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High penetration of intermittent generation increases uncertainty and variability in balancing reserve needs. New tools are needed
to help the balancing authority system operator plan for intraday and intra-hour balance between generation and load. The Grid
Reserve and Flexibility Planning tool (GRAF-Plan) helps plan for adequate balancing reserves for future years or seasons for
expected wind and solar generation. It also assesses the flexibility of the scheduled generation fleet to meet such requirements. The
estimations are based on utilities’ operational practices (e.g., forecasting and time frame of reserve deployment), and it incorporates
detailed data from renewable generation and load. Application of the tool in estimating reserve requirements in Central America
under different levels of renewable generation (high and low) and for the Western Electricity Coordinating Council (WECC) 2030
Anchor Data Set scenario is discussed.

Index Terms—Balancing reserve, flexibility assessment, high penetration of renewable, planning study.

I. INTRODUCTION

THE inherent variability and uncertainty of inverter-based
renewable power generation add difficulty to system

operators’ efforts to schedule adequate balancing reserves [1],
[2], [3], [4]. Planners need high-fidelity intraday and intra-hour
studies. To maintain a power balance, system dispatchers rely
on a series of rapid (regulation [RL]) and slow (load-following
[LF]) adjustments of resources through automated and manual
balancing operations [5]. Balancing reserves considered in this
work are the intraday balancing requirement, as depicted in
Fig. 1. These are formally defined below. Contingency reserves
are not considered here.

Regulation: Real-time (RT) adjustments for regulation ser-
vice are done by generators under automatic generation control
(AGC). The difference between actual net load (demand −
solar generation − wind generation) and RT forecast (5–15
minutes ahead) is the balancing reserve for regulation. This is
part of secondary frequency control. Load Following: Load-
following (LF) adjustments are tertiary control, where spinning
and fast-start non-spinning reserves are manually adjusted
to follow the slow imbalance between generation, load, and
scheduled interchanges with neighboring balancing areas. The
reserve requirement for LF is the difference between the
RT forecast and the hour-ahead (HA) forecast. Day Ahead
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Fig. 1: Types of balancing reserves: load following (LF), regulation
(R) and day-ahead (DA) using representative data

Balancing: If the system has only day-ahead (DA) operation,
the reserve requirement is often the difference between the
actual net load and the DA forecast.

From these definitions, it is clear that the balancing reserve
requirement arises chiefly from forecast error and minute-to-
minute variability. Hour-to-hour, seasonal, and monthly vari-
ability and forecast error arising from different combinations
of generation and load would dictate the hour-wise balancing
needs. Therefore, (1) simplistic, deterministic approaches for
securing reserve (e.g., certain percentages of net load) are no
longer applicable because they might under- or overestimate
the reserve requirement during different time slices. Under-
estimation leads to load shedding or system reliability issues
whereas overestimation leads to over-allocation of resources,
increasing cost; (2) the tolerance to imbalance dictated by
the frequency control performance standards implemented by
the system operator needs to be accounted for balancing
reserve estimation; (3) committed generator’s flexibility to
track balancing signal must be assessed against hour-wise,
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expected distribution of balancing needs [1].
Related Work: Over the past several decades, much work

has been dedicated to estimating operating reserves under high
penetration of renewable power. Prada [6] proposed allocating
operating reserves through capacity markets using a stochastic
demand model. In [7], a method was proposed to reduce the
variability of the reserve requirement under high penetration
of wind generation using balancing authority (BA) cooperation
and sub-hourly dispatch. In [8], the authors empirically studied
the operational impact of procuring additional reserves in a
system, such as cost, reliability, and pricing. One of their major
observations was that, although the additional reserve did not
affect the reliability metrics, it provided additional ramps to
meet system requirements and cause price volatility.

Authors of [9] modeled the wind forecast error for reserve
estimation as a gamma distribution with a time-varying param-
eter based on lead time. They proposed reserve allocations for
both event and nonevent scenarios by dynamically allocating
reserves and keeping the “risk” level constant throughout the
day. In [3], Ela et al. showed that the level of operating reserve
needed for wind generation variability is not constant during
all hours of the year; they proposed dynamic allocation of
reserves to reduce the amount needed in the system for most
hours by statistical analysis of wind generation.

Paterakis et al. [10] quantified a two-stage stochastic pro-
gramming model to account for DA hourly market clearing and
minute-resolution RT operations. This study allowed demand-
side resources, such as load flexibility from dedicated com-
mercial buildings, to provide LF and contingency reserves.
Intra-hour variations from load and wind and transmission
line contingencies were modeled. A subsequent study [11]
extended this analysis to calculate LF reserves resulting from
variability due to high wind penetration, with load variability
held constant. In recent work, [12] Wang et al. introduced
a multi-period stochastic optimization framework to econom-
ically dispatch different energy resources, including planned
operating reserves. The method is adaptive with a short
horizon and tailored for day-to-day operation.

All the methodologies discussed above are operation tools
for accurately estimating reserves on a daily basis. This
approach is not tuned for long-term planning studies. In oper-
ational tools, the effort lies in the recent data trend to improve
the forecast in the forecast interval. Where as, for long-term
planning studies, recent data trends cannot be leveraged as
hour-to-hour forecasts into the future cannot be obtained with
high confidence. Therefore, for the planning studies, the stress
is given to generating forecast errors representative of typical
forecast error and take a probabilistic approach on the reserve
estimation based on projected systems conditions.

Estimation of reserve requirements under long planning
horizons is understudied in literature. Aigner et al. [13]
studied the effect of additional wind generation in reserve
requirements for future years of planning in the Nordic system.
In [14], the authors propose a dynamic investment model to
assess the cost and availability of balancing reserves for a
100% renewable European grid of 2050. However, in both
these cases, no generic methodology to estimate reserves from
hour to hour is outlined that could be adopted for other

BAs. Therefore, a holistic approach to estimate reserves under
different long-term scenarios of adopting renewables with
various compositions is needed.

Current Practices: The power systems market operators
and ISOs around the world adopt various strategies to estimate
and plan for reserves for future years. In a recent report [15],
Australian Energy Market Operator (AEMO) has shown the
importance of moving to a time of day profile for reserve
estimation for the next year due to significant wind and rooftop
solar integration [16]. However, as of 2019, they have used
static reserve procurement. Bonneville Power Administration
(BPA) uses a methodology very similar to the methodology
outlined in the paper.However, their error model is simplistic.
To generate an intra-hour forecast, only ten-minute average
data sets are developed based on actual load. Such a simplistic
error model might not mimic the actual error, which usually
follows specific probability distribution. In the report [17],
reserve procurement for 2030 is estimated for India based on
national standards include 3% of peak demand and 5% of
peak renewable energy production. Some of these strategies
are simplistic, ad-hoc, or do not utilize time-of-the-day values.
It is imperative how reliable, hour to hour reserve procurement
could have significant cost savings, increase reliability and
improve the utilization of resources.

Background: Over the past decade, the team at Pa-
cific Northwest National Laboratory (PNNL) has developed
statistical methods for balancing reserve estimation for LF
and regulation services under different renewable penetra-
tion scenarios. The methodology has been successfully im-
plemented and adopted by California Independent System
Operator (CAISO), Northwest Power Pool, Nevada Energy,
Bonneville Power Administration, Western Electricity Coordi-
nating Council (WECC), Duke Energy, six countries in Central
America (CA), and in an initial feasibility study of small
modular nuclear reactors in Puerto Rico [18]. In [4], the
methodology was implemented to account for wind integration
in the CAISO system; the balancing signals were separated
into LF and regulation, and a truncated normal distribution
(TND) model for forecast error was introduced. In [19], the
requirement of constraining the regulation to the BA area
control error (ACE) limit was introduced. In [20], an early
application of the balancing estimation method was used to
show the advantage of consolidating BAs in WECC. A PNNL
report [21] discussed how different balancing requirements
could be integrated into various stages of production cost
modeling.

Contribution: The contributions of this work include the
following: a) Planning tool for high wind and solar integration
Recent application of the methodology and development of a
software tool, Grid Reserve and Flexibility Planning (GRAF-
Plan), is described. GRAF-Plan was developed for routine
assessment of balancing reserve needs as part of the planning
process. The application of GRAF-Plan is discussed for the
WECC 2030 System Stability Planning Anchor Data Set
(ADS) and for Central American countries. b) Generator fleet
flexibility assessment The capability of the PNNL balancing
reserve estimation tool is extended with a probabilistic assess-
ment of a generator fleet’s flexibility to meet the estimated
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reserve requirement. The method for identifying potential
shortages in specific hours is discussed in Subsection III-B.
The detailed algorithm of previously developed reserve estima-
tion is also included in this paper to complete the description
of GRAF-Plan.

The rest is organized as follows. Section II gives an
overview of the method. The detailed methodology is de-
scribed in Section III. Application of the tool for the WECC
2030 ADS case and in Central America is discussed in Section
IV. Section V concludes the discussion.

II. PROCESS, INPUT, AND OUTPUT

Fig. 2: Major functions of the tool

This section outlines the major input, process, and output
of the tool.

Input: GRAF-Plan requires accurate representation of the
variability and uncertainty of load and renewable generation.
A sample, representative, minute-wise profile of load, wind,
and solar generation for a study window (month/season/year)
is needed. Historical data for existing plants is used. For
prospective plants, simulated production using weather models
may be used. The BA’s typical load projection for future years
can serve as the load profile. These time series are binned into
daily curves to represent typical days over the study period.

Process: Based on the time-series input, Monte Carlo
runs of forecast error signals are generated for load and
resources and corresponding balancing requirement curves are
generated. Variability from one source could offset variability
from another source and thereby reduce reserve requirements.
Next, for a given period and confidence interval, the maximum
daily hour-wise reserve requirements are extracted from the
analysis. For assessing a generation fleet’s capability, the
aggregate upward and downward flexibility of the generator
fleet is calculated and compared with Monte Carlo runs of
balancing requirement curves. This helps identify potential
minute-wise shortages. GRAF-Plan could also assess the dis-
tribution of shortages for a given hour.

Output: The reserve requirements provided are char-
acterized by upward and downward capacity (MW), ramp
rate (MW/minute), and duration (minutes) of ramps. These
parameters help compare requirements to the characteristics
of the generation fleet that is available to provide required
reserves. For capability assessment, a sample generator fleet’s

hour-wise probability distribution of hour-wise capacity and
ramping exceedance is obtained.

III. METHODOLOGY

The GRAF-Plan tool has two functions: (a) estimating
balancing reserve requirements and (b) assessing generator
fleet capability. Fig. 2 shows the methodology. For both func-
tions, Monte Carlo simulations of balancing curves over three
look-ahead horizons—DA, LF, and RL—are generated using
forecast error models. The capability assessment extends the
reserve requirement using a sample generator fleet schedule.
These two methods are described in detail in the following
two subsections.

A. Balancing Reserve Requirement Estimation

The balancing reserve requirement is calculated in four
steps: model forecast error, generate a balancing curve, cal-
culate the ramping requirement, and analyze the performance
envelope. Fig. 3 outlines the steps along with data and param-
eter ingestion and Monte Carlo simulation.

Fig. 3: Steps for estimating balancing reserve

1) Forecast Error Modeling
Estimating reserves for future scenarios relies on forecast

errors, which mimic the empirically derived statistical char-
acteristics of historical forecast residuals. The forecast errors
are added to simulated actual minute-wise time series of load,
wind, and solar, which are typically obtained from the regional
operators, and weather models for the planning year.

Reproducing the empirically derived statistical characteris-
tics requires different techniques depending on the forecast
regime (DA/HA, RT) and the resource type (load, wind,
solar). Table I lists the forecast types for each regime and
resource type and their error model. The techniques used for
error generation are sampling from an autocorrelated truncated
normal distribution (TND), using the TND with the clearness
index (CI), persistence of errors (PST), and persistence with
CI.
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TABLE I: Forecast Error Models

Time series HA/DA RT forecast
Load TND TND
Wind TND PST
Solar TND and CI PST and CI

a) Autocorrelated TND: The HA and DA load, wind,
solar, and RT load forecast errors are modeled as autocorre-
lated samples from a TND. The mean of the forecast errors is
assumed to be zero and the standard deviation is derived from
either historical data or weather models. The assumption to use
historical forecast error parameters is justified if the system
operator do not foresee any significant change in forecast
methodology within the planning horizon. The truncation of
the distribution constrains the resulting forecasts to a realistic
operating space. Because the empirically measured forecast
residuals also show strong serial correlation, the samples from
the TND are given autocorrelation with one lag. The algorithm
for generating autocorrelated forecast errors using the TND for
all three types of ancillary services is presented in Algorithm
1.Here, r1 and r2 are the minimum and maximum bounds
of truncation and N is the length of the time series. The
mean, standard deviation, and lag-1 autocorrelation values of
the forecast error signal E are µ, σ, and a. In steps 2-5, The
methodology implements a pseudo random generator to obtain
a sequence of independent and identically distributed (iid)
numbers drawn from a general TND. Then an auto-regressive
model of first order (AR(1)) is used to obtain forecast error
signal E (step-7) [22] . In steps 2-3, the truncation points
(r1, r2) from the general TND are converted for a standard
TND by shifting the truncation points by mean µ and scaling
down by standard deviation σ. The new truncation points
are r1−µ

σ , r2−µ
σ . To implement the pseudo TND generator

[23], two MATLAB functions; uniform distribution generator
rand(·) and inverse error functions erfinv(·) are utilized [24]
in step-4. The exact steps of the implementation of general
TND generator using standard uniform distribution generator
and inverse cumulative distribution function could be obtained
from Section 2.5 of [25] .

Algorithm 1 Forecast generation using TND

1: procedure TNDSERIES(r1, r2, µ, σ, a,N ) . Generates
forecast series

2: φL ← normcdf( r1−µσ ) . Left TND cutoff point
3: φR ← normcdf( r2−µσ ) . Right TND cutoff point
4: TS ← µ+σ

√
2(erfinv)[2(φL+(φR−φL)rand(N))−1]

. Draw from TND
5: E(1)← TS(1)
6: while t < N do
7: E(t)← aE(t− 1) +

√
(1− a2)TS(t) . add

autocorrelation
8: end while
9: return E . The forecast error signal

10: end procedure

Fig. 4 is an example series generated using Algorithm 1.
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Fig. 4: Autocorrelated forecast

b) Clearness Index and TND: Generation of HA solar
forecast errors requires binning the solar production time series
by CI, which is a ratio of the actual to ideal extraterrestrial
solar production. The variance of the errors is lowest when
the CI is close to either 0 or 1; prediction of solar production
becomes more precise when it is either entirely sunny or
entirely cloudy. This differs from wind and load prediction,
where the standard deviation is assumed fixed for the entire
period of the study.

As per practice from organizations such as CAISO, the
following CI bins are assumed. Each CI bin will have a

TABLE II: Clearness Index Bins

Overcast Cloudy Partly cloudy Clear
0 < CI ≤ 0.2 0.2 < CI ≤ 0.5 0.5 < CI ≤ 0.8 0.8 <CI ≤ 1.0

different standard deviation; periods with CI close to 1 or 0
will have much lower variability attributable to fully sunny or
fully cloudy days, respectively [26]. The standard deviation
sent to this algorithm, σ, is unique to the CI bin. The errors
generated for each CI bin retain the ordinality of the original
time series.

c) Persistence: Real-time wind production is assumed to
persist from one period to the next: the actual generation value
from the previous interval is used as the forecast for the current
interval. An example generated RT wind forecast signal is
compared to actual values in Fig. 5.
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Fig. 5: Persistent forecast of wind

d) Clearness Index and Persistence: The persistent value
of the CI is used to calculate the RT solar forecast. The CI
from the previous interval is multiplied by the ideal generation
for the forecast interval to obtain the forecast value for the
current interval. See Algorithm 2 for an example, where PA
is the actual solar generation, PI is the ideal solar generation,
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and ti is the reference interval for calculating the CI. The
persistent forecast, which is scaled by the CI for the previous
period, is an average of the ideal generation over the previous
five minutes.

Algorithm 2 Forecast generation using CI and Persistence

1: procedure CI+PERSISTENCE(PA, PI , ti) . Generates
forecast series

2: CI ← PA(t−ti)
PI(t−ti) . CI in previous interval

3: P̄I ←
∑t+5

i=t PI(i)

5 . Mean of ideal in current interval
4: E ← CI × P̄I
5: return E . The forecast error signal
6: end procedure

2) Generation of Balancing Curves
A simulation is performed to generate the appropriate

forecasts based on the user-provided error statistics. To do
this, the Monte Carlo method is applied to generate a user-
specified number of forecasts. The difference between the
generated forecasts and the actual operating curves represents
the balancing capacity requirement at each time step of the
study period. Taken in combination, errors in load forecast-
ing, wind forecasting, and solar forecasting will interact. For
example, an overestimation of solar production could partially
or completely offset underestimation of wind production or
overestimation of load during the same period.

Several forecast error series RTL, HAL, HAW , DAL, and
DAW are generated using Algorithm 1, HAS and DAS with
methodology in subsection III-A1b, RTW with methodology
in subsection III-A1c, and RTS with Algorithm 2.Here, AC,
RT , HA, and DA denote the minute-wise actual, RT fore-
cast, HA forecast, and DA forecast generation. Subscripts L,
W , and S denote the series associated with the load, wind
production, and solar production. For each Monte Carlo run,
a single balancing reserve curve is calculated, accounting for
all available load and production data, and the following RL
and LF DA minute-wise balancing curves are generated:

GLF=(RTL−HAL)−(RTW−HAW )−(RTS−HAS) (1)
GR=(ACL−RTL)−(ACW−RTW )−(ACS−RTS) (2)

GDA=(ACL−DAL)−(ACW−DAW )−(ACS−DAS) (3)

The indices for time instants and the Monte Carlo runs ∀i ∈
N are dropped from all the above expressions for simplicity.

3) Determining Ramping Requirements
Once the balancing curves are generated, the ramp rate

and duration requirement information is extracted. In reality,
the ramp rate values change every minute, or corresponding
to the temporal resolution of the series. Therefore, the ramp
duration requirement corresponding to a fixed ramp rate value
would vary every time instant without conveying any useful
information. Therefore, the consecutive slow changing ramps
are clubbed under one value of ramp rate requirement. If
a ‘drastic’ change in ramping is observed, the ramp rate
requirement is updated and corresponding duration value is
determined. The swinging door (or swinging window) algo-
rithm is used [4] for this approximation.Algorithm 3 describes

how the ramp rate and duration information can be determined
from any reserve curve. Here the ACE signal can be any
of the balancing balancing reserve curves, GLF , GR, or
GDA. Fig. 6 illustrates how this algorithm works. Initial
ramp rates ρ1−2, ρ2−3 . . . are determined by calculating the
1-minute jumps in ACE series (step-7). Next, beginning with
the first point, the maximum number of subsequent ramping
requirement values are identified whose value vary within
tolerance dev (steps: 8-14). These consecutive points form a
band. In Fig. 6, the first band is represented by the region
that includes π1 to π4. In this example, the initial ramp rate
is ρ1−4 and corresponding required ramp duration is δ1−4

(step-17). Beyond π4, the next balancing requirement point,
π5, increases sharply and therefore falls outside the tolerance
dev, and establishes a new band. The tolerance value dev
is usually a conservative value taken as a fraction of the
L − 10 parameter of the system [27]. This ensures the worst
case frequency deviation due to the approximation is within
control performance standards. For a balancing area not in
North America, a reasonable tolerance value is determined
from its market’s control performance standards.

Fig. 6: Swinging door method on ACE

4) Performance Envelope Analysis
In most balancing areas, there is an allowance for the

balancing signal or the ACE to deviate from zero, within
some limits. This limit is specified in the BA’s performance
standards to allow the system to tolerate some instants of
balance violation [28].

After the hour-wise balancing capacity and ramping re-
quirements have been determined, a performance envelope
analysis is done to discard extreme values. The ramp rate,
ramp duration, and RL capacity are plotted for every time step
within the hour for all Monte Carlo simulation results, and a
3D envelope is applied that encompasses some percentage of
these results. Please refer to [4] for more explanation.

B. Generator Fleet Capability Assessment

Flexibility is the ability of a system to respond to changes
in demand and generation [29].

After the balancing reserve requirements have been esti-
mated, the system planner can check whether the generation
fleet designated to provide RL and LF service is flexible
enough to do so. This method assesses the hour-to-hour
probability distribution of a generator fleet’s inability to match
the balancing requirement with the given commitment. This
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Algorithm 3 Swinging door algorithm for ramp calculation

1: procedure SWGRDR(ACE, dev, dt) . Calculates ramp
requirement using swinging door algorithm

2: i← 1 . Index for each element of ACE data
3: while i < N do . Traverse all elements of the ACE

data
4: πi ← ACEi

5: j ← 1 . Index for band duration
6: while j < N − i do . Loop through remaining

elements
7: πi+j = ACEi+j , ri+j = πi+j−πi

j . Capacity
and ramp at current point

8: ρi+jmax = πi+j−πi+dev
j , ρi+jmin = πi+j−πi−dev

j .
Calculate max/min allowable ramp

9: flag ← 0
10: for k = 1 : j do . Open the door
11: if ρi+kmax ≤ ρi+jmax and ρi+kmin ≥ ρi+j then
12: flag ← 1
13: end if
14: end for
15: if flag == 1 then
16: for k = 1 : j − 1 do
17: ρi+k−1 ← πi+j−1−πi

j−1 , δi+k−1 ← j − 1
. Store the current instant’s ramp rate and duration

18: Break out of the loop . Close the door
19: end for
20: else
21: increment j
22: end if
23: increment i
24: end while
25: end while
26: return ρ, δ . Returns the ramp and delta series
27: end procedure

method was developed for Central America’s DA market, so
the capability is assessed for the DA combined (RL + LF)
reserve requirement.

An important aspect of considering balancing reserve re-
quirement is to identify resources that can provide reserves,
e.g., fast-start units like hydropower (impoundment type or
pumped storage), diesel generators, combined cycle gas tur-
bine power plants, and steam turbine power plants that run
on natural gas. The ability of the generator fleet to provide
reserves depends on the following: whether each generator
is committed, their operating set points (G∗

i ), and generator
characteristics, such as maximum (Gi,max) and minimum
Gi,min power output, maximum ramp-up and -down rates
[ri,up, ri,down]), etc.

Fig. 7 shows the flexibility of an online generator i. The
set point of a generator is at G∗

I . When online, the generator
can go up to Gi,max to provide upward reserves. To provide
downward reserves, the generator can go down to Gi,min.
Often, Gi,min is not 0.

Fig. 8 illustrates the process of identifying reserve require-
ment exceedance, the difference between requirement and

Fig. 7: Generator’s flexibility to provide reserve in upward and
downward directions and its ramp rates

capacity. First, three curves are plotted: requirement curves,
capability-up curves, and capability-down curves.

Fig. 8: Capability curves

Requirement curves: The balancing requirement curves
are the Monte Carlo runs used to estimate the requirement
from (1). In Fig. 8, these curves are denoted by faint dotted
lines.

Capability-Up Curve: The blue solid and dotted lines
of the capability-up curve show the aggregate capability of
the online generators to provide additional capacity during
different minutes. Individual generators’ upward capabilities,
defined as the difference between maximum capacity and
scheduled value, are determined. For each generator Gi,
the capability-up value ∆Gup for a particular hour is the
difference between maximum capacity Gmax and its sched-
uled value G∗ for a particular minute m, ∆Gi,up(m) =
Gi,max −G∗

i (h), where the hour corresponding to minute m
is h = floor(m60 ).

To account for the inter-hour ramping adjustment, the capac-
ity curves from individual generators are ramped up and down
at a steady rate to reach the next hour’s set point, constrained
by their ramp rates. After individual capability curves are
obtained, they are aggregated to generate the blue solid and
dotted line in Fig. 8. Since the generation fleet’s schedule
is a viable solution from the unit commitment problem, the
steady ramp connecting the setpoints of two consecutive hours
during the inter hour adjustment period should obey ramping
constraints.

Capability-Down Curve: Similar to the capability-up
curve, the line of red dots in Fig. 8 shows the aggregate down-
ward reserve capability. For Central America, the generators
can reach a minimum value of 0 MW. Just like the calculation
of the “capability up,” each generator for a particular hour
is adjusted for inter-hour ramping and constrained by the
ramp-down rate provided for it. For each generator at minute
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m, the capacity to provide downward reserve is given by
∆Gi,dw(m) = Gi,min −G∗

i (m).
After the capability and requirement curves are plotted, four

types of deficiencies are studied. To define these deficiencies,
two regions in the capability curves are identified. The ramping
period between intervals, tr, is when the AGC steadily ramps
to reach the next interval’s target output and the effective
operating period tc is when the AGC is scheduled to provide
steady output.

(a) January hour-wise maximum regulation

(b) July hour-wise maximum regulation

(c) January hour-wise minimum regulation

(d) July hour-wise minimum regulation

Fig. 9: CAISO 2030: Estimation of RL capacity requirement for a
winter (January) and a summer (July) month. Contribution of reserve
requirements from wind, solar, and native load are decomposed. Total
LF capacity requirement is shown in blue.

The outputs from the capability assessments is a hour-wise
summary of box-plot of the upward exceedance instances.
Only the positive capacity exceedances indicate a shortage of
balancing reserve. Similarly, for the downward exceedance,
only the negative values indicate failure to provide required
downward reserve. We denote these cases shortage scenarios,
given by c̃up = {x ∈ ∆C̄up | x ≥ 0}, c̃dw = {x ∈

Algorithm 4 Generator’s Capability Assessment

1: procedure GENCAP(∆Gi,up,∆Gi,down, p) . Returns
the exceedance points of each hour

2: return Gi,DA,∆Cup,∆Cdw,∆Rup,∆Rdw .
Returns the ramp and delta series

3: for all i ∈ N do . Iterate over all Monte Carlo runs
4: for all d ∈ days do
5: for all m ∈M do . Minutes of the day
6: h = floor(m/60) . Operating hour
7: t = mod(m,h) . Minutes of operating

hour
8: if t ∈ tc then
9: ∆Cup(h)← {Gi,DA(m)−Gup(h)}

10: ∆Cdw(m)← {Gi,DA(m)−Gdw(m)}
11: else if t ∈ tr then
12: ∆Rup(h)← {Gi,DA(m)−Gup(m)}
13: ∆Rdw(h)← {Gi,DA(m)−Gdw(m)}
14: end if
15: end for
16: end for
17: end for
18: for all j in hours do
19: ∆C̄up ← prctile(∆Cup,

p
2 )

20: ∆C̄dw ← prctile(∆Cdw,
p
2 )

21: ∆R̄up ← prctile(∆Rup,
p
2 )

22: ∆R̄dw ← prctile(∆Rdw,
p
2 ) . Returns the array

for the percentile above p
2 ; i.e., removes extreme values.

23: end for
24: end procedure

∆C̄dw | x ≤ 0}, r̃up = {x ∈ ∆R̄up | x ≥ 0}, and
r̃dw = {x ∈ ∆R̄dw | x ≤ 0}.

The distributions of these hour-wise shortages are summa-
rized in the form of box plots (e.g., as depicted in Fig. 15).
Such box plots show the mean, standard deviation, median,
minimum, and maximum values of shortage points (if any)
for a particular hour of a month.

IV. RESULTS

A. Balancing Authorities in the WECC Region

Results in this section reflect data from CAISO. The total
installed generation capacity in the 2030 case for CAISO is
310,882 MW, of which 85,690 MW (27.5%) is solar and
50,474 MW (16.2%) is wind. Significant behind-the-meter
(BTM) and utility solar are considered.

From available BTM and utility solar data in hourly resolu-
tion, one-minute data is generated by emulating the historical
minute to minute variability.

Typical forecast error statistics for CAISO are obtained from
the CAISO Open Access Same-time Information System (OA-
SIS) [30]. GRAF-Plan estimated CAISO’s reserve requirement
for the WECC 2030 scenario, assuming the forecast errors
and market practices remain the same. Fig. 9 shows the hour-
wise maximum and minimum capacity requirement for RL for
January and July. Those for LF for the same months are shown
in Fig. 10. The total capacity has been decomposed into solar
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(a) January hour-wise maximum load following

(b) July hour-wise maximum load following

(c) January hour-wise minimum load following

(d) July hour-wise minimum load following

Fig. 10: CAISO 2030: Estimated LF capacity requirement for a
winter (January) and a summer (July) month. Contribution of reserve
requirements from wind, solar, and native load are decomposed. Total
LF capacity requirement is shown in blue.

(yellow), wind (green), native load minus BTM solar (red),
and the total requirement (blue). Note that this decomposition
is not additive, because it was obtained by running GRAF-Plan
with and without each resource. Shifts arising from Daylight
Savings Time are not considered in the results for January.
Several observations for capacity requirements may be made
from this decomposition:
• Solar affects RL more than it affects LF.
• The reserve requirement attributable to native load less

BTM solar is a function of rooftop solar, thereby causing
increased variability during the day.
• Longer summer days affect RL more severely than LF, with

no significant hour-to-hour difference apparent from wind.

B. Central America

In Central America, wind and solar generation are increas-
ing rapidly; they can potentially replace diesel generation,
which is widely used but expensive. Intraday and intra-hour

Fig. 11: Scenario generation and the data preprocessing

balance between generation levels must be maintained in each
of the member countries of Mercado Eléctrico Regional (MER,
the regional electricity market) is necessary to manage high
penetration of solar and wind generation. The countries under
study were Costa Rica, Nicaragua, Honduras, El Salvador,
Guatemala, and Panama.

We applied GRAF-Plan in the MER countries by generating
scenarios, obtaining data, and applying the method to analyze
balancing reserve requirements and generation capability in a
selected member country. The steps to process the information
from the region to use in GRAF-Plan is shown in Fig. 11.

All MER member countries provided scenarios for renew-
able generation for baseline, low, medium, and high pene-
trations of wind and solar generation. For future scenarios,
generation and load data were obtained from the site-specific
weather model provided by our weather partners.

1) Results for Balancing Reserve Requirement
Here, limited, normalized results are discussed; actual re-

sults cannot be published. Two scenarios for a Central Amer-
ican country are discussed.

• S0: S0 is the baseline case, with low penetration of re-
newables, for the near future. S0 for the selected country
has 1 MW of solar generation and about 300 MW wind
generation by the end of the study year (which was taken
as baseline scenario, E0).

• S1: S1 is a scenario with high penetration of renewables
a few years in the future. S1 for the study country will
have about 100 MW of solar generation and about 500
MW of wind generation.

Fig. 12 compares January LF balancing requirements in S0
and S1 with confidence interval 95%. Figs. 12a, 12b, and 12c
show maximum and minimum capacity, ramp rate per minute,
and ramp rate with respect to duration. Figs. 13 and 14 show
the same for RL and DA reserves.

These graphs yielded several observations:

• Moving from DA operation to intraday operation would
significantly reduce the reserve procurement.

• Higher penetration of renewables significantly affects
reserve capacity and ramp rate requirements for all three
services.
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Fig. 12: Load Following requirement for the example country for January of the study year with confidence interval 95%. Scenarios: baseline
(S0) and high renewable (S1). (a) Max/min capacity requirement (MW). (b) Ramp rate (MW/min). (c) Ramp rate (MW/min) vs. ramp duration
(min) requirement. Values in vertical axis are normalized by the peak native load of the system.
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Fig. 13: Regulation requirement for the example country for January of the study year with confidence interval 95%. Scenarios: baseline (S0)
and high renewable (S1). (a) Max/min capacity requirement (MW). (b) Ramp rate (MW/min). (c) Ramp rate (MW/min) vs. ramp duration
(min) requirement. Values in vertical axis are normalized by the peak native load of the system.
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Fig. 14: Day-ahead (RL + LF) requirement for the example country for January of the study year with confidence interval 95%. Scenarios:
baseline (S0) and high renewable (S1). Higher renewable penetration results in higher requirement. (a) Max/min capacity requirement (MW).
(b) Ramp rate (MW/min). (c) Ramp rate (MW/min) vs. ramp duration (min) requirement. Values in vertical axis are normalized by the peak
native load of the system.

• Reserve requirements vary significantly from hour to
hour. A fixed amount of reserve procurement would over-
or underestimate the requirements at different hours.

2) Results for Generator Fleet Capability Assessment
After the balancing reserve requirements were calculated,

we used typical generator scheduling as per the actual pro-
jected net load for the S0 case. Four types of shortages were
analyzed for different times of day. The example country has
many hydro units that can provide the steep ramping required
for ancillary services; no significant flexibility shortfall was
observed for any hours. For illustration purposes, it is assumed
that significantly less flexible generation capacity was avail-
able in this country by scaling down by an arbitrary factor. The
shortages resulting from reduced flexibility within confidence
ranges are summarized in box plots for different hours of
the day in Fig. 15. Not all hours have shortages. Another

important aspect of the generator fleet’s capability assessment
is that shortages do not always indicate resource inadequacy,
but rather indicate places power system operators and planners
should monitor. Shortages could mean that operators need to
take action, such as bringing additional flexible generation
online or modifying the set points of online generation.

To assess the distribution of the hour-wise exceeding are
estimated using Algorithm 4. Inputs to the algorithm are the
minute-wise upward and downward capability curves defined
in Section III-B and the cutoff percentile for extreme values of
p to remove values in percentiles below p

2 and above 100− p
2 .

V. CONCLUSION

This paper presents the inner workings of PNNL’s GRAF-
Plan tool for estimating balancing reserves and assessing
committed generator fleet capability. The tool’s adaptation for
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Fig. 15: Illustrative distribution of hour-wise shortages, assuming that the Central American country had significantly less flexible generation
available than in reality, during capacity adjustment period (tc) [above] and ramping period (tr) [below] with confidence interval of 95%
for the baseline (S0) case. Upward shortages are shown on the left side and downward shortages (not observed) are on the right.

the WECC 2030 ADS case and for a Central American country
are discussed. Reserves for future years with high renewable
penetration could be estimated for a BA with the method
outlined in the paper. The inputs are minute-wise load projec-
tion for a given future year, typical production from existing
and future sites of renewable generation, and forecast error
statistics. Typical production values for a month or season and
Monte Carlo runs would create autocorrelated forecast error
curves. Balancing needs are estimated and binned into daily
hour-wise values. For a generator fleet capability assessment,
the output of unit commitment is used to assess whether the
committed generators with the chosen set points would be
able to provide the required reserve in either direction. This
tool would be ideal for a system planner to study the effects
of planned penetration of renewable integration, assess the
feasibility of adopting a new technology, e.g., marine kinetic
energy, and assess the generator fleet’s flexibility to match
added reserve requirements.
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