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ABSTRACT This paper proposes a probabilistic transient stability-constrained preventive dispatching
method for power systems under a high inclusion of wind power. First, a set of instability mode (IM)-
categorized probabilistic transient stability constraints (PTSCs) are constructed, which facilitate the devel-
opment of a dispatching plan against various fault scenarios. Next, to avoid massive transient stability
simulations in each dispatching operation, a machine learning-based model is trained to predict the critical
clearing time (CCT) and IM for all preconceived fault scenarios. Based on the predictions, the system
operation plan is assessed with respect to the PTSCs. Then, the sensitivity of the probabilistic level of the CCT
is calculated to the active power generated from the critical generators for each IM category. Accordingly,
the implicit PTSCs are converted into explicit dispatching constraints, and the dispatch is rescheduled to
ensure the probabilistic stability requirements of the system are met at an economical operating cost. The
proposed approach is validated on two modified IEEE test systems, reporting high computational efficiency
and high-quality solutions.

INDEX TERMS Critical clearing time (CCT), machine learning, optimal power flow, power dispatch,
probabilistic transient stability, uncertainties, wind power.

NOTATION
A. SETS AND INDICES
�B, �G, �

L
Sets of buses, synchronous generators
(SGs), and transmission lines, respectively.

�IM Set of all instability modes (IMs) that may
appear in the network.

�OP Set of possible operating points.
�w Set of possible wind power generation sce-

narios.
�L,OP Set of fault scenarios to be tested in dis-

patching operations, which consider each
fault at L for all operating points in �op.

�CCT,IM Set of data pairs (CCT, IM), where each
pair is the CCT and IM of a fault scenario
in �L,OP.

�C
k , �

R
k Sets of critical and remaining SGs of IM k ,

respectively.
k Index of �IM.

B. PARAMETERS

αk The threshold value of CCT set for IM k .
βk Acceptable security level set for ρk (CCT > αk).

T Time interval between two consecutive dispatch-
ing operations.

1P A threshold value to check the maximum power
output change in all SGs between two consecutive
iterations.
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C. VARIABLES
ρk (CCT > αk) Probability of CCT > αk .
u Control variables in the power dis-

patch.
ε Uncertainties that might change the

system operating point.
ξk Sensitivity of ρk (CCT > αk) to the

active power generated from �C
k .

L A list of fault lines created by sam-
pling the elements in�L according to
ζ .

1PC,objk Objective amount of active power to
be shifted from �C

k to �R
k for IM k .

D. FUNCTIONS
ζ Probability density function of fault occurrence for

each transmission line.
H (·) Function that describes ρk (CCT > αk).

I. INTRODUCTION

POWER systems are expected to operate economically
while maintaining the stability requirements of the grid.

Appropriate restrictions prevent a system from suffering huge
economic losses caused by transient instability resulting from
different contingencies [1].

In such a context, optimal power flow (OPF) has been
widely studied to address the economic side, followed by
various methods to explore the solution for the transient
stability constrained OPF (TSC-OPF) problem. Transient
stability of a post-fault system is determined by solving a
set of differential-algebraic equations (DAEs) that represent
the system transients, and the power flow solution corre-
sponds to the pre-fault operating point for solving the DAEs,
which significantly affects the system stability. However,
the DAE-constrained optimization problem cannot be solved
directly. One of the most popular solutions is to discretize
the DAEs into algebraic constraints by small time steps
and then apply nonlinear programming techniques [2], [3].
Another prevalent method is trajectory sensitivity-based tech-
niques, which iteratively adjust the dispatch based on the
sensitivity of the stability index of interest to system control
variables with the aid of time-domain simulations (TDSs)
[4], [5]. The evolutionary algorithm-based technique is also
a feasible approach that seeks the optimal solution of the
TSC-OPF problem via mechanisms inspired by biological
evolution [6], [7]. In addition to these methods, the machine
learning (ML)-incorporated method is another popular solu-
tion for solving the TSC-OPF problem. In [8], a neural net-
work is utilized to generate a preventive control solution,
in which the sensitivities between the stability margin and
output of each generator are obtained from the trained neural
network. In [9], a hybrid method combining support vector
machine and TDS is proposed, in which the relations of the
support vector machine-based stability index with respect
to control variables are calculated to find the TSC-OPF

solution. In [10] and [11], decision tree is applied to build
the security boundaries and then the expected dispatching
solution is searched within the feasible region. In [12], a deep
belief network-based framework is developed to produce the
optimal preventive control strategy. Regardless of their pros
and cons, these works mainly focus on deterministic systems.
However, they face challenges when applied to high renew-
able energy-integrated systems.

First, multi-source renewables such as wind power are
highly variable evenwithin a single hour [13]. Given that OPF
is frequently solved for the hour-ahead system [14], numerous
possible system operating points need to be considered in
each power dispatch. This results in an unacceptable com-
putational burden for deterministic approaches.

In addition, stochastic factors such as wind power in power
systems affect transient stability [15]; so, it is necessary
to analyze the transient stability from a probabilistic point
of view. In previous studies, a point estimate method and
Kalman filter are respectively applied in [16] and [17] to
estimate the uncertainty of the system stability margin caused
by the wind power uncertainties; in [18], Taguchi’s orthogo-
nal array testing is utilized to solve the TSC-OPF problem
considering wind power variations. Although these methods
dramatically reduce the test scenarios, the influence of wind
power uncertainty on stability may not be fully considered.
Moreover, the accuracy of the estimation may degrade if the
wind generation does not follow the predetermined probabil-
ity distribution.

Moreover, existing TSC-OPF studies mainly handle a
limited set of fault scenarios. Given the probabilistic
nature of different contingencies, a dispatching method that
sets flexible probabilistic stability standards against vari-
ous contingencies is rarely addressed in the literature and
can be beneficial to evaluate the overall stability of the
system.

To unravel the above-mentioned restrictions, a novel power
dispatching method is put forward. First, instability mode
(IM)-categorized probabilistic transient stability constraints
(PTSCs) are formulated for all transmission lines that poten-
tially trigger instability. Note the IM refers to the clustering
of the critical and remaining generators. Next, to eliminate
the need to run excessive time-consuming TDSs in each
dispatching operation, an ML-based model is trained offline
to predict the critical clearing time (CCT) and IM. Based on
the predictions, the current system operation plan is evalu-
ated with respect to the PTSCs, and the sensitivity of the
probabilistic level of the CCT to the active power generated
from the critical generators is calculated for each IM category.
Accordingly, a set of dispatching constraints are generated
and embedded into the conventional OPF formulation, and
then the dispatch is rescheduled.

The main contributions of this paper are threefold:
1) IM-categorized PTSCs are formulated to facilitate the

dispatching plan against various faults considering uncer-
tainties and to enable operators to set flexible probabilistic
stability levels for each IM to be prevented;
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2) An ML technique is utilized, for the first time, to solve
the power dispatch problem considering PTSCs. Compared to
existing methods, the proposed approach can rapidly evaluate
the stability status for a system considering uncertainties
without reducing the test scenarios; and

3) The sensitivity of the probabilistic level of the CCT
to the active power generated from the critical generators
is proposed, whereby the PTSCs can be converted into a
set of explicit dispatching constraints; thus, the dispatch is
rescheduled to ensure the probabilistic stability requirements
are met at an economical operating cost.

II. MATHEMATICAL FORMULATION
A. OBJECTIVE FUNCTION
The objective of generation scheduling is to minimize the
total operating cost of synchronous generators (SGs).

min
∑
g∈�G

(
a2gP2g + a1gPg + a0g

)
(1)

where a2g, a1g, and a0g are the generation cost coefficients of
the gth SG, Pg is the active power output of the gth SG, and
�G is the set of SGs.

B. STATIC CONSTRAINTS
AC power flow equations are described by (2), where �B is
the set of buses and i ∈ �B; Pi and Qi are the active and
reactive power injection from the SG at bus i, respectively; Vi
is the voltage magnitude of bus i; PWi and QWi are the active
and reactive wind power injections at bus i, respectively; θij is
the voltage angle difference between bus i and j; PDi and QDi
are the active and reactive loads at bus i, respectively; and Gij
and Bij are conductance and susceptance between buses i and
j, respectively.

Pi + PWi − PDi − Vi
∑
j∈�B

Vj
(
Gijcosθij + Bijsinθij

)
= 0

Qi + QWi − QDi − Vi
∑
j∈�B

Vj
(
Gijsinθij − Bijcosθij

)
= 0

(2)

Pg ≤ Pg ≤ Pg, g ∈ �G

Qg ≤ Qg ≤ Qg, g ∈ �G

Vi ≤ Vi ≤ V i, i ∈ �B

θi ≤ θi ≤ θ i, i ∈ �B

Il ≤ Il ≤ I l, l ∈ �L

(3)

Equation (3) denotes the constraints of bus power injection,
bus voltage magnitudes, and line current magnitudes, where
θi is the angle of bus voltage, Il is the current on line l, and
�L is the set of transmission lines.

C. DYNAMIC CONSTRAINTS
ẋ (t) = D (x (t) , y (t) ,u, ε)
E (x (t) , y (t) ,u, ε) = 0
x (t0) = x0, y (t0) = y0

t ∈ [t0, tend ] (4)

The dynamic equations are listed in (4), where x (t) and
y (t) are respectively the state and algebraic variables in the
transient period [t0, tend ] with initial values x0 and y0 at t0;
tend is the end time of transients. u includes control variables
such as the active power output of each SG, ε includes uncer-
tainties that affect the system operating point, e.g., variations
of the power generated from each wind power plant (WPP),
etc. D (·) is the differential equations representing system
transients and E (·) is the power balance equations to be
satisfied at each instant of time.

In this study, SGs in the networks are round rotor generator
model GENROU equipped with IEEEX1 excitation systems.
IEEEST stabilizers and IEESGO governors are installed for
each SG. Each WPP is modeled by an aggregated 1.5 MW
doubly-fed induction generator model. Note that the dynamic
constraints given by (4) are not directly formulated in the
power dispatching formulation. Instead, they are considered
inside the dynamic simulations during the database genera-
tion stage. Thus, the dynamics of the system can be learned
by the prediction model, which is then applied to online dis-
patching operations. More details about the prediction model
are discussed in Section III.

D. PROBABILISTIC TRANSIENT STABILITY CONSTRAINTS
Generally, the PTSC of a power system can be formulated
as [16]:

ρ
(
τ
((
xsol,ysol

)
, �L, ζ ,u, ε,T

)
> α

)
≥ β (5)

where ρ (·) represents the probability;τ is the stability index
of interest, which is the CCT in this paper but any other
stability index such as the stability margin can be used in a
straightforward manner; and

(
xsol,ysol

)
represents a dispatch-

ing solution, i.e., the system state and algebraic variables after
a certain dispatch. ζ is the probability density function (PDF)
of fault occurrence for each transmission line in �L and
T is the time interval between two consecutive dispatching
operations. Given that OPF is frequently solved for hourly
operation [14], T is set to one hour in this research. α is
the user-defined threshold value of the CCT. Constraint (5)
states that if a random fault occurs at lines in �L between
two consecutive dispatching operations, considering ζ and ε
during this period, the probability of CCT > α must not be
less than the security level β.

Figures 1 and 2 are illustrative examples showing the idea
of incorporating PTSCs into the power dispatch problem
using a two-machine power system. Fig. 1 shows two dis-
patching solutions and their corresponding possible operating
points in an interval T , in which the two solutions are calcu-
lated from OPF with and without PTSCs. Fig. 2 depicts the
PDF of the CCT of the two solutions with respect to a set of
potential faults, in which the violation area corresponds to the
possibility that the CCT is below the threshold value α. The
two figures convey the idea that, by incorporating PTSCs into
power dispatch, the stability level of the system is expected
to satisfy the security requirement.
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FIGURE 1. Illustration of the power dispatch with and without
PTSCs.

FIGURE 2. PDF of the stability index with and without PTSCs.

However, it is cumbersome to analyze each potential fault
individually after considering ε, and therefore dealing with
(5) in the OPF problem can be complicated. In this regard,
given that a certain dispatching solution may have a similar
effect on system vulnerability to multiple faults that trigger
the same IM [5], PTSCs are formed in a more generic and
tractable manner by:

ρ
(
CCT

((
xsol,ysol

)
, �L, ζ, u, ε,T

)
> αk

)
≥ βk∀k ∈ �IM (6)

where �IM is the set of all IMs that may appear in the
network. This manner also helps to set flexible probabilistic
stability standards for each IM to be prevented. Note that IMs
are similar to coherent groups of generators with the main
exception that they only contain two clusters of generators,
i.e., the critical SGs and the remaining ones [19], [20]. In the
following, ρ

(
CCT

((
xsol,ysol

)
, �L, ζ, u, ε,T

))
> αk is rep-

resented as ρk (CCT > αk) for simplicity.
As the system operating cost may increase after consid-

ering the PTSCs, this paper aims to offer a computationally
efficient dispatching method with a satisfactory trade-off
between economics and stability.

III. THE PROPOSED SOLUTION
The proposed approach is elaborated in this section. First,
the offline training and online application of the (CCT, IM)
prediction model are introduced. A method that converts the
PTSCs into linear algebraic form is then introduced, followed
by a flowchart representing the proposed solution framework.

A. TRAINING OF THE (CCT , IM) PREDICTION MODEL
The CCT and IM are two important indices in power system
transient stability analysis. The value of the CCT correlates
the system stability level against a specific fault, and the
identification of IM determines the critical SGs that lose
synchronism.

Denote �CCT,IM as a set of data pairs (CCT, IM) that con-
tains the CCTs and IMs of a specific system under all possible
fault scenarios. For a deterministic system under a set of
preconceived faults, the �CCT,IM can be collected by con-
ducting TDSs for all possible fault scenarios. The �CCT,IM

reflects the overall stability level of a system and identifies the
vulnerable SGs; this information provides system operators
with the basis for preventive dispatch. However, for a high
wind power-integrated system, collecting �CCT,IM by TDSs
is computationally inefficient as the potential operating points
increase exponentially.

To address this issue, a prediction model is trained offline
using an ML technique to rapidly predict the CCT and IM for
a large number of possible fault scenarios. To this end, system
pre-fault variables and fault locations, as listed in Table 1, are
selected as input features for model training [21]. The data
pair (CCT, IM) for each case is used as target labels.

The processes of database generation andML-basedmodel
training are illustrated in the left part of Fig. 3. The train-
ing data are obtained from Monte Carlo TDSs. To obtain
an adequate and reasonable training database, the statistical
models of uncertainties, including outputs of each WPP, load
levels, and fault locations, are estimated from their corre-
sponding historical observations. Next, Monte Carlo TDSs
are conducted: in each simulation, the uncertain variables
in the system are sampled from the corresponding statistical
models. Then, the selected features and target labels (CCT
and IM) are extracted from the simulation results and saved
in the database. After the database is generated, a prediction
model is trained and saved for online applications. Note that
the database generation and training process are performed
offline and do not increase the computational time during the
online application.

Specifically, the prediction model consists of a regression
model (to predict CCT) and amulti-class classification model
(to predict IM). In this research, an ensemble technique that
combines multiple classification and regression trees [22]
trained by the adaptive boosting (AdaBoost) method [23] is
applied. AdaBoost is an MLmeta-algorithm used in conjunc-
tion with many other types of learning algorithms and can
be applied to multi-class classification [24] and regression
problems [25].

For the multi-class classification problem, the AdaBoost
technique fits a sequence of weak classifiers on repeatedly
modified versions of the data. The data modifications at each
so-called boosting iteration apply weights η1, η2, . . . ,ηN to
each of the total training samples, where N is the number
of total training samples. Initially, those weights are all set
to 1/N so that the first step simply trains a weak learner on
the original data. At each step, misclassified training data
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TABLE 1. Selected features for prediction model training.

FIGURE 3. Offline training and online application of the
ML-based model.

have their weights boosted, or decreased otherwise. As iter-
ations proceed, examples that are difficult to predict receive
ever-increasing influence. Each subsequent weak classifier is
thereby forced to concentrate on the samples that are missed
by the previous ones in the sequence. The final classifier is
defined as the linear combination of the classifiers from each
step.

Similarly, for the regression problem, regressors are trained
sequentially. At each boosting iteration, a new regressor is
fitted on a modified version of the original database and,
based on the prediction results of the newly constructed
regressor, the weights of those samples most in error are
adjusted. As such, subsequent regressors focus more on dif-
ficult cases. All trained regressors are combined using the
weighted median at the end of the training.

Detailed descriptions of AdaBoost for classification and
regression are provided in [24] and [25], respectively. Other
regression and classification techniques such as deep learning
can also be applied without loss of generality.

B. ONLINE APPLICATION OF THE PREDICTION MODEL
The online application of the trained model is illustrated in
the right part of Fig. 3. The purpose of the trained model in
the online application stage is to rapidly assess the transient
stability of a large number of possible fault scenarios during
a dispatch. To generate these scenarios, the PDFs of fault
locations and hour-ahead wind power uncertainty informa-
tion are required. Such information is fairly accessible for
operators in practice. Specifically, the PDF of fault locations,

ζ , which represents the probability that a fault occurs on
any transmission line if a fault would occur in the system,
can be set by system operators based on historical records.
The hour-ahead wind power uncertainty of each WPP can be
represented by a prediction interval (PI), which is prevalent
in short-term wind power prediction and can provide ample
uncertainty information [13]. Thus, the lists of fault lines L
and a set of feasible wind power generation scenarios�w can
be generated by sampling from the ζ and PIs, respectively.
Next, the set of possible operating points �OP is generated
based on �w, where

∣∣�OP
∣∣ = |�w|. Further, the set of

fault scenarios, �L,op, which consider each fault at L for
all operating points in �op, are generated, where

∣∣�L,op
∣∣ =

|L|×
∣∣�OP

∣∣. As a result, �CCT,IM is predicted for �L,op by
the trained model.

Once the �CCT,IM is collected, it will be checked with
respect to PTSCs, i.e., the values of ρk (CCT > αk)∀k ∈
�IM are calculated based on the�CCT,IM and then compared
to the PTSCs. To do this, the CCTs in �CCT,IM are clus-
tered into different groups based on their related IM. Thus,
∀k∈�IM, the PDF of the CCT, ℘k (CCT), can be estimated
based on the statistical data of the corresponding group.
In this research, it is estimated using Gaussian kernels in
a non-parametric way [26]. Then, the ρk (CCT > αk)∀k ∈
�IM can be calculated by:

ρk (CCT > αk) = 1−
∫ αk

0
℘k (CCT)d (CCT) (7)

In this way, the stability status is checked with respect to
PTSCs, and the dispatching plan will be rescheduled accord-
ingly.

C. CONVERTING PTSCs INTO LINEAR ALGEBRAIC FORM
This subsection discusses the dispatching method. The tran-
sient stability level of the system against a specific IM can
be improved by shifting the active power generated from
�C
k to �R

k where �C
k and �R

k are the set of critical and
remaining SGs in regard to IM k , respectively. The physical
interpretation of this active power shift can be explained via
the extended equal area criterion (EEAC) [19]. Based on the
EEAC, �C

k and �R
k can be modeled by two equivalent SGs,

and then be reduced to a one-machine-infinite-bus (OMIB)
system, as shown in Fig. 4 (a)–(c). The dynamic mapping
of the equivalent OMIB under such an IM is given by (8)–
(10), where P, Pmech, and ω, are the active power, mechan-
ical power, and angular speed of the equivalent OMIB,
respectively;ω0 is synchronous speed;MC and MR are equiv-
alent inertia of �C

k and �R
k , respectively; and Pmech,g is the

mechanical power of the gth SG. Note that MC and MR are
constants for a specific IM.

dω
dt
=
ω0 (MC+MR)

MCMR
(Pmech − P) (8)

Pmech =
1

MC+MR
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FIGURE 4. A system is reduced to OMIB.

×

(
MC

∑
g∈�C

k
Pmech,g −MR

∑
g∈�R

k
Pmech,g

)
(9)

P =
1

MC+MR

(
MC

∑
g∈�C

k
Pg −MR

∑
g∈�R

k
Pg

)
(10)

During a severe fault, P decreases drastically (assume ≈
0) while Pmech remains at its steady-state value; as a result,
dω
dt > 0, and the rotor angle of the OMIB increases during the
fault. According to (8)–(10), shifting power from �C

k to �R
k

functionally reduces the P and Pmech of the OMIB in steady
state without changing the total power supply, thus helping to
reduce the angular acceleration dω

dt of the OMIB during the
fault. Accordingly, the transient stability is reinforced for the
specific IM. The same procedure can be applied to all IMs of
interest in a straightforward manner.

In this research, it is assumed a quasi-linear relationship
exists between the probabilistic transient stability level and
the active power generated from �C

k . According to this rela-
tionship, to satisfy the PTSCs as shown in (6), the amount of
active power generation to be shifted from �C

k to �R
k can be

calculated.
To show the relationship, ∀k ∈ �IM, it is assumed that:

ρk (CCT > αk) = Hk
((
xsol, ysol

)
, �L, ζ , ũ, ε,T ,u

)
(11)

where ũ includes all of the control variables except u. Hk (·)
is the implicit expression of ρk (CCT >αk) and reveals the
variables that affect the value of ρk (CCT >αk). Linearizing
the function with respect to u, and ignoring the high-order
terms of the Taylor series expansion given the quasi-linear
relationship, gives:

1ρk (CCT>αk)≈
∂Hk

((
xsol,ysol

)
, �L, ζ , ũ, ε,T ,u

)
∂u

1u

(12)

where ∂Hk
∂u is the sensitivity of ρk (CCT > αk) to u. Now,

taking PCk as u, and 1PCk as 1u, gives:

1ρk (CCT > αk)

≈
∂Hk

((
xsol,ysol

)
, �L, ζ , ũ, ε,T ,PCk

)
∂PCk

1PCk (13)

where PCk is the power generated from �C
k :

PCk =
∑
g∈�C

k

Pg (14)

and because the change of PCk , i.e.,1P
C
k , is the power shifted

from �C
k to �R

k , ignoring the variation of transmission loss
after power shifting, there is

1PCk =
∑
g∈�C

k

P′g −
∑
g∈�C

k

Pg ≈
∑
g∈�R

k

Pg −
∑
g∈�R

k

P′g (15)

After shifting the power, the change of ρk (CCT > αk) can
be calculated from:

1ρk (CCT > αk)=ρk (CCT>αk)−ρ′k (CCT>αk) (16)

where · represents the corresponding variables before the
power shifting. Thus, based on (12), the sensitivity of
ρk (CCT > αk) to the active power shift from �C

k to �R
k can

be estimated by:

ξk =
∂Hk

((
xsol,ysol

)
, �L, ζ , ũ, ε,T ,PCk

)
∂PCk

≈
1ρk (CCT > αk)

1PCk
(17)

Based on the assumed quasi-linear relationship, to achieve
the stability level required (6), ∀k ∈ �IM, the objective
amount of active power1PC,objk to be shifted from�C

k to�R
k

is calculated by:

1PC,objk =
βk − ρk (CCT > αk)

ξk
(18)

and then the dispatching plan against the faults is:

∀k ∈ �IM,
∑
g∈�C

k

P′g −
∑
g∈�C

k

Pg ≥ 1P
C,obj
k (19)

Thus, the probabilistic stability constraints are transformed
from (6) to (19), and are added to the conventional OPF
formulations, as shown in (1)–(4). Finally, the OPF with
PTSCs is solved, and the dispatching solution is updated.
In this way, the power adjustment demand1PC,objk ∀k ∈ �IM

can be satisfied at the lowest total increment of the operating
cost.

To correct the error from the quasi-linear relationship and
avoid unnecessary over-stabilized situations (i.e., unneces-
sary cost increases due to excessive compliance with the
PTSCs), the calculation and the shifting of 1PC,objk are exe-
cuted iteratively until the expected dispatching solution is
found.

It may be helpful to mention that the solution obtained
by the proposed method is suboptimal. This is because
it is difficult (if possible) to calculate the sensitivities of
ρk (CCT >αk) to the active power generated from each indi-
vidual generator. Therefore, the sensitivity of ρk (CCT >αk)
to the active power generated from �C

k is calculated instead,
which then helps to convert the PTSC into explicit dispatch-
ing constraints.
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D. THE OVERALL PROCESS OF THE PROPOSED
SOLUTION ALGORITHM
The overall process of the proposed solution framework is
illustrated in Fig. 5, where m is the iteration number, and M
is the maximum allowed number of iterations. Before starting
the iteration loop, the parameters for dispatching should be
first set (step ¬ in the figure), followed by the generation of
the �w according to the hour-ahead PIs of each WPP (step
­). At each iteration, the dispatching solution (xsol,ysol) is
first updated, followed by generation of the �OP and �L,op

(step ¯). Next, the �CCT,IM is predicted for �L,op by the
trained model, and the values of ρk (CCT > αk)∀k ∈ �IM

are calculated (step °), as introduced in Section III.B. Then,
the constraints in (6) are checked (step ±). If all of the
constraints in (6) are satisfied at the first iteration, i.e., the
conventional OPF solution already meets the PTSCs, then no
further action is needed (steps ² to ´). Otherwise, the cur-
rent plan needs to be rescheduled against instabilities or to
avoid unnecessary over-stabilized situations. In this regard,
∀k ∈ �IM, (14)–(19) are carried out to convert the PTSCs
into a set of linear inequality constraints (step ), during which
the ξk in (17) can be calculated from two successive itera-
tions. Specifically, at the first iteration, no power has been
shifted from�C

k to �R
k ; so, (14)–(18) are inexecutable. Thus,

1PC,objk ∀k ∈ �IM can be initialized to ϕ
∑
g∈�C

k

Pg (step ®),

where ϕ is a value between 0 and 1. The transformed linear
inequality constraints (19) are then created (if m = 2) or
updated (if m > 2) and added to the OPF formulation.

Notably, for over-stabilized situations, which may happen
during iterations:

∃ρk (CCT > αk) > βk∀k ∈ �IM (20)

a negative 1PC,objk would be obtained from (18) for corre-
sponding k . Then, according to (19), the power output con-
straints for the SGs in�C

k can be relaxed to allow some active
power shift from �R

k back to �C
k ; thus, a more cost-saving

dispatching result can possibly be found.
The iteration is terminated when all constraints in (6) are

satisfied and, at the same time, the maximum power output
change in all SGs between the current and last iteration is
less than a threshold value 1P:

1Pmax
g ≤ 1P (21)

where

1Pmax
g = max

∣∣∣P′g − Pg∣∣∣∀g ∈ �G (22)

Therefore, the dispatching plan is finalized when both (6)
and (21) are satisfied. Otherwise, the flowchart enters the next
iteration, the dispatching solution is updated, and the new
iteration proceeds, as shown in Fig. 5.

IV. TEST AND RESULTS
The described framework is realized by a Python-based inter-
face that calls PSS/E software to conduct dynamic simula-
tions, save the data for training and testing of the prediction

FIGURE 5. Flowchart of the proposed framework.

model; the prediction model is trained using the scikit-learn
0.20.4 package [27] in Python 2.7.15. Next, the interface
implements the proposed procedure, during which the OPF
is solved with the converted PTSCs at each iteration.

The IEEE 68-bus, 16-machine network is employed and
modified to perform the simulations. The configuration of
the network is omitted herein and can be found in [28]. Nine
WPPs are installed at bus-18, −22, −25, −29, −31, −32,
−36,−41, and−42 in the network, and the installed capacity
of each is 800 MW; thus, the wind power installed capacity
accounts for 40% of the gross load. The dynamic models
adopted in the network are noted in Section II.C. The dynamic
parameters of the SGs andWPPs are listed in [29], and all the
dynamic models are available in [30]. The computer used in
simulations featured an Intel 3.4-GHz CPU with 16 GB of
RAM.

A. TRAINING AND TESTING OF THE (CCT, IM)
PREDICTION MODEL
Database generation is required to train the prediction mod-
els. The training database is obtained from Monte Carlo
TDSs. In this regard, reasonable uncertainty models, includ-
ing outputs of WPPs and load levels, are essential. In prac-
tice, these uncertainty models can be statistically estimated
from the corresponding historical observations. In this study,
the historical wind and load data for the past five years
(2016∼2020) are obtained from [31] and [32], respectively.
Then, the PDFs of the power generation of each WPP and
load level are generated based on the corresponding historical
data using Gaussian kernels in a non-parametric way [26].
Thus, at each TDS during the generation of the database,
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TABLE 2. Time consumption and performance of the prediction
model.

TABLE 3. IMs to be prevented and the fault lines considered in
dispatching.

the load level andWPP outputs are sampled from their respec-
tive PDFs. Next, the active power outputs of each SG are ran-
domly dispatched in their respective output limits, such that
the total demand and generation are balanced. Subsequently,
a fault is randomly applied to transmission lines. The faults
are assumed to be permanent and are cleared by switching
out the faulted line. Only three-phase faults are considered
in this paper, though the proposed method is also capable
of handling other fault types. The selected features (listed
in Table 1) and the target labels (CCT, IM) obtained from
each simulated case are saved into the database. The TDSs are
conducted until the generation of the database is completed.

Finally, 60,000 cases are generated by running TDSs.
Given the fault clearing time of a breaker is typically less
than 0.2 s [33], the range of CCT values considered in the
simulation is between 0 and 0.25 s; i.e., a fault with a CCT
that is larger than 0.25 s can be considered safe as it can be
cleared by a breaker before the system reaches a critical con-
dition. 5-fold cross-validation is adopted for model testing.
The training time and test accuracy of the prediction model
are reported in Table 2, where the test accuracy includes the
mean squared error (MSE) of CCT prediction and the classifi-
cation accuracy of IM prediction. The results validate the high
accuracy of the trained model with respect to predictions of
CCT and IM. The trainedmodel will be applied to dispatching
operations in Section IV.B.

It is worth noting that, as a by-product of the model train-
ing stage, eight prominent IMs of the system are detected
and listed in Table 3. Thus, the set of IMs, �IM

:=

{k = 1, 2, . . . , 8}, and the system will be dispatched against
these IMs in the following subsection. To keep the dis-
patch more focused on critical lines, only fault lines with
instability-triggering records during the TDSs are selected to
recompose the �L, as listed in Table 3.

B. TEST OF THE PROPOSED FRAMEWORK
The settings of �IM, �L, ζ , 1Pg, M , αk , and βk∀k ∈ �IM,
and hour-ahead PIs for each WPP are required to conduct

TABLE 4. αk and βk set for dispatching.

TABLE 5. Selected one hour wind power data.

the test, as shown in steps ¬– ­ in Fig. 5. The settings of
�IM and �L have been introduced in Section IV.A. The ζ is
set to uniform distribution, and thus the L is set equal to the
�L in this situation. The 1P is set at 5 MW, which is 0.1%
of the upper output limit of the largest SG in the network;
and M is set at 10. However, these parameters can be set
to any other values without loss of generality. The αk and
βk∀k ∈ �IM are listed in Table 4. Specifically, the security
levels βk∀k ∈ �IM are set at 95% as a trade-off between
economics and stability. In practice, the system operators can
also use the proposed method to set the probabilistic tran-
sient stability level at different values (e.g., 80–100%) based
on practical requirements. Other settings above can also be
adjusted according to different dispatching requirements.

In addition, to set the assumed hour-ahead PIs for all WPPs
in the modified IEEE 68-bus network, nine sets of hourly
wind power data with a 5-minute resolution are selected
from [31], and then a prediction interval for each data series is
produced based on±10% of the recorded value. The selected
data and the corresponding PI curves are shown in Table 5
and Fig. 6, respectively. Following that, 1200 wind power
generation scenarios�w are generated, i.e., 100 scenarios are
randomly sampled every 5 minutes in the dispatching time
interval based on the PIs. So far, the simulation parameters
have been set (steps¬–­ in Fig. 5). Subsequently, the proce-
dures in the proposed framework proceed until the terminate
condition is met.

Tables 6 and 7 list the values of ρk (CCT >αk)∀ k ∈ �IM

and corresponding dispatching solution obtained from the
proposed method at each iteration, respectively. It is worth
noting that the solution of the first iteration, solved
by conventional OPF, does not satisfy the PTSCs. The
expected dispatching solution is found after eight iterations
using the proposed method, during which the values of
ρk (CCT >αk)∀k ∈ �IM increase and finally meet the secu-
rity requirements (i.e., 95%). Notably, the operating cost of
the proposed method only increased by 3.26% compared to
OPF, as shown in Table 7.

The results demonstrate that using the assumed sensitivity
in (17) is feasible for solving the power-dispatching problem
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TABLE 6. Values (%) of ρk
(
CCT >αk

)
at each iteration.

TABLE 7. Active power output (MW) of each SG and operating
cost at each iteration.

FIGURE 6. Hour-ahead wind power PI for each WPP.

considering PTSCs. In addition, the results show that the
proposed method can handle unnecessary over-stabilized sit-
uations, e.g., in Table 6, the values of the ρk (CCT >αk) for
k = 2, 4, 5, and 6 at the 4th iteration excessively satisfy
the βk , and this issue is alleviated at the following iteration.
Accordingly, the operating cost decreases from 110.31 k$/h
to 110.11 k$/h, as shown in Table 7.

Further, Fig. 7 visually compares the probability distri-
butions of CCT ∀k ∈ �IM before and after applying the
proposed method. Specifically, the non-violation areas under
each dashed curve correspond to the column values of the
1st iteration in Table 6, and the non-violation areas under

FIGURE 7. Comparison of the probability distribution of CCT
∀k ∈ �IM.

each solid curve correspond to the column values of the 8th

iteration in Table 6. The figure shows that the violation areas
are greatly reduced by applying the proposed method.

C. VALIDATING THE RESULTS USING TDSs
To verify the dispatching result of the proposed method,
two validation tests are carried out: (1) the stability status
of the dispatching result is tested by TDSs; and (2) the
dispatching solution obtained from TDSs is also investigated,
i.e., wherein the�CCT,IM in step ° of Fig. 5 is obtained from
TDSs instead of the ML-trained model.

For (1), Table 8 lists the validation results and shows that
the values of ρk (CCT >αk) verified by TDSs are quite close
to the values output from the proposed method (listed in
the last column of Table 6 ). Although the values of the
ρk (CCT >αk) for k = 4 and 5 are slightly below 95% by
0.04 and 0.23%, respectively, the error is acceptable from an
engineering point of view.

For (2), the simulation results based on TDSs are listed
in Table 9. It reveals the dispatching solution and stability
levels by the proposed method (listed in the last column of
Table 6 and Table 7 ) are very close to those based on TDSs.
In addition, a comparison of the two methods in terms of time
consumption and the number of iterations is given in Table 10.
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TABLE 8. Values (%) of ρk
(
CCT >αk

)
tested by TDSs.

TABLE 9. Dispatching result and values of ρk
(
CCT >αk

)
based

on TDSs.

TABLE 10. Time consumption and number of iterations for the
two methods.

FIGURE 8. The value of ρk
(
CCT >αk

)
vs. the active power

generated from �C
k .

Notably, the proposed method is 186188/287≈648 times
faster. This is because, for each iteration,

∣∣�L,op
∣∣ = 20 ×

1200 = 24, 000 cases are simulated by TDSs given |�op| =

1200 and |L| = 20 (L = �L in this test), which may take an
extensive amount of time. In contrast, the proposed method
only needs to solve the power flows to generate the �op.
Then, the �CCT,IM are accurately and rapidly predicted by
the trained model. Thus, the calculation process takes less
than 5 minutes, which is quite acceptable for hour-ahead
operations.

The comparisons validate the good performance of the
proposed framework in terms of practicability, searching for
economical solutions, and computational efficiency. Given
that most TSC-OPF works [4]–[5], [7], [16], [18] rely on
TDSs and thus may have difficulty handling massive fault
scenarios, the proposed method has more advantages for
dealing with networks with high wind power penetration.

In addition, to justify the quasi-linear relationship in (12),
the values of ρk (CCT >αk) with respect to the active power

TABLE 11. Dispatching result and values of ρk
(
CCT >αk

)
of the

method in [18].

generated from �C
k are simulated and reported in Fig. 8.

In this test, an IM (k = 3) is selected, where the �C
k includes

SG6 and SG7, and the αk is set at 0.2 s. Note that the change
of the active power of �C

k is balanced by SGs in �R
k during

the simulation. Fig. 8 shows a quasi-linear relationship exists
between ρk (CCT >αk) and the active power generated from
�C
k . Similar simulation results can be obtained for other IMs.

D. COMPARISON WITH A STATE-OF-THE-ART METHOD
To further validate the advantage of the presented work, the
dispatching solution of the proposed method is compared to
that of a state-of-the-art method reported in [18]. In [18], a
robust dispatch is proposed for power systems against tran-
sient instability considering highly variable and stochastic
wind power generation. In this method, Taguchi’s orthogonal
array is utilized to select a small number of representative
testing scenarios, thus dramatically reducing the computation
time. The results and time consumptions of this method are
reported in Table 11.

Compared to the results by the proposed method (listed in
the last column of Table 6 and Table 7), the robust dispatch
method from [18] yielded a relatively conservative solution,
as most of the PTSCs (95%) are over-satisfied; therefore,
the operating cost reaches 111.91 k$/h. In contrast, the operat-
ing cost associated with the proposed method is 110.11 k$/h.

In addition to the economic advantages, another benefit
of the proposed method is that it enables operators to set
different probabilistic stability levels (e.g., 80∼100%) to each
IM that needs to be prevented, which helps operators set more
flexible dispatching plans.

E. VALIDATION OF THE FRAMEWORK ON THE IEEE
300-BUS NETWORK
The proposed method is also tested on the IEEE 300-bus net-
work [34], which has 69 SGs and 304 transmission lines. Fif-
teenWPPs are installed at bus-84,−143,−190,−236,−241,
−7002, −7003, −7012, −7017, −7024, −7039, −7061,
−7130,−7139, and−7166, and the installed capacity of each
is 800 MW. The wind power installed capacity accounts for
50% of the gross load.

The training and testing process described in Section IV.A
is applied to train the (CCT, IM) prediction model, dur-
ing which 152,000 cases are generated by TDSs. The
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TABLE 12. Selected IM patterns, �L, and the αk and βk Set for
dispatching.

TABLE 13. Selected one hour wind power data.

computational time for database generation is 187,163 s.
Based on the testing results, the MSE of the prediction for the
CCT and the accuracy of the prediction for IM are 1.6107×
10−4 and 99.39%, respectively. The results confirm the high
accuracy of the trained model.

For the validation of the framework, nine IMs are selected,
as listed in Table 12, in which the set of selected fault lines
�L, as well as αk and βk for dispatching, are also noted.
M is set at 15. In addition, the wind power datasets listed
in Tables 5 and 13, which are selected from [31], are used to
set the assumed hour-ahead PIs for all WPPs. The procedure
for setting PIs and other testing parameters is the same as that
in Section IV.B.

Table 14 lists the simulation results solved by the pro-
posedmethod, OPF (without considering the PTSCs), and the
TDS-based method. It shows that the expected dispatching
solution is found after 12 iterations utilizing the proposed
method, in which the operating cost only increased by 1.12%
with respect to the result of OPF. The table also shows that
the final operating cost and stability levels of the proposed
and TDS-based method are very similar, while the proposed
method is 174675/549 ≈ 318 times faster. The results and
comparison verify the effectiveness of the proposed method.

The test shows that the proposed method can be applied
to power systems of different scales. Although the time con-
sumption for a larger scale system may increase, it should
not be a problem given that the proposed method is for
hour-ahead dispatching operations, and no TDSs are required
due to the incorporation of the ML-based prediction model.

V. CONCLUSION
This paper proposes a novel power dispatch method for high
wind power-integrated systems considering PTSCs. First,
a set of IM-categorized PTSCs are constructed to consider
a large number of fault scenarios and to set flexible proba-
bilistic stability margins for each IM to be prevented. Next,

TABLE 14. Comparison of different methods.

to overcome the necessity of running massive TDSs, a highly
efficient ensemble learning-based model is trained and incor-
porated to predict the CCT and IMs for possible fault sce-
narios during dispatch. In addition, a method is put forward
to convert the PTSCs into explicit dispatching constraints.
Thus, based on the prediction, the PTSCs are converted into
linear generation requirements and then embedded into con-
ventional OPF formulation for dispatch rescheduling. The
proposedmethod is suitable for considering bulk contingency
scenarios scenarios caused by wind power uncertainty. The
effectiveness of the proposed approach is validated on two
IEEE test networks, and demonstrated superior performance
in terms of providing high-quality solutions and computa-
tional efficiency.

Further research can be conducted to enhance the perfor-
mance of the proposed method through different ML tech-
niques. In addition, the frameworkmay be improved to handle
significant changes in the topology of the system and other
situations such as under-frequency load shedding.
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