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ABSTRACT This paper focuses on pricing Energy Storage as a Service (ESaaS) for Transmission conges-
tion relief (TCR). We consider a merchant storage facility that competes in an electricity market to trade
energy and ancillary services on a day-to-day basis. The facility also has the opportunity to provide a firm
TCR service to a regional network operator under a long-term contract. Providing the additional TCR service
would impose limitations on the facility’s ability to fully harvest daily market trade opportunities. Thus,
we model the opportunity costs associated with the TCR service and use it in a hybrid cost-value customized
pricing technique to determine the risk-constrained optimal price of ESaaS for TCR. Given the long-term
nature of the commitment to provide the TCR service, we use the Conditional Value at Risk (CVaR) metric
tomitigate the long-termfinancial risks faced by the facility. The proposed pricing strategy enables the storage
owner to estimate the additional financial gains and the associated risks that would likely result from adding
the new service to its operation. Numerical simulations are provided to support the proposed methodology.

INDEX TERMS Energy storage as a service (ESaaS), transmission congestion relief, storage as transmission
asset (SATA).

NOMENCLATURE
PARAMETERS
β Confidence interval for CVaR calculation.
η ESS’s round trip efficiency.
ω Weighted correction factor for risk profile.
πs Probability of occurrence of scenario s.
ρ Percentage of SOC to be held at the end of

optimization period.
Climit ESS’s cycling limit.
DRD
k Regulation down energy deployment in

scenario k .
DRU
k Regulation up energy deployment in scenario k .

Pmax ESS’s maximum power capacity.
PTCRchr Contracted power to be charged for TCR

service.
PTCRdis Contracted power to be discharged for TCR

service.
SOCmax ESS’s maximum state of charge.
SOCmin ESS’s minimum state of charge.
ξk Probability of occurrence of scenario k .

HEC Highest estimated cost of alternative solutions.
LEC Lowest estimated cost of alternative solutions.
VOM ESS’s variable operation and maintenance cost.

SETS
C Set of contracted hours for charging TCR service.
D Set of contracted hours for discharging TCR service.
J Set of quota curve steps indexed by j.
K Set of regulation deployment scenarios indexed by k .
S Set of opportunity cost scenarios indexed by s.
T ESS’s market operation time horizon indexed by t .

VARIABLES
γ Daily opportunity cost for providing TCR

service.
λEt Energy price at time t .
λNt (4

N
t ) Non-spinning reserve price as a function of

ESS’s offer at time t .
λRDt (4RD

t ) Regulation down price as a function of ESS’s
offer at time t .
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λRUt (4RU
t ) Regulation up price as a function of ESS’s

offer at time t .
λSt (4

S
t ) Spinning reserve price as a function of ESS’s

offer at time t .
λTCR ESS’s offer price for the TCR service.
µN
t,j Non-spinning price bid by competitor in step j

at time t .
µRD
t,j Regulation down price bid by competitor in

step j at time t .
µRU
t,j Regulation up price bid by competitor in step j

at time t .
µS
t,j Spinning reserve price bid by competitor in

step j at time t .
DN
t Non-spinning reserve energy deployment at

time t .
DS
t Spinning reserve energy deployment at

time t .
PEchrt Energy charged by the ESS from the energy

market at time t .
PEdist Energy discharged by the ESS to the energy

market at time t .
PNt ESS’s capacity committed to non-spinning

reserve at time t .
PRU/RDt ESS’s capacity committed to regulation

up/regulation down at time t .
PSt ESS’s capacity committed to spinning reserve

at time t .
SOCt ESS’s state of charge at the end of time t .
ε Threshold for VaR calculation.
ζ Probability of being contracted in TCR

auction.
Udis/chr
t Discharging/Charging status binary variable

at time t .
zs Auxiliary variable for CVaR linearization.

I. INTRODUCTION

APPLYING large-scale energy storage systems (ESSs)
in the electrical power sector is not a new concept [1].

The resurgence of energy storage for grid applications
is mainly owed to the exponential growth of variable
renewable electricity generation [2] and the move towards
100% renewable grids [3]. According to the latest data
from the US Department of Energy, as of early 2020,
more than 87% of existing energy storage projects in the
world are somehow directly linked to renewable energy
integration [4].

The same source also reveals that close to 99% of the
existing ESS projects are employed within the supply-side
of interconnected power grids to provide energy or ancillary
services [4]. Nevertheless, ESSs are also technically capa-
ble of supporting the transmission and distribution (T&D)
networks [5]. Eyer and Corey [6] argue that in certain
cases, a storage system with a relatively small capacity
could be used to provide enough incremental capacity to
defer the need for a large investment in T&D systems.

A good example of this is found in Texas Public Utility
Commission Docket 46368 [7], where American Electric
Power, a local utility company, requested to install battery
storage systems as a lower cost alternative to adding dis-
tribution capacity. In this request, the company argues that
using storage to relieve congestion would require 9.3% of
the investment needed to increase the line capacity. Further-
more, a single storage system asset has the technical capa-
bilities of providing both supply services and transmission
services [8].

When it comes to financial compensations for grid ser-
vices, system assets in restructured electricity markets are tra-
ditionally allowed to receive only one kind of compensation,
either through participating in the market (market-based)
or through a cost-recovery rate (rate-based) [9]. Typically,
supply-side resources are compensated throughmarket-based
mechanisms, whereas transmission and distribution assets
are paid for through regulated rate-based processes. Some
of the reasons behind the functional classification for power
systems assets are the possibility of redundant compensation,
the possibility of suppressing competitive prices in themarket
by allowing cost-recovery through rate-based compensation
and jeopardizing independence of the system operator by
controlling a resource that acts on the market and on the
transmission network [10]. However, it has been noted that
limiting the functions of storage facilities to one revenue
stream can make them inefficiently used, thus their full value
to the system can not be harvested [11].

Despite the long history of energy storage applications
in the electricity sector, policy and regulatory frameworks
for the seamless integration of ESSs into modern power
grids are still evolving. In particular, mandated by the
U.S. Federal Energy Regulatory Commission (FERC) Order
841 [12], some of the independent system operators (ISOs)
in the USA have a framework to enable energy storage
facilities to provide competitive energy and ancillary ser-
vices (e.g., Southwest Power Pool and PJM Interconnec-
tion [13]). The policies and regulations around storage as
a transmission asset (SATA) are also being explored by
grid operators. For instance, in PJM [14], ERCOT [15] and
MISO [16] discussions are taking place for allowing storage
as transmission-only asset (SATOA) and its concurrent mar-
ket participation is envisioned for the near future. However,
currently no system operator allows storage to concurrently
collect revenues from both streams. Nevertheless, there are
discussions taking place in the utility sector to design policy
and regulations to define how a storage facility can provide
and get compensated for both market-based and rate-based
services concurrently [10], [17]–[19].

There have been some proposals to overcome the func-
tional classification barrier. Taylor [20] presents the concept
of financial storage rights. In this proposal, the ISO dis-
patches the storage facility and financial storage rights would
be traded with market participants similar to financial trans-
mission rights. He [21] proposes an auction where the battery
owner sells the power capacity. The charge and discharge
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capacities of the battery are sold to third parties with different
purposes, allowing the storage facility to harvest revenue
from both market-based and rate-based streams. Sioshansi
in [9] proposes a mechanism to auction three energy stor-
age products, namely, power discharged, power charged, and
energy stored. He argues that under this mechanism, and
by separating the facility’s ownership from its operation,
it neither relies on the ISO dispatches nor disturbs market
price clearing process.

In this paper, we propose to apply the concept of Energy
Storage as a Service (ESaaS) for Transmission Congestion
Relief (TCR). ESaaS [22] has its roots in the Sharing Econ-
omy model [23] that has grown over the past decade in
service sectors [24]. The Sharing Economy model is built
on the principle of utilizing an idle capacity by someone
other than the owner for a fee. The sharing economy prin-
ciple has been applied for demand-side management [25]
and smart homes [26]. The potential advantage of ESaaS
for removing network overloads over building long-lasting
new infrastructure is that network operators could avoid
the risks of stranded assets when the future is highly
uncertain.

We assume that a regional transmission or distribution net-
work operator has conducted the required power flow studies,
expecting occasional and predictable congestion on trans-
mission/distribution corridors, and it has decided to remove
the congestion by soliciting third-party solutions. Technically
acceptable solution alternatives may include demand curtail-
ment services [27], a new merchant transmission corridor,
or energy storage systems [28]. We also assume that the
interested parties will compete in an auction to win the TCR
service contract. The storage facility is privately owned, and
its main source of revenue is selling energy and ancillary ser-
vices in a competitive market. However, it is also considering
to participate in the network operator’s auction and bid to
provide ESaaS for TCR. The facility is exposed to day-to-day
financial uncertainties of the energy and ancillary services
markets. Provision of a firm TCR service may lead to losing
some favorable trade opportunities in the market. We propose
a methodology that estimates and models the opportunity
costs associated with providing the TCR service.We also pro-
pose to use the opportunity costs model in a risk-constrained
hybrid cost-value customized technique to optimally price the
facility’s TCR service such that (i) it has a chance of getting
accepted in the auction, and (ii), if accepted, it is predictably
likely that the associated financial compensations not only
cover the aforementioned opportunity costs but also yield
additional profits.We use CVaR tomanage the risks of getting
accepted in the auction versus the profitability of the TCR
contract for the storage facility.

The significance of the proposed methodology is that it
provides storage operators, network operators and policy
makers insights into the financial costs, benefits and risks
associated with ESaaS for TCR.

The rest of the paper is structured as follows. Section II
presents the details on the proposed pricing procedure.

Section III shows the results from simulations with real mar-
ket data and section IV concludes the paper.

II. METHODOLOGY
In this paper, we consider a transmission (or could be a distri-
bution) corridor that is at the risk of future congestion either in
the normal or N-1 operation condition. This congestion may
occur on either power flow directions, depending on system
operation conditions [29]. Alternative solutions that could
remove the corridor’s congestion include building additional
transmission capacity, curtailing load and generation, or using
an ESS to provide or absorb energy. We focus on the latter
and assume the storage facility is located at one end of the
corridor and has the power and energy capacity that would be
needed to remove the transmission congestion.

FIGURE 1. Example of a line with bi-directional flow and
charging/discharging service according to ESS location.

An ESS could be used to relief congestion regardless of
the direction of the flow [30]. To clarify, let us use the line
depicted in Fig. 1 as an example. When power flows from
Bus a to Bus b and surpasses the line limit, the ESS could
remove this congestion by supplying energy at Bus b acting
as a bridge to that congested corridor. Thus, the ESS would
provide a discharge service, denoted by PTCRdis . Alternatively,
if the power flows from Bus b to Bus a and the corridor is
overloaded, the ESS could relive congestion by providing
a charging service, denoted by PTCRchr . We also assume the
congestion periods and volumes are specified by the network
operator and that they do not change over the life of the TCR
contract. For example, in a system with a large percentage
of distributed solar generation, the charging service may be
needed from 3 pm to 5 pm for 5 MW, and the discharging
service from 7 pm to 9 pm for 8 MW. Considering the
uncertainty in the time and volume of congestion as well as in
the daily/seasonal variations of transmission congestion, and
their associated impacts on the proposed approach is left for
future research. Nevertheless, this model could be run on dif-
ferent stages depending on the transmission commitment for
the day or season of the year in order to accurately calculate
the opportunity costs in accordance with each transmission
commitment.

If accepted by the network operator to provide this service,
the storage facility must charge or discharge the required
power for the required time period, specified by the TCR
contract. We assume that the TCR service is firm, and takes
priority over any other market operations, thus, during the
contracted hours the facility is not allowed to provide any
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other services. During the non-contracted hours, however, it is
allowed to participate in any energy and ancillary services
markets provided: (i) its operations in those markets does not
jeopardize its ability to deliver the TCR service as required,
and (ii) its charge and discharge operations are managed
such that the corridor’s flow is always below its maximum
allowed capacity. Any loss of revenue resulting from price
differentials during charging and discharging hours must be
born by the storage facility.

Providing the transmission service will likely result in
financial losses for the ESS from its market operation, simply
because the new service adds hard constraints to the ESS
market operations. Hence, the TCR service should be priced
in a way that it not only covers the lost revenues, but also
leads to additional profits. Since we assume the TCR service
contract to be long-term (e.g., one year), and the ESS would
be exposed to the volatility of the hourly energy and ancillary
services prices, there is market operation uncertainty that
must be mitigated. Furthermore, the ESS is not guaranteed to
win the contract in the auction and must compete with other
alternatives. Therefore, the ESS must bid into the auction
such that the expected profit from providing the TCR service
is balanced against the risk of losing the auction.

We propose a hybrid cost-value customized pricing tech-
nique [31] to find the optimal offer price for the storage facil-
ity’s TCR service when participating in the public auction.
This offered price is determined such that it maximizes the
total expected profit that the storage system could gain from
providing market and TCR services. In the following sec-
tions, the components of the proposed method are discussed
in detail.

A. OPPORTUNITY COSTS OF PROVIDING THE TCR
SERVICE
Let define a Expected Daily Constrained Profit as the maxi-
mum profit the ESS would earn in a given day from market
operations if the ESS were committed to provide the TCR
service. Further, let define the Expected Daily Benchmark
Profit as the maximum profit that the ESS would earn on
the same day from market operations when the ESS does
not provide the transmission service. The operation models
to optimize market participation of the ESS to maximize
those profits is not the focus of this paper; thus, any market
operation model available in the literature could be used
i.e. [32], [33]. Nevertheless, in this paper we use a price-taker
approach in the energy market and a price-maker approach
in the ancillary services markets as presented in [34]. This
is done to capture the impact that an ESS could have on the
prices of different products, given its size relative to that of the
market of each product. This combined modelling approach
allows for an accurate estimation of themarket profits without
adding unnecessary complexities. Also, in line with [34],
we use three uncertainty mitigation techniques depending on
the nature of the uncertain variable. More specifically, robust
optimization [35] is used for the energy prices and price
offers from competitors in the ancillary services markets,

since forecast with an uncertainty range are usually available
for these uncertain variables. An adaptive robust formula-
tion [36] is used for the contingency reserves, given their
rare deployment and binary behaviour. Also, a scenario-based
stochastic approach [37] is applied for the frequency regula-
tion deployment, since it has a continuous nature and it can
not be forecast.

To build the optimal market participation models to
calculate the constrained and benchmark profits, let us
define the set of decision variables 8 = {PEdist ,PEchrt ,

PRUt ,PRDt ,PSt ,P
N
t }, which defines the amount of power the

ESS bids to the energy market for discharging and charging,
regulation up, regulation down, spinning and non-spinning
reserves markets respectively for every hour t . Also let us
define the set of uncertain variables as 9 = {λEt , µ

RU
t,j ,

µRD
t,j , µ

S
t,j, µ

N
t,j,D

S
t ,D

N
t }, which represent the price for

energy, the price offers from other ancillary services suppliers
and the energy deployment from spinning and non-spinning
reserves. We also define the set of hours that the charge and
discharge services are needed as C and D, respectively, and
the amount of power needed for TCR for charging and dis-
charging as PTCRchr and PTCRdis . Unpredictable ancillary services
deployments add uncertainty to the ESS’s state of charge and
could hinder its ability to provide a firm TCR service. Thus,
we limit the ESS operation to only charging/discharging
energy during the contracted TCR service hours C and D,
and do not allow it to offer any ancillary services.

The optimal market participation model to calculate the
Expected Daily Constrained Profit (EDCP) can be formu-
lated as follows:

EDCP =

max
8={PEdist ,PEchrt ,PRUt ,PRDt ,PSt ,P

N
t }

min
9={λEt ,µ

RU
t,j ,µ

RD
t,j ,µ

S
t,j,µ

N
t,j,D

S
t ,D

N
t }

T∑
t=1

PEdist (λEt − VOM )− PEchrt (λEt + VOM )

+PRUt · λ
RU
t (4RU

t )+ PRDt · λ
RD
t (4RD

t )+ PSt · λ
S
t (4

S
t )

+PNt · λ
N
t (4

N
t )+ (λEt − VOM )

[ K∑
k=1

(
PRUt DRU

k ξk
)

+PSt D
S
t + P

N
t D

N
t
]
− (λEt + VOM )

K∑
k=1

PRDt DRD
k ξk (1)

subject to:

SOCt = SOCt−1 + η
(
PEchrt +

K∑
k=1

PRDt DRD
k ξk

)
− PEdist

−

K∑
k=1

PRUt DRU
k ξk − PSt D

S
t − P

N
t D

N
t ∀ t ∈ T (2)

SOCmin
≤ SOCt ≤ SOCmax

∀ t ∈ T (3)

SOCt−1−SOCmin
≥PEdist +P

RU
t +P

S
t +P

N
t ∀ t ∈T

(4)

SOCmax
− SOCt−1 ≥ PEchrt + PRDt ∀ t ∈ T (5)
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SOC24 ≥ ρ · SOCmax (6)

(
1
2
)

T∑
t=1

(
PEchrt + PEdist + PSt D

S
t + P

N
t D

N
t

+

K∑
k=1

PRUt DRU
k ξk + PRDt DRD

k ξk
)
≤ C limitSOCmax (7)

PEchrt + PRDt ≤ P
maxU chr

t ∀ t ∈ T (8)

PEdist + PSt + P
N
t + P

RU
t ≤ P

maxUdis
t ∀ t ∈ T (9)

U chr
t + U

dis
t ≤ 1 ∀ t ∈ T (10)

PEdist = PTCRdis ∀ t ∈ D (11)

PEchrt = PTCRchr ∀ t ∈ C (12)

PRUt , PRDt , PSt , P
N
t = 0 ∀ t ∈ C,D (13)

here, the max min formulation is used to capture the robust
nature of the uncertainty mitigation. The objective func-
tion (1) maximizes the profit that would be earned under the
worst-case realization of the uncertain variables, by deter-
mining the optimal power quantities that should be offered
for each service. Note that in this formulation the energy
price is considered independent of the actions of the storage
facility. However, for the ancillary services, the prices are a
function of the offered quantity by the ESS and the predicted
price offers from competitors i.e., 4(·)

t = {P
(·)
t , µ

(·)
t,j}. It is

assumed that the ESS will offer with a price of zero to be
certainly cleared in the market. However, the offered quanti-
ties change the supply curves of the markets; thus, the ESS
is a price-maker on the ancillary services markets [34]. Also
note that the energy deployment in the regulation markets
is modelled with a stochastic approach while the deploy-
ment from spinning and non-spinning reserves use a robust
approach. In this formulation the frequency regulation service
is divided into regulation up and down to provide clarity on
the formulation. However, this may vary depending on the
rules of the local market. Constraint (2) computes the state
of charge of the ESS at the end of every hour t . Round trip
efficiency is used to account for internal losses, which only
affect the energy component of an ESS but not its power
component. (3) limits the expected state of charge of the ESS
between its lower and upper ratings in every hour. (4) states
that the sum of services offered in any hour can not be greater
than the expected energy on storage at the end of the previ-
ous hour. Likewise, (5) limits the quantity of the charging
services to the expected available storage capacity. (6) is
used to replenish the stored energy to some percentage of
the maximum energy capacity of the ESS at the end of every
operation day. (7) is added to establish the limit on the number
of daily cycles. (8) and (9) make sure the power rating of the
ESS is not violated and (10) defines the status of the ESS to
charging or discharging, but not both at any given hour. (11)
and (12) force the ESS to discharge and charge respectively
during the corresponding contracted hours. The equations
in (13) make sure that no ancillary services are offered during
the TCR service contract hours. Note that equations (11)
to (13) are equality constraints; this is set with the purpose

of exactly providing the contracted energy and also to find
the most restrictive schedule that could affect profits from
the market. The model in (1) to (13) yields an operation
schedule that maximizes the market profits of the storage
during non-contracted hours while providing the TCR service
requirements during the contracted hours. For this model to
be solvable by commercial solvers some modifications are
needed, such as, a linearization on the ancillary services price
calculations and also to use the duality theorem on the inner
minimization, to convert the max min formulation to a max
max formulation. Given space limitations no further details
are provided; the interested reader can refer to [34] for further
details.

An optimization model to determine the Expected Daily
Benchmark Profit (EDBP) can be built by removing the trans-
mission commitment constraints from the Expected Daily
Constrained Profit model in (1) to (13) as follows.

EDBP = max
9

min
8

(1)

subject to: (2) to (10)

The difference between the Expected Daily Benchmark Profit
and the Expected Daily Constrained Profit is considered as
the daily opportunity cost, i.e.,

γ = EDBP− EDCP (14)

which, is further referred to as γ . Observe that the daily
opportunity cost γ depends on market conditions and price
volatility of the particular operation day. These conditions
change from one day to another, γ is thus a stochastic vari-
able. In this paper, we find the values of γ for a large number
of daily market operation conditions scenarios, and identify
its associated empirical probability density function (PDF) by
p(γ ) [38]. p(γ ) will be used later for market uncertainty and
risk mitigation.

B. PROBABILITY OF WINING A TCR SERVICE CONTRACT
In pricing theory [31], adding a value component to the cost of
a service is a way of reflecting how much the service is worth
to the client, or how much the client is willing to pay for it.
This value component is independent of the cost of producing
the service. For this paper, the client is the network operator,
and its willingness to pay for a TCR service can be estimated
based on the costs of other technically acceptable alterna-
tive solutions to relive congestion. Examples of alternative
solutions include adding more capacity to the existing line,
building a new line, or offering a demand response compen-
sation program. We assume the costs of alternative solutions
would fall in a range bound by the Lowest Estimated Cost of
alternative solutions (LEC) and the Highest Estimated Cost
of alternative solutions (HEC). Like any competitive entity
offering an alternative, the storage operator would use all the
information available at the time to estimate the values of
LEC and HEC. To keep consistency with the proposed oppor-
tunity cost calculations, these estimations should represent
the daily cost of employing the alternative solutions by the
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FIGURE 2. Probability distribution of being awarded a
transmission contract, bounded by LEC and HEC. Showing that
for a given assigned price λ̂TCR, there is a corresponding
probability ζ̂ of obtaining the contract.

network operator to relieve transmission congestion. Chal-
lenges and methods for finding the values of LEC and HEC
are not the focus of this paper. The LEC to HEC range can
be used to build the probability distribution of being awarded
the contract to provide the transmission service. Fig. 2, shows
a graphical representation of the probability distribution of
being awarded the TCR contract. This distribution is usually
used in similar pricing studies [31]; however, other distri-
butions can be used if further knowledge on the contracting
decision is available. The choice of this distribution and the
representation of its uncertainty is not the focus of this paper.
Fig. 2 shows that if the ESS’s offered price is set at just below
the LEC, it would most likely win the auction. On the other
hand, if the offer price is set at the HEC or above it, it is
unlikely that the ESS wins the auction.

C. EXPECTED PROFIT CONTRIBUTION OF THE TCR
SERVICE
Assume that the ESS’s offer price is set at λTCR. The opportu-
nity cost of providing this service for a given day is described
by γ . This service also adds λTCR to the daily revenues of the
ESS operation. Thus, the expected profit contribution (EPC)
of the TCR service to the daily ESS operation can be repre-
sented as follows:

EPC(λTCR) = ζ (λTCR)× (λTCR − γ ) (15)

where, ζ (λTCR) is described by the distribution shown
in Fig. 2, λTCR represents the value of the TCR service and γ
integrates the opportunity cost associated with the service in
the expected profit in a given day.

The EPC function yields a concave quadratic function,
where the EPC becomes negative when the offer price is set
bellow the opportunity cost of the service, i.e. λTCR < γ .
The EPC becomes 0 when the price is set at the higher
estimated cost for alternative solutions, i.e. λTCR ≥ HEC.
This would mean that the ESS’s offer price for the TCR
service is set too high and its offer is not accepted in the
auction. Winning the TCR service is only profitable if the
ESS’s accepted offer price is set somewhere between these
two limits, i.e. γ < λTCR < HEC. The objective of the ESS
operator would be to determine the optimal value of λTCR that
would maximize the EPC(λTCR) in (15). This is the focus of
this paper and is explained next.

D. OPTIMIZING THE OFFER PRICE UNDER
UNCERTAINTY
The value of EPC in (15) highly depends on both λTCR and γ .
γ is an uncertain variable while λTCR is the decision variable.
When the TCR contract is won, the value of λTCR is fixed
for the life of the contract. The daily opportunity cost γ ,
on the other hand, will vary from one day to another depend-
ing on daily market conditions. A common, well-established
risk measure that is widely used for practical applications
in finance is the Conditional Value at Risk metric [39].
A risk-constrained formulation based on CVaR is proposed
here for optimizing the value of λTCR considering the uncer-
tainties in γ against the risk of losing the auction, which is
reflected by ζ (λTCR).

CVaR is defined as the expected loss exceeding an upper
percentile i.e. value at risk (VaR) of a loss function [40]. Let
us define the loss function as f (λTCR, γ ) = γ − λTCR, where
λTCR is the decision variable bounded by LEC and HEC and
γ is the uncertain variable. For each possible value of λTCR,
the loss function is a random variable with a PDF induced by
p(γ ) [40].

In line with [40], the mathematical definitions of VaR and
CVaR can be characterized and discretized into the following
risk function.

Fβ (λTCR, ε) = ε + (1− β)−1
∑
s∈S

πs[f (λTCR, γs)− ε]+

(16)

where, β is the confidence interval established by the decision
maker and ε sets the threshold for the value at risk calculation.
S is the set of opportunity cost scenarios used to discretize
the integration of the loss function, and πs is the probabil-
ity of occurrence for scenario s, which follows the same
probability distribution as p(γ ). Minimizing the risk func-
tion Fβ (λTCR, ε) is equivalent to minimizing CVaRβ (λTCR),
while obtaining a near optimal value for VaRβ (λTCR) [40].
Equation (16) introduces a non-linearity to the problem
with the term [f (λTCR, γs) − ε]+, which is equivalent to
max{f (λTCR, γs) − ε, 0}. This non-linearity can be avoided
by introducing the set of non-negative auxiliary variables z
and adding the following constraint [40].

zs ≥ f (λTCR, γs)− ε ∀ s ∈ S (17)

Using this methodology, the problem of setting the TCR
service offer price to maximize its associated expected profit
while minimizing the risk, can be formulated as follows:

max
λTCR,ε

(1− ω)
(
ζ (λTCR)× (λTCR −

∑
s∈S

πsγs)
)

−ω
(
ε + (1− β)−1

∑
s∈S

πszs
)

(18)

subject to: zs ≥ (γs − λTCR)− ε ∀ s ∈ S (19)

zs ≥ 0 ∀ s ∈ S (20)

where, the first term of (18) maximizes the EPC of the TCR
service. Note that this first term is the stochastic version
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of (15), where uncertainty on the opportunity cost is con-
sidered. The second term of (18) minimizes the linearized
version of the risk function (16). ω is the weighted correction
factor to balance between expected profit and risk allowance.
The value of ω varies from 0 to 1 and is set by the decision
maker. Assigning a value of 0 to ω would mean that the
decision maker pretends to maximize the expected profit
regardless of the risk; on the other hand, setting ω to 1 would
mean that the decision maker is not willing to take any
risk, ignoring the possible increase in profit. Constraint (19)
is added to linearize the constraints of this problem and
non-negativity is enforced on the auxiliary variables in (20).
In this formulation, when adopting a low risk profile, the price
for the transmission service will tend to be high, and it will
decrease as more risk is allowed to be taken.

Solving the optimization problem (18)-(20) will provide
the storage owner with a bid value to participate in the TCR
service auction that balances the risks of not wining the
contract and expected market opportunity costs against the
additional profit from providing the transmission service.

III. NUMERICAL RESULTS
We consider a 10 MW, 20 MWh Lithium-ion battery storage
facility with round trip efficiency of 85% that participates
in energy and ancillary services markets. For these simu-
lations, the daily market operation decision variables are
the hourly commitments for energy, frequency regulation,
spinning and non-spinning reserves. A cycle limit of one
per day is enforced and the state of charge of the ESS most
be replenished to at least half of its capacity at the end of
the optimization period of 24 hours. Uncertainty is consid-
ered in future energy prices, offers by competitors and in
energy deployment from ancillary services. Please note that
the choice of different market products, market segments,
operation policies and uncertainty considerations does not
impact our methodology.

To determine p(γ ), we run the benchmark and constrained
market models for each individual day of five representative
years on historical data from the Alberta electricity market.
The simulations provide 1,825 daily schedules that represent
a wide range of operation conditions. The opportunity cost of
each day is used to construct the cumulative distribution of
the opportunity cost, p(γ ). For the TCR service, the battery is
assumed to be committed to charge 5 MW from hour ending
15 to hour ending 17 and discharge 4 MW from hour ending
19 to hour ending 21 every day. The lowest estimated cost
and highest estimated cost of alternative solutions are set
to $5,500/day and $8,000/day respectively. To estimate this
range, it is assumed that the low-cost alternative solution is a
demand response program priced based on the value of lost
load [41]. And that the high-cost alternative is the addition
of transmission capacity, priced based on previous projects
in the area, in this case information from the Alberta Elec-
tric System Operator is used [42]. For the risk formulation,
a confidence level β of 95% is chosen. Simulations were
run in pyomo [43] using gurobi [44] as an optimizer on an

i5 intel processor with 8G of RAM taking 1.7 hours to run all
1,825 EDBP and EDCP daily calculations. This translates to
an average of 1.6 seconds per daily profit calculation.

FIGURE 3. Battery Schedule for a typical day in (a) Market only
operation and (b) Transmission constrained operation with
(c) Price profile for the energy market.

Figure 3, presents an example of a daily schedule of market
participation. Fig. 3 (a), shows the schedule for a typical day
of operation using the Daily Benchmark Profit calculation
model (1)-(10), and Fig. 3 (b), shows the schedule in the
market for the same day for the Daily Constrained Profit
calculation model (1)-(13), where the storage provides trans-
mission services. Fig. 3 (c), shows the price forecast for the
energy market on the same day. By comparing Fig. 3 (a), and
Fig. 3 (b), it can be seen how the market participation of the
ESS is affected by the commitment to supply energy for TCR.
Specifically, in the benchmark schedule (3(a)) during hours
10 to 12 the ESS is charging in preparation for the price spike
predicted for hour 16, where it discharges. However, in the
constrained schedule an opposite behaviour can be observed,
since the ESS is committed to discharging services during
hours 10 to 12 in preparation to its TCR service commitment
of charging during hours 15 to 17 as stated in constraint (12).
By doing so, the ESS misses the opportunity to profit from
the highest energy price on hour 16; instead, it is forced
to charge for transmission purposes at a high energy price
hour. From the comparisons on the schedules, it can be seen
that the transmission constrained schedule does not follow
an intuitive price signal to increase profit, alternatively it
prepares to provide the transmission services, regardless of
market profit loss. On this sample day, the market profit is
40% lower for the transmission-constrained model than that
of the benchmark model.

For the 1,825 simulated days, p(γ ), shown in Fig. 4,
presents a very skewed distribution where 80% of the daily
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FIGURE 4. Empirical PDF and CDF of the daily opportunity cost.

opportunity cost occurrences are below $3,095/day, and the
remaining 20% is spread out from $3,095/day up to a max-
imum opportunity cost of $64,858/day, with a median of
$1,681/day. The average opportunity cost is of $3,700/day.

FIGURE 5. Optimal price for transmission services, CVaR metric
and probability of contract for different levels of risk.

Figure 5, shows the optimal offer price for the TCR service,
the probability of being contracted, and the CVaR at different
risk levels. If a risk prone profile is adopted, i.e. ω = 0,
the offer price is only defined by the EPC function, i.e., (15);
thus, the price is set at $5,850, with a probability of being
contracted of 86%; however, using this price, the CVaR
is of $59,008, meaning that there is a 5% probability that
the expected daily profit loss could be as high as $59,008.
By slightly increasing ω from 0 to 0.1, the bid price goes up
by $139, which reduces the probability of being contracted
by 5.6%. However, the reduction in the financial risk is
significantly higher than the reduction in probability of being
contracted, reducing the CVaR by 49% down to $30,209.

As less risk is tolerated and the value of ω is increased,
the offer price for the TCR service is increased and the
probability of being contracted decreases and so does the
CVaR. Note that the probability of being contracted decreases
at a higher rate than the CVaR, until it reaches a point where
in order to obtain a lower risk metric, the price needs to be
higher than the higher estimated cost of alternative solutions,
which results in not being awarded the contract to provide

the service. In Fig. 5, this happens when ω is set higher than
0.6. Note that if a risk averse profile is adopted, i.e. ω = 1,
the optimal offer price for the service is set at the highest
observed opportunity cost, and both the probability of being
contracted and the risk decrease to zero.

Let us discuss some ad-hoc pricing strategies for the trans-
mission service by the storage owner. One approach is to
set the TCR service price at the highest estimated cost of
alternative solutions, i.e., at HEC. Since this is a high price
for the service, this strategy has little to no chance of getting
accepted in the auction. On the other hand, the storage owner
may set its offer price at the lowest estimated cost of alterna-
tive solutions, i.e., at LEC. As opposed to the previous one,
this strategy has a very high chance of success. Alternatively,
the price for the transmission service could be arbitrarily
set at the average or median of historically observed daily
opportunity costs. For the simulated data, these values are
$3,700/day and $1,681/day, respectively. Considering these
ad-hoc offer prices, and assuming the ESS wins the auction at
the offered price, we calculate the annual net profit gain/loss
from providing the service yielded by each of these strategies.
We compare those profit changes to that associated with the
price suggested by the proposed model. From Fig. 5, with a
confidence level of β = 0.95 for the CVaR, and a risk profile
of 0.1, i.e ω = 0.1, the suggested price point by our model is
λTCR = $5,989/day.

We use data from two individual out-of-sample years from
Alberta’s market for the comparisons. The two out-of-sample
years are selected to represent both the high and low sides of
the opportunity cost distributions.More specifically, the aver-
age (median) daily opportunity costs for the two sample years
are $3,580/day ($913/day) and $5,462/day ($1,476/day).

FIGURE 6. Comparison of the effects of different pricing
strategies on profit as a percentage of the benchmark profit for
two sample years and the summation of the sample years.

The results are presented in Fig. 6; as expected, setting
the offer price of the TCR service very high, i.e., at λTCR =
HEC = $8,000/day would result in high incremental profits
in both years, up to 84% (blue bar). However, one can only
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wish for this offer to be accepted and in case any alternative
solution is priced lower than this, the contract will not be
obtained. Setting the price at λTCR = LEC = $5,500/day
results in mixed outcomes from year to year (orange bar),
leading to a net profit in one year and to break even in another.
Setting the price at the average historically observed oppor-
tunity cost, i.e., λTCR = $3,700/day would result in similar
mixed outcomes depending on the year (yellow bar). Even
though this strategy has a very high chance of success in the
auction, the outcomes are inconsistent. Setting the price at the
median observed opportunity cost, i.e., λTCR = $1,681/day
would result in consistent losses in both years (purple bar);
this is simply because this is a very low price to ask for
a service that occasionally leads to very high opportunity
costs. However, the net profit increment is positive for both
years if the price suggested by the proposed model is used,
i.e., λTCR = $5,989/day, shown by the green bar. The key
difference between this and the risky strategy of setting the
price at HEC is that the proposed price has a 80% chance of
actually being accepted in the auction.

Considering both years together, the strategy of setting the
price at LEC shows a total profit increase of 24%, while using
the average or the median show a net loss over the two sample
years. The proposed model outperforms the other alternatives
by obtaining a profit increase of 36% over the 2-year period.

IV. CONCLUSION
ESaaS is built on the principles of Sharing Economy where
the idle capacity of a merchant ESS is used by others for a
fee. In this paper, a risk-based, hybrid cost-value optimization
technique to optimally price ESaaS for removing predictable
overloads on a transmission corridor is proposed. The ESS
owner has to compete with other solution providers for a TCR
contract; thus, it should price its service considering the daily
opportunity costs of providing this service as well as the price
of other technically feasible solutions. The opportunity cost
component of the pricing technique is obtained as the differ-
ence between the maximum possible profit in the market and
the profit that can be obtained in themarket with the operation
schedule limited by the transmission commitment. The value
component is obtained through an estimation of the lower and
higher costs of alternative solutions to the transmission con-
gestion problem. With that estimation, a probability distribu-
tion for the chance of winning the contract to provide the TCR
service is computed. We employ CVaR metric to mitigate the
risks of pricing ESaaS high and losing the contract, versus
pricing it low and securing the contract but the TCR fees not
turning an overall profit.

The simulation results show that the proposed procedure
is able to provide insights into the financial gains and the
associated risks of offering TCR as an ESaaS by a merchant
ESS. In particular, depending on the price at which the service
is compensated, extending the storage system’s operation
to provide both market-based and rate-based services could
improve the ESS’ business case. However, the extent of addi-
tional profit that the storage system can gain by providing

transmission services depends on the prices of alternative
solutions available to the network operator. If the ESS com-
petes against low-cost solutions, it must bid its service at
lower prices in order to win the contract. In that case, the stor-
age facility runs the risks of occasional high opportunity costs
against the additional profit from a firm TCR service.
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