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ABSTRACT A common solution to mitigate the complexity of power system studies is time aggregation.
This is to replace the actual data set for all time intervals with representative time periods. Previous research
confirms that when energy storage systems are involved in the study, preserving the overall shape of the
original data is crucial. This paper proposes a new time aggregation framework to incorporate a shape-based
distance to jointly extract representative periods of wind and demand data. The duration curve of the net
demand is used as a data-based validation index to compare the performance of the proposed method against
other techniques. Also, a 3-bus case study that includes a wind resource, an energy storage system, and
two conventional generators is designed. Four model-based validation indices are defined and applied for
performance measurement, including the annual operation cost of the system, the annual wind curtailment in
the system, the energy throughput of the storage facility, and the daily average of the state of the charge of
the energy storage for each 365 days of the year.

INDEX TERMS Power system planning, aggregation, clustering, dynamic time warping, storage.

NOMENCLATURE
|C| number of clusters in the cluster set C

obtained at the end of a clustering process,
C̄k centroid of the k th cluster,
| Ck | size of the k th cluster in the cluster set C ,
‖.‖ norm two operator,
π a warping path between two time series data

in dynamic time warping,
C a set of clusters resulted from a clustering

process,
Ck k th cluster of the set of clusters C ,
D a distance matrix,
d(.) a distance function that measure the dissimi-

larity of two sequences using a user-defined
distance measure,

Hk total number of timestamps of all the
sequences that grouped into k th cluster,

HS total number of timestamps in a data set S
considering all sequences,

Ik,a Ik,a is the mean value of index I corresponds
to the k-th cluster obtained by using the
whole data

Ik,c Ik,c is the mean value of index I corresponds
to the k-th cluster obtained by using the
representative data

Iyr Iyr is the annual value of index I
n number of data sets,
N number of sequences in any data set,
S any data set,
SH a horizontally-configured data set of several

data sets,
Sm mth data set in the joined configuration of the

data sets involved in the clustering process,
SV a vertically-configured data set of several

data sets,
tCkh,a hth element of duration curve created from

the sequences of an original data set grouped
into the k th cluster,

tCkh,c hth element of duration curve created from
the sequences of a data set replicated by the
representative periods of an original data set,
grouped into the k th cluster,

T Si,j jth timestamp of the sequence Ti of the data
set S,
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T Si ith sequence of the data set S,
t (max)a largest value in the duration curve con-

structed by the original data set,
t (min)a smallest value in the duration curve con-

structed by the original data set,
U;V two set of label assignments for the same

objects,
Ui set of objects with label = i,
w warping window size in dynamic time warp-

ing,
wk number of days grouped into the k-th cluster.

I. INTRODUCTION

THE complexities of practical power system planning
problems are often rooted in either a large network

size, the presence of multiple uncertainty sources in the
operation layer, a long planning horizon, or a combination
of these three. Without proper mitigation measures, long-
term planning problems are often intractable. To reduce the
network size, planners may choose to only include the very
high-voltage backbone systems instead of the entire trans-
mission network [1]. To address the curse of dimensionality
imposed by multiple uncertain variables, a small number
of scenarios are used to represent uncertainty [2]. Model
simplification on the time dimension, sometimes referred to
as time aggregation, is achieved by using representative time
periods in lieu of every single time interval in the planning
horizon [3]. Over the past two decades, the use of high per-
formance computing resources have also been experimented
to solve large power system planning at a reasonable time [4].
The focus of our paper is on time aggregation in planning
problems where both wind energy and electricity demand
time series play a key role. The goal is to select a smaller
set of data that effectively represents the complete data set.

It is worth noting that scenario reduction is a general
term that can be used for any kind of scenarios. In power
system studies, for instance, a scenario can be temporal or
spatial. Whether to install a transmission line at some specific
parts of the network can be considered as a spatial scenario.
However, what typical wind power patterns can be observed
from a wind farm throughout one (or more) year is a scenario
reduction problem associated with time. Time aggregation
can be considered as a subset of temporal scenario reduction.
If the actual historical data are considered as the scenarios,
time aggregation via clustering can be analogized to scenario
reduction on the time horizon. However, if some scenario
generation is used to create multiple scenarios for each day
or time window, then time aggregation may not be the proper
wording.

With the growing trends in energy storage integration,
more and more power system operation and planning stud-
ies contain storage systems. The shape of fluctuations of
wind (and similarly solar) energy resources, the sequences of
‘‘on’’ and ‘‘off’’ periods, and what happens in between has a
direct impact on storage operation and planning decisions [5].

Similarly, system loading and availability of transmission
corridors play a role in effectively utilizing hybrid energy
systems (e.g., wind plus storage) [6]. Thus, when aggregating
power system data for studies that include wind and energy
storage, the representative data needs to reflect the overall
shape of both wind energy and system demand variability.

In the past, representative patterns were selected heuris-
tically by selecting a number of days as the representative
periods. To capture the seasonality, four different daily pro-
files are often considered [7]. This approach is prone to
inconsistency depending on the preferences of the decision
maker, and there is no guarantee that those selected peri-
ods are the best representation of the entire data. In recent
years, however, various data mining tools are applied for time
aggregation in the power system community [5], [8]–[10].
Baringo and Conejo employed K-Means clustering to select
representative hours out of a large data set composed of wind
energy and demand time series [8]. In order to maintain intra-
hour information, Qiu et al. used the same clustering tool as
in [8] to discover daily patterns in wind and load data [9].
The authors used the Euclidean Distance (ED) measure with
K-Means clustering. However, in contrast to Dynamic Time
Warping, Euclidean Distance might not be able to capture
the shape of patterns [10]. To mitigate this, Liu et al. [10]
proposed a hybrid clustering process incorporating Dynamic
Time Warping (DTW) distance. DTW is a shape-based dis-
tance measure that is commonly used for measuring the
similarity between two time series sequences [11]. By con-
catenating the time series data of several data sets, includ-
ing electricity demand, wind power, and solar generation,
for each individual day, the authors constructed a long time
series for each day and fed it into the clustering process.
As discussed in the next section of this paper, horizontally
concatenating the data sets can result in the mismappping of
timestamps and it may mistreat the joint behavior between
the wind power and electricity demand data. Teichgraeber
and Brandt [5], on the other hand, proposed to use k-shape
instead of DTW. K-shape [12] defines similarity of two time
series as the highest cross-correlation that can be obtained by
allowing one of the sequences being shifted against the other.
Focusing on electricity market price data, they conclude that
k-shape performed better compared to DTW distance when
the shape of representative periods matters. However, it was
observed that electricity market price time series, unlike wind
energy, show a great deal of seasonality and cyclic behav-
ior [13]. In this paper, we analyze both k-shape and DTW
distances and discuss their challenges when applied to wind
energy data. As shown in this paper, the proposed k-shape
method, however, cannot preserve the shape of patterns when
a volatile data such as wind power is involved.

Recently, some clusteringmethods on spaces other than the
input (i.e., raw data) has been proposed [14]–[18]. In these
studies, the impact of each series on a particular output is
considered as a feature. Then, the feature was used to cluster
the data. Since the clustering is being conducted directly on
the output space, there is no doubt that the aggregated output
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is closer to the actual value of that particular output. However,
such approach cannot guarantee to provide a meaningful rep-
resentation on the behavior of different parts of a network and
different outcomes such as wind curtailment or the behavior
of the energy storage where the shape of patterns matters [5].
In addition, the wind power and electricity demand data have
intrinsic structure of clusters. Therefore, it is reasonable to
cluster them into a certain number of groups. On the other
hand, to the best of our knowledge, the papers that proposed
a clustering method based on a feature on the output space
did not provide a proof to show that the transformed data
still have a clustered structure. Furthermore, the clustering on
the output space can lead to an over-fitting problem. In other
words, any small deviation in the data (e.g. a measurement
error at some timestamps) can considerably impact the final
result. Clustering the raw data, however, is more robust and
avoids the over-fitting problem.

Some previous studies have proposed methods for enhanc-
ing the representative days selected by a clustering method,
either by including some extreme cases to the set of rep-
resentative days [19] or using methods to reduce the loss
of information after choosing the representative days [20].
While the focus of these works is to modify an existing
clustering method, ours is the clustering framework itself
that refines the whole set of selected representative days.
Therefore, the aforementioned studies can be mounted on top
of this framework to further improve the outcomes of time
aggregation.

Even though several clusteringmethods have been reported
in the literature for power system time aggregation, no con-
clusive study exists that compares the performance of alter-
native techniques for aggregating wind power data for power
system operation models that includes energy storage sys-
tems. This paper is an attempt to fill this gap.

This paper proposes a novel shape-based clustering frame-
work for time aggregation that aims to not only preserve
the shape of both wind power and system demand data, but
also preserves their joint behavior. In contrast to the previous
works, the present paper proposes to construct the time series
in a multi-dimensional format [21] for the purpose of finding
the representative days in the power system studies. The
proposed approach tries to group similar patterns of the wind
power and electricity demand of the days that are changing in
the same direction. Therefore, the joint behavior of the wind
power and electricity demand are preserved when DTW is
in use. The dependent DTW can be applied to the vertically
structured data to measure the distance between two time
series. To the best of our knowledge, this the first time that
the joint behavior of sequences are considered in selecting
the representative days.

Furthermore, the proposed framework also enhances the
quality of clusters by mitigating the chance of miscluster-
ing. It is important to note that, regardless of the structure
of the data, DTW distance might result in some extreme
matches between sequences. In other words, it might match
two sequences that have considerably different values. This

is a misclustering case that should be avoided. This challenge
has not been addressed nor tackled properly in the literature.
This paper proposes to use the consensus clustering [22]
together with the mutual information to resolve the afore-
mentioned issue. The consensus clustering is first used to
discover a set of structure-free clusters, being referred to as
neighborhood partitions. Next, the mutual information score
between the neighborhood partitions and the set of clusters
discovered by the dependent DTW can be used to measure
the misclustering. A higher mutual information score corre-
sponds to a set of clusters with lowermisclustering and higher
quality.

To summarize, the main contribution of this paper is to
propose a new time aggregation framework that (i) uses
dependent DTW distance to group days with similar joint
behavior; and, (ii) incorporates consensus clustering and
mutual information to mitigates the chance of misclustering;
and therefore, enhances the quality of clusters. Alternative
methods are examined for simultaneously clustering the wind
power and electricity demand data. To demonstrate the merits
of the proposed method, both data-driven and model-based
validation indices are used in this paper.

The rest of this paper is organized as follows. Section II
provides a quick review on the clustering process.
In Section III the proposed clustering process is explained in
detail. In Section IV different indices are explained for mea-
suring the performance of the clustering methods, followed
by the numerical results. Section V concludes the paper and
future work is discussed.

II. BACKGROUND
In this section, we review the steps of the data clustering
process. We can look at the clustering problem from three
points of view: (1) clustering subsequences in the streaming
data, (2) updating clusters prior to performing a close-to-real-
time task such as forecasting, or (3) clustering a given data in
off-line mode (i.e., the whole data set is already provided and
the goal is to extract salient patterns). In regard to cluster-
ing the subsequences in the streaming data, E. Keogh et al.
showed that clustering of a streaming time series often does
not result in meaningful clusters [23]. To forecast a particular
day, one can cluster similar days and then build a prediction
model for each cluster. The cluster might be updated as time
goes on. In the third case which is the one considered in
this paper, we assume that the complete data set is already
available, and the goal is to choose a proper set of represen-
tative days to properly replicate the behavior of data to make
the planning study tractable. In other words, the purpose of
time aggregation is to represent the original time series by a
smaller set of representative sequences [24].

We also discuss the challenges of shape-based clustering
when applied to aggregating data sets including wind power
data in power system studies. In particular, we investigate
the challenges of two shape-based clustering methods that
incorporate DTW distance and K-Shape.
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A. STEPS OF THE CLUSTERING PROCESS
A clustering process generally consists of the following
steps: (1) scaling the data set, (2) measuring the distance,
(3) grouping sequences, and (4), choosing the representative
sequences. These steps are reviewed next.

1) SCALING DATA SETS
Scaling is a pre-processing step where features of data are
normalized. The purpose of scaling is to prevent the domina-
tion of some features over the others [25]. Min-Max Scaling
and Standardization are among the common scaling methods
that have been used in the field of machine learning [26].
The standardization technique is more effective in reflecting
the extreme values, which is usually of significance in power
system studies for obtaining a feasible yet realistic solution.
Therefore, in this paper, we only consider the standardization
technique.

There are three approaches for applying the standardiza-
tion to a data set S [5]. First, the data-wise standardization
model can be built by considering all elements of a data set
at once. In other words, the goal is to bring the mean and
standard deviation of all elements included in the data into
0 and 1, respectively. Second, the time series standardization
can be applied onto each individual time series T included
in S. The goal is to bring all sequences to the same mean of 0
and standard deviation of 1. Finally, the element-wise scaling
process, where the ti element is treated as the ith feature of T
and the standardization is applied onto each ith feature across
all the sequences included in the data set.

2) DISTANCE MEASURES
The two common approaches in measuring the similarity
of time series sequences are Euclidean and DTW distance
measures. The Euclidean distance treats the two time series as
two points in the Euclidean Space and considers the length of
the line segment connecting the two points as their distance.
In contrast to ED, DTWdistance provides an elastic approach
that allows one element of a sequence to be mapped onto one
or more elements of another sequence. This particular feature
can match two sequences if one of them is just a stretched or
compressed version of the other. The DTW distance between
two sequences Ti and Tj of a data set S, can be calculated as
follows:

DTW (Ti,Tj) = min
π

√ ∑
(r,s)∈π

(Ti,r − Tj,s)2 (1)

The distance measure (1) allows expansion and com-
pression of sequences, with no restriction, which may not
be desirable in power system studies [5]. A warping win-
dow, w, is usually used to limit the amount of expansion
and/or compression that is allowed for the alignment [27],
i.e., |r − s| ≤ w.

3) GROUPING THE SEQUENCES
After defining the dissimilarity, the distance between
sequences can be calculated. The goal is to group similar

sequences together. Common methods for grouping the
sequences are briefly explained next.

a: K-MEANS
A partitioning algorithm that tries to create a set of clusters
where the square root of the total sum of distances of obser-
vations to their corresponding centroids is minimized [28],
using the formula below:

min
|C|∑
k=1

∑
T∈Ck

d(T , C̄k )2 (2)

where, the function d(.) is the distance function being utilized
in the K-Means clustering.

To run this algorithm, an initial guess of centroids needs
to be provided. A drawback of this technique is that different
initializations can lead to different outcomes. To mitigate this
issue, a K-Means++ algorithm is used to make a better initial
guess [29]. Furthermore, if there are clusters with unbalanced
sizes, the performance of K-Means will be decreased [30].

b: K-MEDOIDS
In contrast to K-Means, K-Medoids considers one of the
members of each cluster as its centroid and it is more robust
to the outliers [31]. The objective is to minimize the sum of
distances from each centroid to their corresponding cluster’s
members, as follows:

min
|C|∑
k=1

∑
T∈Ck

d(T , C̄k ) (3)

Since the clusters can be achieved by only distance matrix,
it can be associated with any distance measure.

c: HIERARCHICAL CLUSTERING
Apartitioning algorithm inwhich each individual observation
is considered as one cluster in the beginning of the grouping
process. Then, at each step of the clustering process, the two
closest groups will be merged to form a bigger group. The
algorithm ends when all sequences have been merged into a
single group, or the number of clusters reaches a user-defined
value. To gauge the similarity between groups, a measure
known as linkage, is required. The four common linkages
are ward, single, complete, and pair-wise linkage. Except
for the first one, i.e., ward linkage, the other linkages can
lead to clusters with no clear centroids. In addition to the
aforementioned linkages, the min-max linkage has recently
been used [10].

In this paper, all three grouping methods have been consid-
ered. For the hierarchical clustering, the only linkages that are
examined in this paper are ward, associated with Euclidean
distance, andmin-max, associated with DTWdistance, due to
the fact that a clear centroid can be considered for their clus-
ters. The first method is referred to HC-Ward and the second
method is referred to HC-minmax in this paper. These two

VOLUME 8, 2021 451



linkages are calculated as follows:

Lw(Ci,Cj) =
∑
T∈Cij

d(T , C̄ij)2 −
∑
Ti∈Ci

d(Ti, C̄i)2

−

∑
Tj∈Cj

d(Tj, C̄j)2 (4)

Lm(Ci,Cj) = min
Ti∈Cij

(max
Tj∈Cij

d(Ti,Tj)) (5)

where, Lw(Ci,Cj) and Lm(Ci,Cj) are, respectively, the ward
and min-max linkages between the ith and jth cluster, and Cij
is a group that includes the members of both Ci and Cj.

4) CHOOSING REPRESENTATIVE SEQUENCES
This last step of clustering is optional as one may have no
interest in finding the centroids. However, for the purpose of
this paper, choosing the proper set of representative periods
is necessary. A simple average of sequences grouped as one
cluster is not desirable when Euclidean distance is in use. This
is because the averaging will smooth the sequences and can-
not properly reflect the volatility of the patterns [32]. To avoid
this issue, one can choose medoid or close-to-average mem-
ber. Both of these approaches have been considered in this
paper.

B. CHALLENGES TO DTW AND K-SHAPE
DTW distance is the most commonly used shape-based dis-
tance measure in analyzing time series data [11]. K-shape is
a parameter-free clustering method that shows a comparable
performance to that DTW [12]. Both of these methods have
previously been applied in power system studies [5], [7].
DTW and K-shape have been used in the power system
community for the purpose of clustering [5], [10]. However,
there are some caveats when applying these two approaches,
which are discussed here.

1) DTW
DTW distance can consider expansion and/or compres-
sion [5]. However, it is recommended to normalize the
sequences in a time series-wise manner [33], otherwise,
the true similarity of the sequences may not be revealed as
DTW is sensitive to noises. To show the difference, three toy
time series sequences are created as follows: x = {0, 0, 1, 1},
y = {0.05,−0.1, 1.1, 0.95}, and z = {0, 1, 0.9, 1.1}.
Figure. 1 shows these sequences. By merely taking a look
at the sequences, it can be inferred that there is a similarity
between x and y. They are both different than z. However,
calculating the DTW distance will show that DTW (x, y) is
0.16 while DTW (x, z) is 0.14. Hence, according to the DTW
distance, the sequences x and z are more similar than x
and y. Although x and z share a similar shape, it may not
be meaningful to let x and z be grouped together if they are
far from each other according to their Euclidean distance.
Normalizing the sequences to the mean of zero and a standard
deviation of one can solve this issue; however, this cannot be
applied to volatile time series where the magnitude matters.

FIGURE 1. Three toy time series sequences.

Another problem that might appear in the use of DTW
distance is when more than one data set is involved (e.g.,
wind data and load data). In such case, the clustering process
should group days that exhibit similar patterns on both data
sets, and the clustering process should be applied to a joint
configuration of the data sets. In previous power systems
studies, such as [10] and [34], this configuration is performed
by joining the data sets on the time axis to create a new
sequence. For instance, a wind power data set and electricity
demand data set, each with size (365, 24) and (365, 24), can
be concatenated to create a new data set with length (365, 48),
such that in each sequence, the first 24 elements are from the
first data set and the last 24 elements from the second data
set. Generalization of this configuration for s number of data
sets can be presented as follows:

T SHi = T S1i ∪H · · · ∪HT
Sn
i = (T S1i , . . . ,T

Sn
i ) (6)

Although the configuration in (6) can work well under
Euclidean distance, it cannot properly handle the DTW dis-
tance. In fact, it might lead to the mapping of an element
T Smi,24 onto T Sm+1j,0 , where Sm and Sm+1 are two adjacent data
sets considered in the horizontal configuration. For instance,
in the case of wind power data and electricity demand data,
this means allowing an element of wind power data to be
mapped onto an element of electricity demand data, which
is not reasonable. One solution is to use a very large value
between T Smi,24 and T Sm+1j,0 . This sentical value can isolate the
mapping of sequences of one data set from another data set.
In other words, DTW distance tries to find the best match
between the sequences of each data set included in the joint
configuration without being affected by the mapping of other
sequences from other data sets. The reason is that the large
sentical value enforces T Smi,24 to be mapped onto T Smj,24, and the
mapping of sequences of the next adjacent data set will start
by mapping T Sm+1i,0 and T Sm+1j,0 onto each other.

2) K-SHAPE
K-Shape was initially introduced by Paparrizos et al. [12]
to find correlation-based similarity between sequences. For
this, each individual sequence should be normalized to have

452 VOLUME 8, 2021



Sarajpoor et al.: Shape-Based Clustering Framework for Time Aggregation

FIGURE 2. One of the clusters extracted by K-Shape clustering
with k = 40.

a mean of zero and standard deviation of one before being
fed to the K-Shape algorithm [5], [12]. Authors in [5] used
a normalized-denormalized technique to first normalize the
data and then denormalize it and bring it back to its actual
values. The authors used K-Shape for clustering the elec-
tricity price data. However, the proposed method cannot be
generalized to other data set such as wind power data where
there is a higher level of volatility. Suppose two time series
sequences T1 and T2 of wind power data (normalized by the
installed capacity of its corresponding wind farm), where T1
has a mean of 0.1 and standard deviation σ1, and T2 has a
mean of 0.9 with the standard deviation σ2. Normalizing these
two sequences and bringing their K-Shape average back to the
actual space results in a sequence with mean of 0.5, which
means this approach will group two extreme cases into one
group which is not desirable in the power system studies.
Fig. 2 shows one of the clusters of wind power data obtained
via the K-Shape clustering. As depicted in Fig. 2-(a), there
is a distinctive difference between the days shown in red
and the ones in blue. However, these days exhibit a similar
pattern after being standardized, as illustrated in 2-(b). The
reason, for this is that the K-Shape clustering is based on the
correlation, which neglects the actual magnitude of a time
series. Therefore, in highly volatile data, using K-Shape can
result in grouping sequences that are different regarding their
actual values.

Therefore, the K-Shape method will not be investigated
further in this paper. However, DTW distance, in spite of
having its own caveats, can be used in power system studies
provided certain modifications are applied in the clustering
process; the next section proposes a clustering framework that
mitigates the caveats of DTW distance when applied to wind
power.

III. THE PROPOSED CLUSTERING FRAMEWORK
In this section, we introduce a shape-based clustering frame-
work (SBCF) that can alleviate the challenges of DTW,
described in Section II-B. In particular, the proposed frame-
work mitigates the chance of grouping sequences that
are not close to each other according to their Euclidean

distance by identifying the local neighbors through a consen-
sus clustering process. Then, the mutual information score
can be used to choose a set of clusters, obtained by DTW
distance, that shows a high share with the local neighbors.
The proposed framework properly employs elastic distance to
preserve the between-data set relative behaviour, and finally
uses a two-step clustering to provide the final representative
days.

To scale the data, a data-wise normalization is applied
to each data set. The reason behind this choice is that
element-wise normalization cannot preserve the shape of
each sequence and therefore the DTW distance will not be
applicable.

After normalizing the data sets, we propose to construct
a vertical configuration [21]. The vertical configuration adds
features, including information from different data sets, into
each timestamp of newly-joined sequences. The following
expression shows this configuration in its mathematical form:

T SVi = T S1i ∪V · · · ∪VT
Sn
i = {tq : tq = (T S1i,q, . . .T

Sn
i,q)} (7)

Accordingly, mapping a timestamp to another timestamp
means that, in general, the value of each feature in a time
stamp is close to its corresponding value in the other times-
tamp. In other words, the mapped timestamps share similar-
in-values features, where each feature corresponds to one data
set. Therefore, the vertical configuration can better preserve
the joint behavior between data sets. Consequently, the rep-
resentative days can better represent cases where the wind
power is high, and electricity demand is low, or vice versa,
which is of significance in impacting the operation of an
energy storage system. The DTW distance in the vertical
configuration can be calculated as follows:

DTW (T SVi ,T SVj ) = min
π

√ ∑
(r,s)∈π

‖T SVi,r − T
SV
j,s ‖

2 (8)

To visualize the difference between the horizontal config-
uration and the advantage of vertical configuration, we sep-
arately use (1) and (8) to calculate the distance matrix on
the wind power and electricity demand data. Then, we use
a K-Medoids to obtain the clusters. Figure 3 shows two days
that are grouped together with the use of the (independent)
DTW distance (1), calculated through a horizontal configu-
ration of the two data sets (6). The dashed lines show the
optimal path discovered by the DTW distance. The circles
show the part of the patterns where the joint behavior of the
two data sets are not preserved. The wind power sequence
on day 352 is mapped onto some previous hours of day 47.
However, the electricity demand sequences of those same
days show a different behavior. In fact, in the electricity
demand, the day 47 is ahead of the day 352.

Fig. 4 shows two days as co-members of a cluster achieved
by the use of dependent DTW through a vertical configura-
tion (7). As opposed to the (independent) DTW, DTW dis-
tance associated with the vertical configuration can preserve
the joint behavior of the sequences. For instance, the circles
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FIGURE 3. Two days as co-member of one of the clusters
achieved by DTW (1).

FIGURE 4. Two days as co-member of one of the clusters
achieved by (dependent) DTW (8).

show the day 66 is a little ahead of day 356 regarding both
the wind power and the electricity demand.

Owing to its vertical configuration, the time complexity
of calculating the DTW distance decreases from O(n2H2) to
O(H2), where n is the number of data sets. Hence, in contrast
to [10], there is no need to break down data into smaller
partitions when a clustering method can be performed with
only utilizing the distances between data points.

After configuring the data set, a DTW-based clustering
algorithm can group the sequences into a set of clusters.
However, as depicted in Fig. 1, grouping two sequences that
are far from each other in the Euclidean distance should
be avoided. Therefore, we are interested in finding clusters
whose members are neighbors in the Euclidean distance as
well. However, different distance measures result in different
shapes for cluster [35]. Therefore, it is not reasonable to use
a particular grouping method with Euclidean distance as it
forces the neighbors to form a particular shape. We prefer
to find the neighborhoods in the Euclidean spaces while
avoiding a particular structure.

In this paper, we propose to use consensus clustering [22]
to find the neighborhoods of data points in the Euclidean
space. The goal is to generate a single consensus cluster using
different set of clusters obtained from multiple clustering
outcomes. To this end, we use Cluster-based Similarity Par-
titioning Algorithm (CSPA) [22]. In this algorithm, the input

is a set of labels, each obtained by a clustering process; and
the output is the clusters of the objects such that the average
normal mutual information between themselves and the set
of clusters provided as the input is maximized [22].

Therefore, we first perform several clustering processes
associated with Euclidean distance and K-Medoids on the
data set using different initialization. The reason for choosing
K-Medoids is that it considers the centroids as one of the
members of the clusters throughout the clustering process and
therefore it will be less affected by the smoothing problem
that might appear in the K-Means algorithm. Then, we use the
consensus clustering algorithm to achieve the final groups,
hereafter in this paper, referred to as neighborhoods partition.

After obtaining the neighborhoods, we perform the clus-
tering process using DTW (8) to find the pairwise dis-
tance between any two sequences and construct the distance
matrix D. For the grouping stage, we employ K-Medoids.
K-Medoids can find the clusters faster than K-Means when
DTW is in use as it only requires the distance matrix to obtain
the clusters. In the DTW-based K-Means, however, the aver-
age, known as DTW Barycenter Average (DBA), is required
during the K-Means algorithm and it should be optimized for
each cluster with the time complexity of O(IMn2T ) [36]; I is
the number of iteration required for achieving a convergence
in the DBA,M is the number of sequences in the cluster, and
nT is the length of each sequence, which is 24, as 24 hours per
day. Therefore, DTW-based K-Means is a time consuming
process.

We repeat the DTW-based K-Medoids clustering process
for different initializations. Then, we choose the one that has
the highest share of grouped sequences with the neighbor-
hoods partition. For this purpose, we use Mutual Information
(MI) [37] to find the similarity score between the neigh-
borhoods partition and each set of clusters obtained by the
DTW-based K-Medoids. The definition of MI is as follows:

MI (U ,V ) =
|U |∑
i=1

|V |∑
j=1

| Ui ∩ Vj |
N

× log (
N | Ui ∩ Vj |
| Ui || Vj |

) (9)

where, U and V are two label assignments of the same N
objects in the data set, and Ui and Vj are, respectively, the ith

and jth cluster in set U and V.
After choosing the cluster set with highest MI score,

the centroid of a cluster C is its medoid, which is one of its
members that has the smallest sum of distances to the other
members of the same cluster, which can be obtained using the
following formula:

C̄i = arg min
T∈Ci

(
∑
T ′∈Ci

d(T ,T ′)) (10)

The proposed clustering framework is summarized into the
following six steps:

Step I: Scale each data set through data-wise standard-
ization, referred to Section II-A.1,
Step II:Make a joint data sets by using vertical config-
uration, using (7),
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TABLE 1. Different clustering methods considered for comparison (w = 0 corresponds to Euclidean distance).

Step III: Use consensus clustering to find the neighbor-
hoods partition,
Step IV: Calculate the distance matrix with DTW dis-
tance measure, using (8) and feed it into the K-Medoids
algorithm,
Step V: Repeat k-medoids algorithm and choose the set
of clusters that has highest MI (9) with the neighbor-
hoods partition,
Step VI: Obtain the medoid of each cluster using (10),
and consider it as the representative period of the
corresponding cluster.

IV. NUMERICAL RESULTS AND DISCUSSION
In this section, first the data sets and the clustering methods
considered for comparison are described. Then, a number of
performance validation measures are discussed and the per-
formance of the clustering methods are analyzed accordingly.

We use the hourly Alberta Internal Load data along with
the energy production of a single wind farm in the center
of Alberta for the year 2019 to build the vertically config-
ured data set. Although we use one year in this case study,
the approach can be applied to more than one year. Thus,
the data set consist of wind and demand data for 365 indi-
vidual days. The objective of the aggregation process is to
select a reduced number of days (e.g. 30 days [10]) that
effectively represent the whole year. We apply the meth-
ods considering different numbers of representative days,
i.e., |C| ∈ {20, 30, 40, 50}.
We compare the performance of the proposed data aggre-

gation method to those of other alternative clustering meth-
ods listed in Table 1. The same number of initialization is
considered for all methods. All methods are applied to the
data scaled in the data-wise manner. In previous works [10],
HC-minmax was applied with warping size of w = 24.
In the present paper, however, we slightly modify this method
by inserting a large sentical value between the wind power
and electricity demand sequences in the horizontal configu-
ration to resolve the challenge described in Section II-B.1.
We implement this method with both w = 24 and w = 2,
and refer to them by HC-24 and HC-2 in the following sec-
tions. In addition, E-Kmeans (II), HC-Ward, and K-Medoids.
E-Kmeans, with average of the centroid as the representative
periods, were used in [5]. E-Kmeans was also considered
in [5] where the average of the centroid was used as the

representative days. However, as discussed in [32], the aver-
age of a centroid obtained by the Euclidean distance is usually
smoothed and may not be a proper representative period
for sequences grouped together. Therefore, in this paper,
we consider the representative period as one of the members
of the cluster that is closest to the average. For the proposed
framework of this paper we use w = 2. To be consistent
in the consensus clustering stage in the proposed clustering
framework, the neighborhood partition is extracted using |C|5
as the number of local neighbors.

A. AGGREGATION PERFORMANCE MEASURES
To compare alternative clustering methods, a number of cri-
teria, which are independent of the distance or grouping
method chosen for the clustering process, are defined. This is
achieved by two different approaches: (1) Data-based Valida-
tion, and (2) Model-based Validation [3]. In Data-based Val-
idation, those criteria are determined directly from the data.
This is used to understand the quality of clusters with respect
to a particular aspect of the data. In model-based validation,
the performance of the clustering methods is illustrated for a
case study. In the following sections, A-DATA refers to the
original data set whereas C-DATA refers to the time aggre-
gated data set that is constructed based on the representative
periods. To apply the performance measures, C-DATA is built
to have the same size of A-DATA by replacing each day of A-
DATA with its corresponding representative period.

For the data-based validations, we use Duration Curve
Error Index for the net demand, i.e., demand minus wind
production. Duration Curve of a data set ignores the temporal
information and sorts the data according to the magni-
tude of instances. The Duration Curve Error (DCE) mea-
sures how well the C-DATA’s duration curve represents
A-DATA’s. Some researchers compare the duration curve of
the entire data set [10]. However, such approach disregards
the relationship between each cluster and its correspond-
ing centroid. Another approach is to compare the duration
curve of each sequence with its corresponding representative
sequence [34]. However, this approach ignores the fact that
a centroid is impacted by the members of its corresponding
cluster. Hence, it is not meaningful to individually compare
each sequence with its representative period without consid-
ering the other members of a cluster.
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FIGURE 5. A three-bus network with one wind farm and one load.

To this end, we first compare the duration curves that
are calculated using A-DATA and C-DATA for each cluster.
Then, similar to [10], we normalize the root square mean of
errors across the clusters as follows:

DCES =

√
1
HS

|C|∑
k=1

Hk∑
h=1

(tCkh,a − t
Ck
h,c)

2

| t (max)a − t (min)a |

× 100 (11)

where, DCES is the DCE corresponding to the data set S. k
is the index of the cluster. HS represents the total hours in
data set S, while Hk represents the total number of hours in
the k th cluster. th,a is the hth element of the duration curve
constructed by the actual data set, while tCkh,a is the h

th element
of the duration curve constructed by the sequences of actual
data set grouped into the cluster Ck . t

Ck
h,c is the h

th element
of the duration curve constructed by using the sequences of
C-DATA corresponding to the cluster Ck . Lower values of
DCE means the selected representative periods can better
replicate the magnitudes of the original data sets.

The DCE index does not measure the performance of the
clustering methods in detecting temporal patterns as they
disregard the time dependency of the elements. Thus, to fill
the gap, additional model-based measures are often used [10]
[5] where a power system study is set up to further validate the
performance of the clustering methods. To develop model-
based validation measures, we employ a three-bus network
where a wind farm is co-located with an energy storage
system at one of the buses-see Fig. 5.

The objective of operating this network is to minimize the
cost of daily unit commitment operation, together with the
economic dispatch over a full year [38]. The operation cost
of the network is optimized for each day and their summation
over one year gives the annual cost of operation [5]. The
reason for this is to make sure that the inter-day information
does not affect the result. The energy storage is co-located
with the wind farm at bus 3 and is being operated by the oper-
ator of the network. Four performance indices are defined
for this system, i.e., the annual operation cost of the system,
the total annual wind curtailment, the total annual storage
energy throughput defined as the summation of discharged
energy, and the daily average of the state of the charge of the

FIGURE 6. Net demand’s DCE of the proposed framework
compared with methods using: (a) DTW distance, and
(b) Euclidean distance.

energy storage for each 365 days of the year. Thus, we have
four model-based indices.

The installed wind capacity is 250 MW and the peak load
is 400 MW. The penetration level is 25%. The complete input
data and parameters for this case study are available in [39].

To compare the performance of each of the data aggrega-
tion methods according to each of the indices defined above,
we calculate each index when using the actual complete data
set. After performing the clustering process by each method,
a set of representative days are extracted. A weight is associ-
ated with each representative day that reflects the impact of
that representative day. The weight is the number of days in
its corresponding cluster. The weighted mean absolute error
for each index I is then calculated as follows:

WMAEI =

|C|∑
k=1

wk
∣∣Ik,c − Ik,a∣∣
Iyr

× 100 (12)

where, Iyr is the annual value of index I , the weight wk is the
number of days grouped into the k th cluster, Ik,a is the mean
value of I corresponds to the k th cluster obtained by A-DATA,
and Ik,c is the value of index represented by the representative
period of the same cluster.

We compare the proposed method, i.e., SBCF, versus the
methods listed in Table 1 based on two data-based and three
model-based indices. Given that the proposed method is
shape-based, we compare it against HC-2 and HC-24 that
incorporate DTW distance in a separate graph, and then
against other Euclidean distance-based methods in another
graph.

The DCE indices applied to net demand for the pro-
posed SBCF and alternative methods are presented in Fig. 6;
comparison with two shape-based methods are shown
ion Fig. 6-(a) whereas the comparative results for four
Euclidean-based methods are demonstrated in Fig. 6-(b).
As illustrated in Fig. 6-(a), the proposed method outperforms
the other two shape-based methods. This is because, in con-
trast to HC-24 with warping size 24, SBCF has a restriction
on the warping size, and hence, it avoids extreme expansion
or compression of sequences. Therefore, the distortion of the
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FIGURE 7. WMAECost of Operation of the proposed framework
compared with methods using: (a) DTW distance, and
(b) Euclidean distance.

duration curve is negligible in the SBCF. Although using
the same warping size of 2 can mitigate such distortion in
HC- method, it can be seen that HC-2 still shows larger
error compared to SBCF. The reason has its root in the fact
that the mapping of sequences of wind power and electricity
demand are dependent on each other in the SBCF. Therefore,
as opposed to HC-2, SBCF has further restrictions inmapping
the sequences, and therefore, it shows better performance in
replicating the duration curve.

Figure. 6-(b) compares the DCE index of SBCF against
ED-based methods. K-Means(I), (II), and HC-ward suffer
from the smoothing challenge caused by the averaging pro-
cess [32]. Although K-Medoids uses the medoid as the rep-
resentative periods, it is still unable to detect the similarity of
two sequences if there is a small lag in one of the sequences.
Owed to the use of dependent DTW distance, the proposed
clustering framework benefits from matching sequences in
an elastic manner while preserving the relative shape in the
duration curve of the net demand. This is why the proposed
method slightly outperforms the ED-based techniques.

Figure 7 shows the performance of the representative days
of alternative clustering methods in approximating the oper-
ation cost of the network. Observe from Fig. 7-(a) that the
proposed framework shows better performance than HC-2
and HC-24 in reflecting the operation cost of the network.
It is worthwhile to note that HC-24 in spite of exhibiting
high error in replicating the duration curve, shows low errors
in reflecting the cost of operation. The reason has its root
in the fact that the unit commitment is mostly driven by
demand. Since the compression/expansion usually affect the
wind profiles rather the load profile, the high error of HC-24
in replicating the duration curve may not be reflected in the
operation cost.

Comparing the SBCF against the ED-based clustering
methods in Fig. 7-(b) shows that the performance of the
proposed SBCF outperforms other methods in approximating
the operation cost. As discussed earlier, the operation of a
unit commitment is usually driven by the electricity demand.
Therefore, the performance of the methods in approximating
the operation cost are close to each other.

FIGURE 8. WMAEWind Curtailment of the proposed framework
compared with methods using: (a) DTW distance, and
(b) Euclidean distance.

FIGURE 9. WMAEEnergy throughput of the proposed framework
compared with methods using: (a) DTW distance, and
(b) Euclidean distance.

Figure. 8 compares the error of the alternative methods
in approximating the annual wind curtailment in the case
study. Observe from Fig. 8-(a) that the proposed clustering
framework significantly outperforms HC-24. The reason lies
in the fact that its warping size is not restricted, which can lead
to extreme compression or expansion of sequences to match
them onto each other. Therefore, a particular curtailment at
some intervals can be reflected as a small or large wind
curtailment in the representative periods. Compared to HC-2,
the proposed clustering framework has lower or comparable
error. In fact, to achieve as small error as SBCF, higher
number of clusters should be used for HC-2 to mitigate its
problem in preserving the relative behavior between the data
sets. Compared to the ED-based clusteringmethods, as shown
in Fig. 8-b, observe that the proposed framework has smaller
errors in approximating the curtailed wind energy for all
different number of clusters.

The performances of alternative methods in reflecting the
true data when it comes to the annual energy throughput of the
storage system for in the 3-bus system is illustrated in Fig. 9.
Observe from Fig. 9-(a) that the proposed framework outper-
forms others in replicating the storage energy throughput. The
reason is that the operation of the energy storage depends on
both the wind power and the load of the network, and SBCF
considers both due to the vertical configuration of the data.
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FIGURE 10. WMAESOC of the proposed framework compared
with methods using: (a) DTW distance, and (b) Euclidean
distance.

As depicted in Fig. 9-(b), the proposed SBCF also shows
lower errors compared to the ED-based clustering methods,
for different number of representative days.

In addition to the energy throughput of the energy storage,
the performances of alternative methods in reflecting the
daily average value of the state-of-charge (soc) of the energy
storage, calculated by taking the average of the hourly soc
throughout a day, is illustrated in Fig. 10.

As depicted in Fig. 10-(a), the proposed SBCF shows a
better performance compared to the other DTW-based meth-
ods. The reason lies in the fact that the proposed method
can preserve the joint behavior of wind power and electricity
demand. Therefore, it can better capture the moments of high
wind with low demand (energy storage is charging) and low
wind with high demand (energy storage is discharging). The
proposed SBCF can generally preserve the overall operation
of the energy storage and hence, the grouped days have
similar daily average soc values.

Compared with ED-based methods in Fig. 10-(b), it is
observed that the proposed SBCF outperforms the other
methods since it utilizes the elastic distance.

Finally, to show the effectiveness of the proposed method
under different levels of wind power penetration, we applied
all the methods with k = 30 clusters when there are
{20%, 25%, 30%, 35%, 40%} level of wind power penetra-
tion. Figure 11 shows the performance of the methods in
reflecting the operational cost of the network.

As depicted in Fig. 11, increasing the wind power penetra-
tion generally results in higher error. However, the proposed
clustering framework, SBCF, shows better performance com-
pared to the other clustering methods. In fact, at a higher
level of wind power penetration, the difference in the error
of the proposed method becomes bigger which shows the
effectiveness of the proposed method in the highly volatile
context.

To summarize, and considering all the model-based and
data-based indices, the proposed method better reflects the
overall behaviour of both wind and demand data when
applied to systems that include energy storage. This is con-
sistent with the findings of [5] where shape-based methods
are preferred when dealing with electricity market price data
involving energy storage. The key difference, however, is that

FIGURE 11. WMAECost of Operation of the proposed framework
compared with other methods for 30 clusters under different
levels of penetration.

instead of k-shape that is found useful in [5], we demon-
strate the good performance of DTW distance when wind
power data is involved. Also, compared to the results of HC-
24 presented in [10], since we employed DTW distance in a
multi-dimensional format, and considered the local neighbors
during the clustering process, the performance is improved.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a time aggregation framework
for choosing representative periods for studies that include
both wind and load data. We focus on the shape of the
data sets because we are interested in system studies that
involve energy storage. The proposed method uses the DTW
distance in the multi-dimensional format. Therefore, it takes
advantage of an elastic distance without mistreating the joint
behavior of the data sets. Furthermore, to avoid grouping
sequences that are far from each other according to their
Euclidean distance, the proposed framework first utilizes
consensus clustering to extract group of sequences as local
neighbors. Then, mutual information score is applied to find
a set of clusters obtained by the use of DTW distance that
show more common partitions with the extracted neighbors.
Compared to other clustering methods in the power system
community, the proposed framework can jointly preserve the
shape and behavior of the included data sets which can play
an important role in the operation of the network when the
energy storage is present. We use data-based and model-
based validation indices to compare the performance of the
proposed framework against six other methods. The results
show that the proposed method consistently outperforms
the alternatives in replicating the duration curve of the net
demand- defined as load minus wind-, as well as reflecting
the cost of operation, the amount of wind curtailment, and
the energy throughput of the energy storage system.

Therefore, as long as the data sets are related to a particular
area, they should have joint relationship. For instance, when
the wind is low and the load is high during a day, the price
is usually high. Such observation means that preserving the
joint behavior of data sets is of significance. So, the data
sets can be structured vertically and the proposed clustering
framework is recommended.
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In cases concerned with multiple sources of uncertainty
where the sources are far from each other from a geograph-
ical point of view, the proposed method should be used
with caution as the sources might not necessarily have joint
behavior. It is important to note that other current methods
have a similar challenge. According to a recent study [40],
analyzing multi-variate time series data for similar patterns in
high dimensional space does not lead to meaningful results.
In other words, the grouped patterns and particularly their
centroidmay not properly show similar behavior in all dimen-
sions. This task is under the study of the authors of this paper.
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