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ABSTRACT With the proliferation of renewable energy and power electronic converters in power systems,
the reliability issue has raised more research attention than ever before. This paper proposes a comprehensive
framework to assess the reliability of a power system considering the effect from various power converter
uncertainties. For the converter stage, we formulate a reliability model for each power converter based on
several semiconductor devices, for which ambient uncertainties and converter topologies are considered. For
the system stage, we estimate system reliability indicators through a non-sequential Monte Carlo simulation
and calculate their variances. Afterward, we leverage machine learning regression algorithms between two
stages to establish a nonlinear reliability relation. Moreover, a variance-based sensitivity analysis (SA) is
conducted to rank and identify the most influential converter uncertainties with respect to the variance of
system EENS. Based on the SA conclusions, system operators can take proactive actions to mitigate the
potential risk of the system.

INDEX TERMS Power system reliability, power converters, machine learning, power electronics, sensitivity
analysis.

I. INTRODUCTION

THE incorporation of renewable energy resources (RES)
in power systems has brought several challenges to real-

izing a reliable power delivery. That said, the proliferation of
RES has been significantly accompanied by the penetration
of various power electronic converters. Notably, the power
electronic converter plays a fundamental role during energy
conversion [1]. Consequently, from a reliability point of view,
the system has become more complicated compared with a
traditional system.

A power system’s reliability is defined as a measurement
of its ability to cope with customer demands. Many existing
research works investigated the reliability issue of conven-
tional power systems [2]. The reliability of power systems
with RESs such as wind turbines (WTs) or solar photo-
voltaics (PVs) is investigated in [3], [4]. The authors in [5]
and [6] conducted a system reliability assessment considering

diverse load demands in a large-scale WT system or PV sys-
tem. However, failures caused by power electronic converters
connected to those RESs have not raised much attention
in most published research works. According to field data
and industrial experiences, power converters are one of the
frequent sources of failure in many electrical applications [7].

From a power electronics perspective, many researchers
devoted their research focus on assessing various converters’
reliability from both device and overall converter layer. The
reliability of a power converter is largely determined by the
performance of critical components. In [8], efficiency and
cost functions of a DC-DC boost converter integrated with
solar panels were evaluated. Authors in [7] performed a
reliability estimation for critical devices of a WT converter
where the thermal loading of each device was considered. For
those deregulated systems, transmission and generation may
be operated by various entities and renewable energies can
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be directly delivered to local users. However, for traditional
regulated power systems, effective RES power conversion
can secure only that all available renewable energies are
injected into the main power system. Whether these power
inputs can be successfully transferred and satisfy the load
demand in future power systems is still questionable.

Based on these surveys from both the power system and
power electronics fields, we can conclude that more uncer-
tainty and complexity are introduced in today’s power sys-
tems compared with traditional systems. The output power of
each RES is determined by several ambient variables which
are predictable but uncontrollable. Moreover, power conver-
sion interfaces, typically represented by one or more power
converters, become an essential bridge between eachRES and
the main grid. However, there were that few papers bridged
the gap between system uncertainty and converter reliability.
A DC-DC converter reliability model was formulated in [8]
in evaluating the reliability of an energy storage system.
Still, the paper did not investigate the reliability impact of
different converter types on the overall system. The authors
in [1] incorporated various converter reliability models into
system reliability analysis but did not investigate the system
reliability under transmission level. Thus, it is necessary to
intensify the importance of power electronic converters and
investigate their potential effects when assessing the reliabil-
ity of a power system under the proliferation of RESs and
power electronic interfaces [9].

Meanwhile, various uncertain parameters are introduced in
power systems due to intermittent RESs and the operational
structure. These uncertainties may have significant influence
on the system’s reliability performance. The authors in [10]
highlighted that a conservative power system assessment
or non-optimal maintenance solutions would be made by
decision-makers if spatiotemporal uncertain parameters are
neglected. In [11], the authors implemented several numerical
sensitivity analysis (SA) methods to investigate the most
important uncertainty affecting the reliability of power sys-
tems. Therefore, implementing an appropriate SA on the pro-
posed reliability framework is essential in order to interpret
the system reliability behavior and identify the effects that
emerging power converters will have on system reliability.
Identifying the most critical uncertainties, i.e., the most influ-
ential pair of an RES and its connected power converter on the
system reliability will help system operators and stakehold-
ers to better arrange the maintenance schedule and facilitate
better system operation.

SA is mainly categorized into two classes: local SA (LSA)
and global SA (GSA). GSA has a variety of applications in
power systems, such as reconfiguring power networks [12],
allocating voltage control devices [13], and improving trans-
mission capacity [14]. However, most conventional GSAs
neglect the uncertain parameters from RESs and power con-
verters and may not provide accurate results in terms of
system reliability characteristics. In the last decade, a variety
of implementations of the variance-based GSA have been
presented, which indicates that the variance is a universal

FIGURE 1. Six steps of the proposed two-stage reliability
assessment framework.

and proper index to depict the output variability. Another
advantage of variance-based GSA over other GSA methods
is that system variance has been validated as a proper index
to quantify the contribution of each input uncertainty with-
out any hypothesis on the linearity or monotonicity of the
model [15].

In this paper, the first stage of the framework utilizes a
group of failure rates for various power electronic devices
and formulates converters’ reliability. The second stage of the
proposed framework presents for the first time the application
of the variance-basedGSA to identify the contribution of each
converter uncertainty to the variance of the system reliability
indicator. This novel application is of critical importance
as future power systems become increasingly implemented
with RESs and power converters. The research purpose of
this stage is to provide instructive information to system
operators, achieve better system operation planning, and pro-
mote the application of more advanced SA methods in power
systems.

Fig. 1 generalizes each step of the proposed reliability
assessment framework. In the first step, we collect ambient
conditions from available literature and open-source data.
Each converter reliability is then formulated based on physi-
cal/thermal dynamics of several power electronic devices and
converter topology. In step three, system reliability indica-
tors such as expected energy not served (EENS) and loss
of load expectation (LOLE) are calculated through a set of
Monte Carlo simulations. Further, in step four, we establish a
relationship between the converter and the system stage from
the reliability perspective by utilizing machine learning (ML)
regression techniques to capture the converter dependence
structure for several components and calculate the reliability
indicators of a converter-penetrated system at scale.

According to the aforementioned reliability and uncer-
tainty issues posed by the proliferation of RESs and power
electronic converters in future power systems, this paper has
the following contributions:

1) The proposed reliability assessment of a power system
consists of two stages. In the first stage, we collect hourly
based ambient data to formulate the failure model for each
semiconductor device. Both physical and thermal character-
istic parameters of each device are estimated to achieve the
device failure rate in an accurate manner.
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2) The scale of system complexity and uncertainty will
increase as more RESs and converters are implemented into
the power system. How the performance of each converter
would affect the system-level reliability is yet to be investi-
gated. Therefore, this paper leverages ML regression algo-
rithms to establish a reliability relation between converter
and system reliability. We provide a fundamental guide-
line of evaluating complex power system reliability from
power converter perspective. The established nonlinear rela-
tion maintains the flexibility of adding new converter into
consideration such that comprehensive reliability information
from both converter and system level can be revealed to
system operators.

3) The uncertainty parameters coming from power con-
verters are yet to be considered when conducting traditional
GSA. In the second stage, the variance-based GSA method
is applied to the proposed power system to provide instruc-
tive information to system operators and stakeholders such
that better operational planning can be achieved. This novel
application is also intended to promote the development of
the implementation of more advanced SA methods in power
systems such that interested researchers can further interpret
the reliability behavior of future power systems.

The rest of this paper is organized as follows. First, the
formulation of power converter reliability is presented in
Section II. Section III presents basic information of ML and
multiple regression algorithms. Section IV introduces the
fundamental procedure of how the variance-based GSA is
integrated into the power system. The Monte Carlo simu-
lation and the system overview are presented in Section V.
The proposed reliability framework is verified on the IEEE
24-bus RTS in Section VI. Conclusions and future works are
summarized in Section VII.

II. FORMULATION FOR CONVERTER RELIABILITY
This section introduces the reliability quantification of each
power electronic converter. As shown in equation (1), con-
verter reliabilityR(t) is estimated, where λ denotes the overall
failure rate. λ is time-invariant and is conventionally treated
as a constant value [7].

R(t) = e−λt (1)

However, λ is affected by various uncertainties, includ-
ing the type of integrated device, thermal loading and envi-
ronmental parameters. To consider these factors, we collect
hourly based ambient data and assume each uncertainty fol-
lows a pre-defined probability distribution over a 1-year time
span such that in each converter, the values of λ and R(t)
are determined in a more accurate manner. The following
subsections A and B present the reliability model of WT and
PV converter, respectively. The detailed formulation can be
referred to in [9].

A. WT CONVERTER MODELING
We consider a typicalWT system, with the detailed schematic
being presented in Appendix B. The WT output power Pwt,t

at time t can be estimated by the wind speed vt [3]. We collect
hour-based wind speed such that Pwt,t at hour t , is calculated
by equation (2), where Prated denotes the rated capacity;
vci, vco, and vr refer to the cut-in, cut-out, and rated wind
speeds, respectively [26].

Pwt,t =


0, 0 ≤ vt ≤ vci(
A+ Bvt + CV 2

t

)
Prated , vci ≤ vt ≤ vr

Prated , vr ≤ vt ≤ vco
0, vt ≥ vco

(2)

The WT output power will, consequently, determine
the power losses of each integrated device. However,
monitoring/measuring all devices will be inefficient and
redundant. Therefore, we identify critical devices and then,
estimate their power losses. Critical devices identified in this
WT system are mainly diodes and IGBTs. Their total power
losses are the sum of switching loss and conduction loss.
Both losses are calculated through various electrical param-
eters such as voltage drops, resistance, and the switching
frequency [1].

Ploss_IGBT = PIGBT_cd + PIGBT_sw (3)

Ploss_diode = Pdiode_cd + Pdiode_sw (4)

As shown in (3) and (4), the power loss of a diode/IGBT
is calculated. The subscript cd denotes the conduction loss
while sw refers to the switching loss. Detailed equations for
calculating PIGBT_cd ,PIGBT_sw,Pdiode_cd and Pdiode_sw are
provided in Appendix C.

Both the generation-side inverter and the grid-side inverter
are considered in this WT system. Their topologies are
assumed as known such that the number of diodes/IGBTs are
determined. We assume that all components are connected
in series from a reliability point of view since one failed
component will likely bring a failure of entire converter. The
total power losses denoted byPWT_conv_loss is estimated in (5),
where nD and nG refers to the number of diodes and IGBTs,
respectively.

PWT_conv_loss =
nD∑
n=1

Ploss_IGBT +
nG∑
n=1

Ploss_diode (5)

One of the critical factors which has an impact on the
device failure rate is its thermal dynamics. We apply the
calculated total power losses and ambient temperature data
to estimate device thermal parameters including diode/IGBT
junction temperature, thermal stress factor, thermal resistance
and the temperature cycling factor. Their detailed calculations
are provided in Appendix C. Afterward, we derive the device
failure rate model by collecting all calculation results from
above. The FIDES approach [27] which is considered as
the latest update on failure rate prediction for power elec-
tronic components, is applied, and the failure rate model of
a diode/IGBT is presented in (6):

λj,t =

Ns∑
i

(λ0ThπTj,t + λ0TCπTCj,t )πInπPmπPr (6)
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where λj,t is the failure rate of device j at hour t , Ns is the
number of device operating states; λ0Th and λ0TC refer to
fundamental failure elements of a device, respectively; πTj,t
and πTCj,t represent thermal stress and temperature cycling
parameter of device j at hour t , respectively; πln is considered
as the contribution of overstress which is estimated by the
device sensitivity coefficient to overstress and the device
application area; πPm is the device quality factor; and πPr
reflects the aging effect of the device life cycle.

RWTconv (t) = e−(
∑Nj

j=1 λj,t )t (7)

Thus, the overall WT converter failure rate is derived, and
its reliability is calculated by (7), where Nj is the number of
all devices considered above.

B. PV CONVERTERS MODELING
We consider a typical PV system consisting of a PV array,
a DC-DC boost converter, and a DC-AC inverter. The detailed
schematic of the PV system is provided in Appendix B.

Similarly, the first step is to determine the PV output power.
Ambient temperature, as well as solar radiance are considered
as the inputs. We assume a maximum power point tracking
mechanism (MPPT) in terms of the power generated by PV
panels. As shown in equation (8), Ppv,t stands for the power
produced by PV panels at hour t , SRt represents the intensity
of solar radiation, S0 refers to the maximum solar radiance,
Pmax stands for the maximum power generated under stan-
dard conditions, γ refers to the temperature coefficient, Tt
represents the ambient temperature at hour t , and T0 is the
standard temperature [17].

Ppv,t =
SRt
S0

Pmax[1+ γ0(Tt − T0)] (8)

The power losses and the thermal effects of major semi-
conductor devices are considered, and they are calculated
through the same procedure from (3) to (6). Afterward, the PV
converter reliability is calculated by (9), where Nm is the
number of devices implemented, and λm,t refers to the failure
rate of device m at hour t . Detailed calculations are also
provided in Appendix C.

RPV conv (t) = e−(
∑Nm

j=1 λm,t )t (9)

III. RELIABILITY MAPPING THROUGH ML TECHNIQUES
In the proposed framework, ML regression algorithms are
leveraged to conduct a reliability mapping between converter
and system stage for the following reasons. First, to investi-
gate the potential impact on system reliability due to power
converter failures/outages, the reliability relation between
various power converters and overall system is worth estab-
lishing; however, as more RESs and converters are integrated
into the power system, the system uncertainty and complexity
continue to increase, which intensifies this kind of relation
become nonlinear. Consequently, it is unlikely to express
this reliability relation with an analytical manner. However,
ML algorithms are capable of dealing with nonlinear relation.

One of the impressive characteristics of ML is its outstanding
ability to explore the relation between various input and
output data with arbitrary accuracy [18]. Second, this relation
may need several updates as RES, converter integrations and
also system structure will be further enhanced in the future.
ML techniques maintain the flexibility for embedding new
parameters as additional input features such that the nonlinear
relation can be generalized without losing much computa-
tional cost. We introduce the fundamental concepts of ML
regression and the proposed two-stage reliability mapping
formulation in this section.

A. CONCEPTS
The reliability mapping between converter and system level
data can be statistically modeled as a typical regression prob-
lem. We describe the logic of the regression algorithm as
follows: In the training data, assume there exists n pairs under
a set {(xk , yk) , k = 1, 2, . . . , n}. xk represents the vector of
input feature k and yk is the system output vector. xk consists
of a data array where a sample data point is targeted by all
other data [18]. During each testing iteration, the value of this
sample point is arbitrarily predicted from xk , and is further
compared accordingly with its actual value in yk (yk is contin-
uous). A data mapping refers to an effective function between
x and y such that each yk value can be predicted with limited
error when xk is given, even if the established function is
nonlinear. In the proposed framework, we consider reliability
data of all converters as the mapping input features while
continuous system reliability indicators such as EENS and
LOLE are assumed as output labels. TwoML regression algo-
rithms, namely, support vector regression (SVR) and random
forests (RF) are applied to realize the reliability mapping. It is
worth noting that other ML regression algorithms may have
comparable performance. However, the main purpose of this
paper is not to optimize the regression model, but to explore
a potential nonlinear relation between converter and system
reliability data by leveraging ML regression algorithms.

B. SUPPORT VECTOR REGRESSION
SVR has been applied to establish a data mapping or a
function estimator, as shown in (10), by utilizing a subset
of the provided dataset [19]. It can provide a sparse pattern
of solutions and maintain flexible on the model complexity.
In SVR, different kernel functions are commonly applied to
map the input space, e.g., n power converters, into a higher
dimensional feature space, which introduces non-linearity
in solutions and to conduct a linear regression in the fea-
ture space. The SVR model is formulated by the following
function:

Y = f (x) = W · φ (X)+ b (10)

where Y represents the set of system reliability indicator
values, W is a weighted feature vector, φ(·) represents the
mapping and b refers to the predicted constant coefficient.
The function f should be flat to avoid over-fitting and loosely
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fit the training data. The detailed SVR formulation can be
found in [19].

C. RANDOM FORESTS
An RF model is a ML algorithm for dealing with classifica-
tion or regression problems [20]. An ensemble of decision
trees is constructed from the training data set and the mean
value of all trees is applied to predict the value for new input
data. Specifically, consider a variable of interest Y and a set
of input variables X . f̂ denotes the predicting function. Let
Ln = {(X1,Y1) , . . . , (Xn,Yn)} be a learning set. Since the
actual prediction error is unknown, we estimate the error R
based on observing a validation sample D̄, as shown in (11).
The growing procedure of each tree can be found in [20].

R(f̂ , D̄) =
1

|D̄|

∑
(Xi,Yi)∈D̄

(Yi − f̂ (Xi))
2

(11)

RMSE =

√
1
n

∑n

k=1

(
yk − ŷk

)2 (12)

R−squared = 1−

∑n
k=1 (yk − ŷk )

2

n∑
k=1

(yk − ȳk )2
(13)

The general steps of the proposed mapping procedure
are presented in Algorithm 1. Equation (12) and (13) apply
two statistical measurements, namely, root mean square
error (RMSE) and R-squared [19] to validate the mapping
effectiveness.

Algorithm 1 Reliability Mapping Through SVR&RF
Input: Reliability data x of all power converters, system

reliability indicators y.
Output: Predicted system reliability indicators
Training:
1 Create a data set X = {x1, x2, . . . , xn}

where each vector xn denotes the No. n
power converter reliability index at time t.

2 Create a data set Y for the system EENS and LOLE.
3 Apply ML regression algorithms:

f̂SVR = SVR()
f̂RF = RandomForestRegression ()

4 Train the and Y pairs to SVR and RF model.
The ratio of training to testingdata is set as 8:2.

Testing:
5 Apply both trainedmodels to the remaining data and

calculate the predicted output ŷ.
6 Calculate RMSE and R-squared values to evaluate

both mapping models.

IV. VARIANCE-BASED GLOBAL SENSITIVITY ANALYSIS
Since various uncertain parameters are involved in the non-
linear reliability relationship built in the first stage, an appro-
priate SA is essential to interpret the system behavior based

on the information revealed by this relationship. More uncer-
tainty parameters will be involved due to the proliferation
of RESs and power electronic converters. However, it is
computationally expensive, and it may not be necessary to
monitor all uncertainties. Hence, identifying the most crit-
ical uncertainties, i.e., the most influential pair of an RES
and its connected power converter on the system reliability
will help system operators and stakeholders to better arrange
the maintenance schedule and facilitate better system opera-
tion. Variance is a universal index to depict the output vari-
ability without hypothesis on the linearity or monotonicity
of the model [15]. Therefore, in this stage, we apply the
variance-based GSA to the proposed power system.

The variance-based GSA investigates the contribution of
each uncertain input, to the selected output variance, either
a single input variable, or multiple input combinations. This
method has been applied to a variety of problems in the power
system field, such as generators/loads ranking and distributed
generation allocation. However, there are few papers that
take power converter uncertainties into consideration when
applying variance-based GSA. It is necessary to conduct an
importance ranking from the power converter perspective,
to improve the understanding of the power system reliability,
and further provide useful advice for the system operator.

The theoretical background of the variance-based GSA
algorithm is first introduced. The detailed specifications such
as the input uncertainties and sensitivity indices are also
defined.

A. THEORETICAL BACKGROUND
From a black box perspective, any model can be described by
equation (14), where X = {X1,X2, . . . ,Xn} is a vector of n
uncertain inputs, and Y is a selected univariate output.

Y = g (X1,X2, . . . ,Xn) (14)

Var (Y ) =
n∑
i=1

Vi +
n∑

1≤i<j

Vi,j + . . .+ V1,2,...,n (15)

Each input Xi follows a specific probability density func-
tion (PDF) and the variance Var(Y ) of Y can be decomposed
as in equation (15) where Vi is the variance of Y caused
by Xi without considering its interaction with other uncer-
tain inputs, and V1,2,...,n represents the proportion of Var(Y )
caused by {X1,X2, . . . ,Xn}.

From a power electronic converter perspective, the operat-
ing condition of a power converter can be described from the
following parameters [7]: peak current, switching frequency,
mean junction temperature, etc. In stage I, we can conclude
that the converter voltage/current can be calculated from envi-
ronmental data, and the junction temperature can be obtained
from equation (X) given the ambient temperature value. Thus,
regarding a WT converter i, the input uncertainties consist of
wind speed v and temperature T , i.e., Xi = {vi,Ti}. The solar
irradiance S and temperature T represents the uncertainties in
a PV converter j (Xj = {SRj,Tj}). The switching frequency of
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FIGURE 2. An overview of the proposed reliability assessment on the power system.

a power converter is assumed stable and not considered as an
uncertainty.

The traditional reliability index EENS is used as the sys-
tem output in the first stage, and its variance can be easily
obtained. Thus, the variance of EENS is selected as the output
Var(Y ) in the second stage.

B. SENSITIVITY INDICES
As described in equation (16), we have the Sobol’ indices [21]
defined in equation (16),

Si =
Vi

Var(Y )
, Sij =

Vi,j
Var(Y )

, S1...k =
V1,2...,k
Var(Y )

(16)

where Si is the first-order index, Si,j is the second-order
index, and S1,2,...,k is the higher-order index corresponding
to {X1,X2, . . . ,Xk}. Interactions of this kind will continue up
to nth order for n uncertainties.

Thus, the number of indices and computational cost will
increase dramatically if calculating the higher-order index.
As a result, the first-order and total-effect Sobol’ indices are
commonly used.

1) First-order index—Si: According to equation (16), the
first-order index describes the contribution to the output vari-
ance of the effect from Xi, i.e., the effect of a single converter
uncertainty to the system variance of EENS. Equation (17) is
used to calculate each Si [21]:

Si = 1−
E [V (Y |Xi)]
Var (Y )

, Si ∈ [0, 1] (17)

where E[V (Y |Xi)] denotes the expectation of the conditional
variance of Y given Xi has a fixed value. This conditional
expected variance is taken over all Xj, j 6= i, weighted by the
density of Xi.
2) Total effect index—TE i: As described in equation (16),

there exist interaction terms such asVi,j and higher-order vari-
ance that represent the combined effect ofmultiple inputs. For
a system with independent inputs, the total output variance
can be described in (5):∑

i

Si +
∑
i

∑
i<j

Si,j +
∑
i

∑
i<j

∑
j<k

Sijk + . . . = 1 (18)

where Si is the first-order index. Si,j is the second-order
interaction index related to input i and j. Similarly, Si,j,k is
the third-order interaction index.

The total effect index TE i is defined as the sum of all
terms in (18) that contain the subscript i, which describes the
percentage of variance that remains if all inputs except Xi are
specified and only Xi is a random variable. Thus, the total
effect index can be calculated by equation (6):

TE i =
E[V (Y |X−i)]
Var(Y )

(19)

in which X−i represents the vector of all Xj where j 6= i
(i.e., all parameters except Xi).

V. NON-SEQUENTIAL SAMPLING AND
SYSTEM OVERVIEW
As shown in Fig. 2, we illustrate a system overview for the
proposed framework. First, wind speed, ambient temperature
and solar radiance, are considered as input uncertainties.
These input data are collected under each hour to derive
the WT/PV output power. Then, the reliability formulation
introduced in Section II is adopted for each power converter.
Reliability data of other system components, such as the
failure rate of the transmission lines, diesel generators, load
points, and station transformers, are also considered such
that all component states can be determined. The system
reliability indicators such as EENS and LOLE (and their vari-
ance), are calculated by conducting a DC power flow and the
abovementioned non-sequential Monte Carlo method. The
reliability relation between the converter and system stages
is then established through SVR and RF algorithms. Finally,
both the input uncertainties and the system EENS variance
are selected to conduct the variance-based GSA. Sensitivity
indices are generated to provide an importance ranking of the
power converters.

We realize the system reliability calculation through a non-
sequential Monte Carlo (MC) sampling approach for the fol-
lowing reasons. First, it requires less computational cost and
memory compared to sequential MC method [22]. Second,
non-sequential MC is a well-established method such that
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easy implementation can be realized. The state of overall
system is determined after finishing the probability sampling
of all system components’ states under each hour. We assume
that there are multiple operating states on eachWT/PV gener-
ator which is dependent on the level of its power output. Other
components are assumed with two operating states: up and
down. The probability of each state is calculated accordingly
in (20) and (21), where λi,t represents the failure rate of device
i at hour t . The device repair rate µi is considered stable and
assumed time-invariant.

PU (i, t) =
µi

λi,t + µi
(20)

PD (i, t) =
λi,t

λi,t + µi
(21)

Then, we adopt a DC load flow based linear programming
for each hour to calculate the power flow of each transmission
line. The sampling process is repeated for a pre-determined
number of iterations until the stopping criteria or limited
calculation error is triggered. Eventually, both the input data
and the calculated system EENS and LOLE values are col-
lected for ML reliability mapping formulation introduced in
Section III. The definition of EENS and LOLE are listed in
Appendix D.

VI. NUMERICAL ANALYSIS
In this section, the proposed two-stage framework is vali-
dated on the modified 24-bus IEEE reliability test system
(RTS). The computations, including non-sequential MC sim-
ulations, are performed in Matlab 2020a on an Intel Core
at 2.90GHz with 16 GB RAM. ML regression models are
implemented through Python sckit-learn. The software called
SIMLAB [23] is adopted for the GSA calculations.

A. THE MODIFIED 24-BUS IEEE RTS
Fig.3 presents the modified 24-bus IEEE RTS network.
We apply the latest version of RTS including the generation
and load data [24]. Three WT and six PV generators and
connected power converters have been added to the system.
They are located at different buses with different capacities.
The detailed information is in Appendix E.

B. THE REGRESSION MAPPING BETWEEN TWO STAGES
As introduced in Section III, both SVR and RF are inte-
grated to investigate the nonlinear relation between con-
verter and system stage reliability. We apply 80% of the
converter/system reliability data as the training set, as well as
determine the intrinsic parameters of both algorithms, while
the remaining 20% is adopted for testing and further analysis.
The computational cost of SVR andRF are 41.34s and 47.92s,
respectively.

The RMSE derived from the SVR method is 1.943, which
is lower than the value calculated by the RF method (2.221),
while the R-squared value under SVR has a higher value
which reaches 0.947 (0.921 under RF). Both R-squared val-
ues are above 0.9 which indicates that the predicted and actual

FIGURE 3. The modified 24-bus IEEE RTS with RES and power
converter penetration.

FIGURE 4. Comparison between the predicted and actual EENS.

system EENS values are basically matched with very limited
error. As shown in Fig.4, 100 samples from testing set are
illustrated tomake comparisons between predicted EENS and
corresponding actual values. In general, the predicted and
actual EENS follow a similar pattern over all samples, and the
maximum EENS difference reaches only 1.2%. The mapping
results indicate that a reliability mapping between converter
and system stages is applicable through ML algorithms.

C. VARIANCE-BASED GSA RESULTS AND
MAINTENANCE SUGGESTIONS
To thoroughly conduct an importance ranking for converter
uncertainties on the proposed power network, three cases are
considered when implementing variance-based GSA:
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TABLE 1. Sensitivity indices of PV converters under different sample sizes (e.g., SPVconv1 = 0.103(3) indicates the first-order index is
0.103 and this PV converter is ranked No.3 among all PV converters).

Case Study 1. To focus on the analysis of each type of power
converter, we consider the uncertainties of all
six PVs and their converters which are marked
as ‘‘PV_conv’’ in Fig.3.

Case Study 2. We consider new uncertainties from threeWT
systems (‘‘WT_conv’’ in Fig.3) such that all
converter uncertainties are considered in this
case.

Case Study 3. The network is divided into three sections as
shown in Fig.3, where each area includes both
WT and PV converters. Moreover, we con-
sider the load perturbation on each bus,
e.g., between 2% and 5% [25]. The uncertain-
ties in each section are grouped together to
investigate their importance.

The analyzed results, i.e., the importance ranking under all
three cases, can provide system reliability evaluation from the
converter perspective so that system operators or stakeholders
can identify the most uncertain/vulnerable converter or area
and make proactive decisions.

1) CASE STUDY 1
In the first case, utility solar panels and rooftop PV systems
are considered. The solar radiance SR and temperature T are
used to represent the PV converter uncertainties. Beta and
normal distributions are adopted for solar radiance and ambi-
ent temperature through [a, b] and [µ, σ ], respectively [25].
The probability distributions and probabilistic parameters of
input uncertainties are presented in Appendix E.

Table 1 presents the S1 and TE values of all six PV con-
verter uncertainties under different numbers of samples. The
subscripts with parentheses indicate the rank of each PV con-
verter. Both S1 and TE values provide almost identical results
that the uncertainties of ‘‘PV_conv3’’ located at bus 14 have
the largest values, i.e., 0.128 and 0.481, respectively, which
indicates that the uncertainty of this converter contributes
more system EENS variance compared to other converters.
In other words, this converter is of the most important among
all PV converters. From the results of TE , ‘‘PV_conv1’’,
‘‘PV_conv3’’ and ‘‘PV_conv5’’ have higher values, which
means the system EENS variance value changed more when

FIGURE 5. First-order indices of PV/WT converter uncertainties.

considering the uncertainty of these three PV converters com-
pared to considering other converters. Thus, they are con-
sidered more important compared with the remaining three
converters, in terms of the effect on system EENS variation.
This is consistent with the fact that rooftop PVs such as
‘‘PV_conv6’’ has a smaller capacity and its failure results in
less EENS compared with other utility PVs.

From the system reliability point of view, it can be con-
cluded that the utility PV converters at buses 13, 22, and 1 are
more important compared with the remaining three rooftop
PV systems.

2) CASE STUDY 2
Based on case study 1, we add the uncertainties of all three
WT systems in the second case. As described in Section IV,
the wind speed v and temperature T are modeled as WT
converter uncertainties. Weibull and normal distributions are
adopted for wind speed and ambient temperature through
[α, β] and [µ, σ ], respectively [25].

As shown in Fig. 5 and Fig. 6, the sensitivity indices such
as first-order S1 and total-effect index TE are calculated for
all converter uncertainties under 1000 and 2000 sample size.
The S1 and TE indices provide identical results that WT
converter 1 located at bus 15 has the largest S1 (0.173) and
TE (0.380) values among all the converters, which indicates
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FIGURE 6. Total-effect indices of PV/WT converter uncertainties.

‘‘WT_conv1’’ is the most important among all converters.
‘‘WT_conv3’’ located at bus 13 and ‘‘PV_conv3’’ at bus
14 are ranked at 2nd and 3rd place, respectively.

To explain the simulation results from the system network
perspective, the ‘‘WT_conv1’’ has the largest capacity, while
the ‘‘PV_conv2’’ has the lowest. Further, the WT genera-
tion on bus 15 normally will deliver power to several loads
on different buses, such as bus 14, 16 and 18, while the
‘‘PV_conv2’’ supplies only a small load on bus 6. Thus, the
system EENS does not vary much if a generation fluctua-
tion occurs on ‘‘PV_conv2’’ or a failure happened on this
converter.

As a conclusion, the converter uncertainty of ‘‘WT_conv1’’
is ranked as the most important affecting the system EENS
variance, and the system operator should pay more attention
to the WT system located at bus 15.

3) CASE STUDY 3
The system EENS may vary significantly due to a group of
uncertainties in a specific geographical area. With increas-
ing converters and loads integrated into the power system,
it is desirable to conduct variance-based GSA on different
areas, in which multiple converters’ uncertainties and load
perturbations are considered. In this case, the system net-
work is divided into three sections, I, II and III, as shown
in Fig. 3. Each section contains WT, and PV converters and
several loads. Moreover, we introduce a 3% load perturbation
on each bus. The load fluctuation parameters are listed in
Appendix E. All uncertainties in each section, hence, are
grouped together for consideration in this case. Since the
first-order and total-effect indices provided almost identical
results in previous cases, only the total-effect index is used
in this case to save computational cost. This case is intended
to highlight which area should receive more attention, and
where the maintenance should be primarily scheduled.

Table 2 lists the distribution of all buses in each section,
and Table 3 presents the total-effect index under different
sampling sizes. Each subscript indicates the section ranking.
All TE values are stable and the TE value on section I is
the highest among all three sections under different sample
sizes since both ‘‘WT_conv1’’ and ‘‘PV_conv3’’ are located

TABLE 2. Bus information of each section.

TABLE 3. Total-effect indices for each divided area.

within section I and are top-ranked based on the results
from the previous two cases, which significantly increases
the importance of this section. Section III contains more
buses compared to the other two sections. However, it has
the lowest TE value. The average load demand in I is the
highest while section III has the smallest load requirement.
Thus, intuitively, the system EENS variance is more sensitive
to section I.

Since resources are limited, maintenance efforts should be
optimally distributed into multiple sections. Thus, the results
from this area-based analysis provide a more comprehen-
sive importance ranking which can help the system operator
understand the ultimate effect on system reliability resulting
from the uncertainties of a geographical area. This case eval-
uates the converter uncertainty and load fluctuation of each
section and thus, is critical for system operators in scheduling
better maintenance and mitigating potential failure risk.

VII. CONCLUSION AND FUTURE WORKS
This paper proposes a two-stage reliability framework for a
power system. In the first stage, we formulate the reliability
of each converter while considering critical semi-conductor
devices. The system reliability indicators are calculated
through a non-sequential MC approach. Afterward, a nonlin-
ear relationship is established through ML regression tech-
niques. A variance-based GSA is applied in the second stage
to conduct an importance ranking for different groups of
power converters. The numerical results validate the premise
that uncertainties introduced by RESs and converters have
a non-negligible impact on the overall power system relia-
bility. Future works will focus on exploring the repair strat-
egy for critical devices and converters, and its reliability
impact on power system network variations (i.e., different
network topologies). Moreover, we will explore the opti-
mization of reliability cost for a converter-dominated system,
the impact of the battery capacity, the storage location, and the
implementation of ML interpreting approaches to enhance
the explanation of the reliability and provide comprehensive
information for system operators.
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