calcu-
lated with the three different methods, namely the FDTD
model, the EMTP model with LEMP effect (LIOV-EMTP)
and without LEMP (EMTP). Analogous results are reported
in Fig. 6 for the subsequent stroke current waveform. As in
the previous cases, only the voltages of phase 1 are reported.
For the case without surge arresters, there are no significant
differences between the curves. The current injection without
any protection against surges causes a very large overvoltage.
Indeed, without surge arresters, it is expected that insula-
tion flashovers occur along the line. As already mentioned,
flashovers are not considered in these comparisons.

B. WITH SURGE ARRESTERS

A set of three SAs installed every 200 m are considered,
as shown in Fig. 7. SAs are represented by means of nonlinear
resistors in all EMTP and FDTD models. The voltage-current
characteristic of the installed SAs is the same adopted in [12].
As done so far, only the voltages of phase 1 are shown.

‘o0 0 00 820 0 -0 O e

No.1 No.2 No.3 No.4 No.5 No.6

S SA SA

FIGURE 7. Locations of the installed SAs and lightning strike.

Fig. 8 shows the comparison of the overvoltage on phase 1
of pole No. 2 calculated with the three different models for
line configuration 2 and the first-stroke current waveform.
The peak value of the overvoltage calculated by neglecting
the LEMP contribution (EMTP) is slightly overestimated.
Fig. 9 shows the comparison between the overvoltage calcu-
lated at pole No. 4.

The comparisons repeated for the case of the subsequent-
stroke current waveform are shown in Fig. 10 and Fig. 11,
for the case of pole No. 2 and No. 4, respectively. In both
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FIGURE 8. Voltage across an ideal insulator 20 m away from a
first stroke on the line without shield wire, 40 m from SA

(configuration 2, pole No. 2). Comparison between the different
models.
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FIGURE 9. Voltage across an ideal insulator 100 m away from a
first stroke on the line without shield wire, 80 m and 120 m away
from SAs, (configuration 2, pole No. 4). Comparison between
the different models.

cases, the maximum peak amplitude of the overvoltage cal-
culated with LIOV-EMTP is close to the one estimated by
the FDTD method. The subsequent peaks, due to reflections
between SAs, appear to be less damped for the waveforms
estimated by means of the two EMTP models likely due
to the representation of the ground impedance of the pole
and the line surge-propagation losses. In both the EMTP
and LIOV-EMTP simulations, the grounding is modelled by
means of a simple resistor and the transient ground resistance
of the line is deliberately disregarded (although it may have
some effects as shown in [41]).

The computational time required to obtain the results of
Fig. 10 or Fig. 11 by using the FDTD method (207,704 time
steps, 0.125m-2m cell size, non-uniform cell) is about
10 hours. The calculations have been obtained by a desktop
PC equipped with an Intel Xenon 3.5 GHz CPU with 32 GB
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of RAM. The computational time required for a LIOV-EMTP
simulation is about 15 s, for an observed time window
of 16 us by using a spatial discretization of 2 m (6.67 ns)
in the 1D-FDTD of the LIOV code. The computational time
drops to about 1.5 s if the LEMP is neglected.

1500 -
——FDTD

LIOV-EMTP
1000 - - -EMTP
500
AN
/
g o L
Y v g
g <~
2 -500
-1000
-1500
-2000
0 1 2 3 4 5

Time (us)

FIGURE 10. Voltage across an ideal insulator 20 m away from a
subsequent stroke on phase 1 and 40 m from SA, without shield
wire (configuration 2, pole No. 2). Comparison between the
different models.
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FIGURE 11. Voltage across an ideal insulator 100 m away from a
subsequent stroke on phase 1, at 80 m and 120 m away from
SAs, without shield wire (configuration 2, pole No. 4).
Comparison between the different models.

IV. STATISTICAL ASSESSMENT OF THE LIGHTNING
PERFORMANCE
This Section is devoted to the calculation of the lightning per-
formance of the line i.e., the estimation of the expected annual
number of overvoltages able to cause insulator flashovers.
The calculation is carried out by using a procedure based
on the Monte Carlo method [42]. The procedure begins with
the generation of a large number n,,, of lightning events, each
representing a negative first stroke, which current is modelled
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by a Heidler function. As the Heidler function requires four
parameters to be defined (namely, current peak amplitude 7,,,
equivalent front time #r, maximum front steepness S, and
wave-tail time to half value #;, [43]) the procedure described
in [44] is adopted for the generation of the multivariate
log-normal distribution of the lightning current parameters.
The complete set of the adopted parameter values is reported
in TABLE 2 and TABLE 3, and are taken by [45]. For the
sake of comparison, the parameters are the same adopted for
the statistical calculations performed in [12].

TABLE 2. Parameters of the log-normal distributions for negative
downward first strokes [45].

Standard deviation

Parameter Median value of the parameter
logarithm (base 10)

1, 30 kA 0.26

t 3.83 ps 0.31

S 12 kA/ps 0.26

ty 75 us 0.26

TABLE 3. Correlation coefficients between parameters for
negative downward first strokes [45].

Parameter 1, ty Sm th
tr 0.37 1

Sm 0.36 -0.21 1

th 0.56 0.33 0.1 1

The location of the ny,; events is uniformly distributed in an
area A whose borders are 500 m far from a 2-km long line with
matched terminations, as shown in Fig. 12, in which direct
events are plotted in red and indirect ones in blue. As in [12],
due to the symmetry of the geometry, the location of all the
generated events (n;,; = 20000 events) are concentrated in
an area A of 0.4 km? around the pole at the midpoint of the
line.

The direct and indirect events are singled-out by employ-
ing the electro-geometric model (EGM) adopted in [1]. For
configuration 1, by applying the EGM considering the height
of the shield wire, the number of directs events is 2450.
For configuration 2, by considering the height of the pole,
the number of direct events is 2396. Shielding failure is
neglected for configuration 1, so all the flashes are assumed
to hit the shield wire. For configuration 2, the direct events
are uniformly distributed among the three phase conductors,
neglecting direct strikes to the top of the poles.

For each Monte Carlo event, a LIOV-EMTP simulation is
performed to calculate the response of line and the possible
occurrence of flashovers according to the adopted model IM.

The annual numbers of direct strikes expected to cause a
flashover F), is given by

ng
F, = AN, 3)

Ntot
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FIGURE 12. Top view of the stroke locations of the Monte Carlo
events. Direct events in red, indirect in blue. The 2-km long line
is located along the x axis.

where ny are the number of direct events able to cause a
flashover and N, is the annual ground flash density, assumed
equal to 1 flash/km?/yr.

The following cases are simulated for both configurations 1
and configuration 2 of Fig. 2:

- case A: without SAs;

- case B: SAs installed every 400 m;

- case C: SAs installed every 200 m.

The results of the Monte Carlo procedure in terms of yearly
single-phase and multi-phase flashover rate are reported in
TABLE 4 and TABLE 5 for configuration 1 and configura-
tion 2, respectively.

As a confirmation of the analysis provided in [12],
the LEMP contribution increases the annual number of
flashovers for configuration 1.

According to [1], for a line such as the one of configu-
ration 2, the expected number of direct lightning flashes to
the phase conductors is approximately 12 flashes/100 km/yr.
Since almost all these events are expected to cause at least
one insulation flashover, the enhancement due to the LEMP
effect is not appreciable for configuration 2, as can be seen
by the first two columns of TABLE 5. The LEMP contri-
bution, instead, increases the annual number of multi-phase
flashovers.

Note that the first phase that undergoes a flashover reduces
the overvoltages on the other wires likewise a shield wire.
Therefore, multi-phase flashover rates are lower than single
phase flashover rates also without shield wire.

TABLE 4. Calculated flashover rate due to direct events for line
config. 1.

Single-phase Multi-phase

Case (number/100km/yr) (number/100km/yr)
without with without with
LEMP LEMP LEMP LEMP
A (without SAs) 6.7 113 3.7 9.8
B (with SAs
evry 400 m) 58 8.1 32 6.1
C (with SAs
every 200 m) 43 54 23 3.7

As an illustrative example, let us consider configuration 2,
case B, and one of the generated Monte Carlo events cor-
responding to a direct strike to phase 1 of the pole located
at x = 1120 m. The specific values of the Heidler function
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TABLE 5. Calculated flashover rate due to direct events for line
config. 2.

Single-phase Multi-phase

Case (number/100km/yr) (number/100km/yr)
without with without with
LEMP LEMP LEMP LEMP
A (without SAs) 12.0 12.0 6.0 10.8
B (with SAs
every 400 m) 12.0 12.0 4.7 7.0
C (with SAs
every 200 m) 12.0 12.0 4.1 5.2

parameters are Iy = 18.4 kA, 71 = 0.703 us, 7o = 60.1 us,
n = 2. Fig. 13 shows the plot of the maximum ampli-
tude (absolute value) of the overvoltages across the phase
insulators.

By neglecting the LEMP contribution, Fig. 13 shows that
all the insulators of the poles between the surge arresters,
installed at x = 1000 m and x = 1400 m, experience a
flashover on phase-1 only. By considering the LEMP effect,
Fig. 14 shows that flashovers also occur on phase 2 and 3 of
the struck pole.

The corresponding time domain waveforms of the voltages
across insulators of the struck pole, calculated disregarding
and considering the LEMP effect, are shown in Fig. 15.a and
in Fig. 15.b, respectively.

Before any flashover occurs, the polarity of the three phase
voltages is negative. After a flashover occurs in phase 1,
the polarity of the voltages across the other insulators sud-
denly turns from negative to positive. In case the LEMP
contribution is neglected, the overvoltages across insulators
of phase 2 and 3 in Fig. 15.a are not able to cause addi-
tional flashovers. After the flashover on phase-1 insulator,
the LEMP contribution has the same polarity of the voltages
across phase 2 and 3 insulators, and therefore enhance them.
In fact, the overvoltage peak on phase 3 reaches about 600 kV,
as shown in Fig. 15.b, larger than in the previous case. Even-
tually, phase-3 insulator flashover occurs at about 0.6 us, and
phase-2 insulators flashes shortly afterwards.
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FIGURE 13. Maximum amplitude (absolute value) of the
overvoltages across the phase insulators along the line
calculated without LEMP. The overvoltages on poles that
experience a flashover are indicated with a red mark.
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FIGURE 14. Maximum amplitude (absolute value) of the
overvoltages across the phase insulators along the line
calculated with LEMP. The overvoltages on poles that
experience a flashover are indicated with a red mark.
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FIGURE 15. Comparison of the overvoltages across the phase
insulators of the pole located at x = 1120 m calculated without
LEMP (a) and with LEMP (b).

V. CONCLUSION

The paper focuses on the assessment of the effects of the
lightning electromagnetic pulse on the overvoltages due to
direct strikes to power distribution overhead lines. Usually,
these effects are not considered in the calculation of the
lightning performance. As a confirmation of recent results
for the case of a line equipped with a shield wire, when the
LEMP effect is taken into consideration, the annual number
of expected flashovers increases also in the presence of surge
arresters along the line.

The new findings of the presented analysis, carried out by
using both EMTP and 3D-FDTD models, is the significant
increase of the expected number of multi-phase flashovers,
i.e., direct strikes events that cause flashovers in different
phase conductors. This occurs also for the considered line
configuration without shield wire and allows to obtain a more
consistent estimation of the rate of voltage interruptions in
distribution networks with isolated or compensated neutral
earthing.
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