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ABSTRACT Microgrids (MGs), as novel paradigms of active Distribution Networks, have been gaining
increasing interest by the research community in the last 20 years. Currently, they are considered as key
components in power system decentralization, providing viable solutions for rural electrification, enhancing
resilience and supporting local energy communities. Their main characteristic is the coordinated control of
the interconnected distributed energy resources (DER), which can be realized by various methods, ranging
from decentralized communication-free approaches to centralized ones, where decisions are taken at a central
point. This paper provides an overview of this development focusing on the technical control solutions
proposed by reseachers for the various levels of MG organization hierarchy. A critical assessment of selected,
popular technologies is provided and open research questions regarding the trend tomore decentralized power
systems are discussed.

INDEX TERMS Microgrids, decentralization, hierarchical systems, primary control, secondary control,
tertiary control, distributed control, decentralized control.

I. INTRODUCTION

M ICROGRIDS, were first introduced in the 2001 IEEE
PES WM Panel led by Bob Lasseter [1], followed by

his conference paper [2] and the CERTS report [3] in 2002.
The basic idea was further developed in two consecutive
European projects, called ‘‘Microgrids’’ and ‘‘More Micro-
grids’’ [4]. The first project dealt with challenges, concepts
and laboratory tests, while the second developed seven pilot
installations, including the first application of distributed
techniques in a MG in the island of Kythnos [4]. At the
same time, several research projects and pilot MG installa-
tions have been developed in Japan, USA and Canada fol-
lowed at an increasing rate in China, Korea, Latin America,
and elsewhere [5]. Moreover, MGs have been considered as
viable solutions for rural electrification in areas developing
countries with weak transmission infrastructures.

These extensive activities have largely proven the many
technical, economic, social and environmental advantages
associated with MGs, and have been studied by all involved
stakeholders. Advantages include increased energy effi-
ciency, minimization of overall energy consumption, reduced
environmental impacts and improvement of energy system
reliability and power quality due to the ability to switch

seamlessly to islanded operation. From a network point of
view, benefits include reduced losses, support in congestion
management, voltage problems and flexibility in planning by
allowing cost efficient infrastructure replacement strategies,
etc. [6]. Lately, MGs have gained increasing importance by
their potential role in enhancing power system resilience
against natural disasters [7], [8] and also as technical infras-
tructures to support Local Energy Communities.

In the context of Smartgrids, MGs are widely seen as one
of the best ways to unlock themultiple DER benefits and have
therefore been characterized as the building blocks of Smart-
grids [9], [10]. Not surprisingly, MGs have attracted huge
interest from the academic and research community, dealing
with power systems, power electronics and control, although
not always from the same point of view, same emphasis
and using fully aligned terminology. International scientific
organizations have published relevant papers [11], [12] and
reports, like IEEE and CIGRE [13], dedicated standards have
been developed by IEEE [14], [15] and MGs have been the
subject of several international conferences, workshops, and
symposia series, e.g. [16].

In the IEEE standard 2030.7 a MG is defined as ‘‘a group
of interconnected loads and distributed energy resources with
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clearly defined electrical boundaries that acts as a single
controllable entity with respect to the grid and can con-
nect and disconnect from the grid to enable it to operate
in both grid-connected or island modes.’’ [14]. Similarly,
CIGRE defines MGs as ‘‘sections of electricity distribution
systems containing loads and DER, (such as DGs, storage
devices, or controllable loads) that can be operated in a
controlled, coordinated way, either while connected to the
main power network and/or while islanded’’ [13]. In both
definitions, the two distinct features that distinguish MGs
from any distribution lines with DER, are their capabilities to:
i) operate islanded, thus achieving increased reliability and
resilience, ii) appear to the upstream network as controlled,
coordinated units.

These characteristics open opportunities for the integration
of MGs in the power system, but also pose significant techni-
cal challenges to their operation and control, especially dur-
ing the islanded mode of operation. Thus, the transfer from
interconnected to islanded operation might face relatively
large imbalances between generation and load that have to
be managed seamlessly by efficient demand participation and
use of new technologies. Power electronics (PEL) interfacing
the interconnected DER allow the application of versatile
solutions, e.g. they allow to relax the strict boundaries of volt-
age and frequency imposed mainly by the stability of directly
coupled rotating electrical machines. This makes the opera-
tion of DC and hybrid AC/DC solutions viable alternatives
for MGs. Nevertheless, the dominant presence of PEL signif-
icantly increases control complexities. The absence of inertia
and the relatively short lines of MGs infrastructures increase
considerably the difficulties of frequency and voltage con-
trol. The particular distribution network characteristics, e.g.
relatively large resistance to reactance ratios, lead to strong
coupling between active and reactive power with important
control and market implications, especially for voltage. Fur-
thermore, the limited contributions of PEL interfaced DER to
faults causes protection and safety challenges that need to be
overcome by innovative solutions. It should also be noted that
MGs, as distributed structures covering limited geographical
areas within distribution networks lack the computing and
communication facilities available in typical power systems,
e.g. they cannot afford dedicated control rooms, system oper-
ators, etc. Thus the applied solutions need to be cheap, besides
efficient.

The first control methods applied to MGs have imitated
the traditional techniques applied for primary and secondary
control of large power systems. For example, the philosophy
of the classic droop techniques used by the synchronous
machines governors and AVRs have been emulated in the
PEL interfacing DER [4], [6], [17]–[23]. The centralized
philosophy of generation scheduling has been also adopted
for the economic operation of theMG [22]–[24]. The specific
characteristics of MGs however and the versatility provided
by the embedded PEL have opened ways for the application
of novel ideas and more sophisticated control methods and
techniques. The aim of this paper is to sketch the evolution

FIGURE 1. Classification of control architectures.

of research in MGs control, focusing on recent advanced
and popular methods. Although several papers and books
have provided excellent reviews of specific MGs aspects
[25]–[29], the authors believe that this paper is different,
because it embraces all levels of the MGs hierarchy. It starts
from primary control and covers up to the MGs’ interac-
tion with the outside world, i.e. neighboring MGs and the
upstream distribution network. Moreover, it provides a criti-
cal assessment of the variousmethods, categorizes the various
applications according to the basic levels of hierarchy, identi-
fies trends and draws conclusions regarding future research in
MGs. It should be noted that it is impossible to cover the vast
20 years literature onMGs in a single paper. The authors have
tried their best to include some of the most relevant references
and apologize in advance, for not including several important
works due to space limitations.

The paper is structured as follows: A definition of the
classical hierarchical levels in the context of MGs is provided
together with key applications followed by a more detailed
description of selected distributed and decentralization tech-
nologies. The effects of decentralization on the hierarchical
consideration of MGs is discussed leading to general conclu-
sions and directions for further research.

II. FUNCTIONAL MULTI-LAYER STRUCTURE
OF POWER SYSTEMS
The diversity of equipment and complex relations among
multiple subsystems characterizing power systems implies
multi-layer approaches for their control.While it is difficult to
provide a precise definition of multi-layer hierarchical struc-
tures, every hierarchy is characterized by a set of common
properties, namely: i) vertical arrangement of subsystems,
ii) priority of action of the higher level subsystems and
iii) dependence of the higher level subsystems upon actual
performance of the lower levels [30]. Priority of actions is ori-
ented in a top down, command fashion, although the effective
usage of the multi-layer structure requires that decision units
have a certain freedom of action, so that functioning on any
level is, as independent as possible. Decoupling enables the
more efficient and detailed study of systems behavior, while
the level of abstraction provided by each level simplifies
mathematical formalization. Description of the higher levels
of hierarchy becomes broader and refers to larger subsystems
and longer reaction times. Decision problems at the higher
levels are normally considered as more complex, since they
need to take into consideration the slower aspects of the
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overall systems behavior. The concept of layers is referred
to the vertical decomposition of a decision problem into
sub-problems. The different architectures proposed for tack-
ling these sub-problems can be classified in groups, which
mainly differ in i) the complexity of the model considered
for describing the dynamics control of the system and ii) the
necessary degree of communication among controllers of
different operating units or different layers of the control
system hierarchy (Fig. 1).

In the context of large power systems, three control archi-
tectures have been developed, the centralized, the decen-
tralized and the distributed topology. The main feature of
the decentralized architecture is that the control system is
composed of several individual controllers, which do not
share any information, independently of whether or not the
selection of the controlled variables takes into account the
interactions within the system [11], [31]. Recent interest
triggered by advances in technology and telecommunications
has focused research attention into distributed control struc-
tures. In this architecture, it is assumed that some infor-
mation is shared among controllers, so that each of them
has some knowledge about the behavior of the others, thus
raising the overall performance. However, there is always a
trade-off between communication burden and performance.
Centralized architecture consists of a single controller which
manages and communicates with all the other components
control decisions based on knowledge of all control inputs
optimized in a single optimization problem. Comparison of
the aforementioned control architectures in terms of various

TABLE 1. Comparison of centralized, distributed and
decentralized control methods.

criteria is presented in Table 1. An overall architecture of
these approaches is illustrated in Fig. 2. In the following,
the hierarchical control structures are described in the context
of MGs control.

A. HIERARCHICAL CONTROL OF MICROGRIDS
The MGs hierarchy follows the architecture of conventional
power systems comprising three main layers that corre-
spond to their main control functionalities, namely primary
(field level), secondary (microgrid level), and tertiary (grid
level). In the literature, many control methods have been
proposed, while hierarchy is extensively discussed [2], [6],
[11], [25], [32]. There is no general agreement however on
the boundaries of the control functions, as further discussed
in Section IV. In general, the different layers are separated
according to their control functionalities and their time inter-
vals, in a hierarchical dependence, as depicted in Fig. 3.

Before proceeding with the different levels of control hier-
archy we would like to comment on the significant research
that has taken place in the domain of DER control. This
is referred to by some authors as level 0 [22]. DER units
in MGs can be controlled either in grid forming or grid-
feeding mode. In the grid-forming mode, the PWM reference
signal is shaped according to the desired voltage magnitude
and frequency. In grid-feeding mode, a current control loop
is implemented in order to maintain the desired levels of
active and reactive power injected or absorbed to/by the grid.
In MGs, inverters controls (inner voltage, current, PLL, etc.)
are amajor concern for small-perturbation stability of the sys-
tem, since their tuning is challenging issue in practice. Several
stability issues arisen by due to PEL controls interfacing
DER and their interactions with the grid or neighboring DER
are reported in [33]. However, this paper does not address
this basic PEL control level and the instabilities caused by
incorrect control settings, since these are general concerns of
modern PEL dominated networks, but are considered out of
the scope of this paper.

B. PRIMARY CONTROL
Primary control operates at the fastest timescale. It maintains
voltage and frequency stability of the MG and ensures proper
power sharing among DER. Technical realization of the
respective task is usually ensured by decentralized droop con-
trollers providing several advantages in terms of plug and play
capabilities [6]. Classical droop approaches however, suffer
from poor transient performance, inability to provide accurate
power sharing, unsuitability to serve non-linear loads and
dependence on the X/R ratio of distribution lines [22].
The poor transient performance is due to the dominance

of PEL interfaced generation in the system, which results
in reduction of rotating machines inertia. Several techniques
have been proposed for the emulation of inertia by PEL
interfaced units to overcome this issue. In their simplest form,
they use the rate of change of frequency, rather than the
frequency deviation, to alter the power of the PEL interfaced
units at the beginning of the transient. Thus, they achieve
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FIGURE 2. Various architectures of secondary control: from the left the centralized, the distributed and the decentralized architecture.

better frequency regulation compared to droop controls [34].
A lot of work has been done to overcome these limitations,
several approaches have been proposed and extensive reviews
have been published toward this direction [27], [35]–[40].
The pros and cons of the different active and reactive power
sharing methods are presented in [27]. In [40], advanced
droop controllers aiming to overcome conventional droop
problems are presented. References [35], [36], [39] classify
the power sharing methods based on their communication
requirements as communication-based and communication-
free techniques. In [37] several control techniques employed
in MG are presented focussing on their different operational
modes. In [38] the advantages and disadvantages of MG
control solutions are summarized.

Typical communication-based primary control methods
include master-slave control, concentrated control, current
sharing control and distributed control. These schemes have a
central processing unit and an information distribution block
for computing and distributing shared information among the
PEL converters. Although these schemes are proven to have
fast dynamic response and good current sharing capabilities,
they require a relatively high bandwidth communication link.
It should be noted that communication delays can affect
critically the overall stability of the MG in communication
based primary control schemes, as discussed in [41]–[43].
A low-bandwidth communication based method immune to
communication delays is presented in [44]. An adaptive volt-
age droop control is used to compensate for the effect of
voltage drop across the line impedance.

Communication-free methods are based only on local mea-
surements to control the DER. The most prominent approach
includes the virtual output impedancemethod, where an outer
cascaded loop is added to adjust the output impedance of
the inverter to achieve accurate active and reactive power
sharing [45]. Another approach is the adaptive droop control
method, where the static droop characteristics are combined
with an adaptive transient droop function to attain adjusted
dynamic performance [46]. A robust droop controller able
to achieve accurate load sharing, under components uncer-
tainties and noise disturbances has been applied in [47].
A synchronized error compensation method for accurate
active and reactive power sharing without central syn-
chronization signal has been proposed in [48]. In [49]

a voltage-based frequency controller has been proposed. The
load-frequency dependence of isolated MGs is utilized so as
to regulate the system frequency.

C. SECONDARY CONTROL
Secondary control is responsible for the mitigation of volt-
age and frequency deviations introduced by primary control.
It can also facilitate the synchronization with the upstream
network and perform optimal economic management. This
control layer acts on a slower time scale and its com-
puted control outputs are provided to the primary control
level. Conventional MG voltage and frequency restoration
is usually implemented by a centralized proportional-plus-
integral (PI) controller. This centralized control design may
perform well under certain operating conditions achieving
optimal solutions [22], it suffers however from single point
failures, poor scalability and flexibility.

Distributed and decentralized approaches have been pro-
posed in [26], [50]–[55] for coordinating the units without
the need of a central entity. In these approaches, the DER
controllers utilize only local information or estimations about
their neighboring units to restore voltage and frequency.
In [50] a two-layer, multiobjective control framework that
regulates both voltage and frequency, by controlling grid
forming inverters and active/reactive powers fed to the grid
is introduced for islanded MGs. In [51], a multi agent system
(MAS) is proposed for the distributed control of MG oper-
ation and its participation in the energy market. Distributed
secondary control based on the communication infrastructure
of each local DER controller to compute the average values of
the control signals is implemented in [52]. A linear-quadratic-
regulator (LQR) controller with augmented integral struc-
ture to eliminate the steady-state error has been proposed
for frequency regulation and accurate active power sharing
in [26]. A droop-free distributed method has been proposed
in [53] replacing the centralized secondary control and the
primary level droop mechanism of each inverter. A washout
filter-based power sharing method is presented in [54], that
eliminates the impact of communication links and additional
control loops in secondary controllers. An alternative, decen-
tralized adaptive secondary control architecture, based on the
estimation of the transient responses of the units, has been
proposed in [55].
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FIGURE 3. Hierarchical control strategy of MGs.

Optimal economic operation is usually performed at a
slightly higher time frame and its outputs are realized by
the voltage/frequency regulation controllers. There is certain
ambiguity on whether optimal economic operation belongs
to the secondary or tertiary level. In this paper, we consider
that economic dispatch of the interconnected MG resources
is part of the secondary level, as long as it focuses on the
optimization of a single MG operation. In the interconnected
mode of operation the inflows or outputs of the MG are
determined at the higher tertiary level.

Both distributed and centralized secondary control
approaches utilize, to a certain extent, a communication
network to perform their control objectives. The character-
istics of communication networks, such as time delays and
message drop out, can have a major impact on the stability of
a closed loop system, as also noted in the primary control
layer. Furthermore, the fast nature of MG secondary con-
trol makes them more prone to communication weaknesses
compared to conventional secondary controls on larger power
systems. Several recent works have assessed the robustness
of MGs secondary control methods against time delays
[56]–[60], using random modelling of the delays for central-
ized control [56] or Markov chains modelling of the delays
for distributed secondary control [57]. Most of these studies
focus on frequency and voltage regulation controllers, how-
ever optimal energy management controls on the secondary
levels can be also affected by communication delays [58]. The
robustness and limitations of such controls against commu-
nication issues need to be more thoroughly addressed in the
future. A multi-objective optimization criterion is proposed
for the optimization of communication network design, tak-
ing into consideration the secondary control convergence per-
formance, network-relevant time delays, and communication
network costs [60].

Finally, the robustness and fault tolerance of the system
against uncertainties and unexpected faults should be studied
to improve the stability and reliability of the system. Several
techniques have been developed to deal with these issues,
for instance, in [61] a fault-tolerant supervisory controller
is proposed for a hybrid AC/DC MG taking into account
uncertainties (output power, forecast errors etc). A robust,

efficient and fault-resilient optimal power flow is accom-
plished maximizing the utilization of renewable DERs. Fur-
thermore, a robust energy management control for MGs is
developed in [62] minimizing electricity costs.

D. TERTIARY CONTROL
The idea of several neighboring interconnecting MGs,
called multi-microgrids (MMGs) has been early proposed
[5], [17], [63] and further developed in [64]–[66]. More
specifically, according to [6], [64], [67]–[69], MMGs rep-
resent high-level structures, mostly formed at the medium
voltage level, composed by a number of low voltageMGs and
DER resulting in a more stable and cost-efficient operation
and a wider exploitation of the available renewable energy
sources [70], [71].

The functionalities of tertiary control determine the MG’s
interactions with the the neighboring MGs and the upstream
network being part of the overall distribution system opera-
tion. Taking into account economic, environmental and tech-
nological criteria from the external environment (electricity
prices, weather forecast data, etc.) and the MGs’ dynami-
cal system (energy storage, distributed sources), this level
the tertiary control is responsible for the coordination of
the MG with the distribution system in order to solve an
energy management problem. Tertiary level control provides
inputs to the secondary level control by generating opti-
mal profiles as references and setting the optimal operating
points [72], which further improve the system’s operation
stability [23]. In the context of MG operation within a local
energy or ancillary services market, the tertiary level con-
troller will determine the energy flow that the secondary level
controller should satisfy in order to obtain a cost-effective
MG operation. In addition, the tertiary controller having
the longest time intervals [73], further optimizes the power
flow distribution [25] and the power dispatch of DER. For
instance, in [74], the authors control the stored energy to
achieve power balance and optimal power consumption. [75]
proposes a solution at the tertiary level to further optimize
the power flow in an islanded three phase distribution sys-
tem providing the operating points for all the units. In [76]
the optimal solution for economic dispatch is introduced
through distributed hierarchical control. Moreover, several
methods for tertiary control of MMGs have been devel-
oped and are discussed in Section III-C. A relevant method,
recently proposed for MGs’ optimal operation, is differential
flatness, which predicts the system dynamics behavior in
continuous-time following a set of constraints. In the domain
of MGs, differential flatness has been employed either for
cost or power loss minimization [77]. In [78], the authors use
differential flatness to find the optimal power flow solution
for cost minimization through the regulation of the energy
storage system. In general, by taking into account the com-
plete dynamics of the power system, differential flatness
is a method used for day-ahead analysis providing off-line
optimal profiles in continuous-time for nonlinear dynami-
cal systems. An important property of this method is that
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FIGURE 4. Diagrammatic representation of model predictive
control.

it ensures controllability [79] and, combined with specific
methods of approximation, can guarantee continuous-time
constraint validation.

III. ADVANCED POPULAR CONTROL TECHNIQUES
In this section, selected popular control techniques based on
the recent literature review are discussed.

A. MODEL PREDICTIVE CONTROL
Model predictive control (MPC) is a closed-loop control
method which optimizes the behavior of the system under
a set of constraints. As shown diagrammatically in Fig. 4,
taking into account discrete-time system dynamical models
and a finite horizon (prediction horizon), the MPC controller
provides at each time step an open-loop optimal reference
profile. Next, the current step (control input) is sent as input
to the system which recomputes the states and regenerates
the subsequent optimal profile (predicted profile) converging
on the reference trajectory. The basic principles of MPC
are outlined in Appendix A. Recently, there has been an
increasing interest in the usage of MPC schemes to control
power systems, includingMGs. [80]–[83]. The key advantage
of MPC methodology lies in the inherent ability of dynamic
optimization. MPC can forecast the future behavior of a
power system, comprising a feedback mechanism based on
a prediction horizon which can handle uncertainties amelio-
rating its robustness [81]. A major advantage of MPC is the
constraints’ consideration, even in complicated or nonlinear
form. Constraints are essential for MG, where limits are
imposed in every component, from voltages and currents of
distributed generators and storage units to power flows in the
distribution lines [84].

MPC offers a wide range of model structures, predic-
tion horizons and optimization objectives from long-term
scheduling with long prediction horizons to fast computa-
tions with short prediction horizons and sampling times [84].
Thus, MPC-based controllers have been proposed for various
problems, spanning from cost optimization to disturbances
mitigation. MPC is not based on a specific control strategy
but contains a wide range of control techniques. In general,

the optimal and best solution is chosen among all feasible
input sequences over a future horizon according to some
criteria. The richness of this field allows control designers
to customize MPC to their applications. In MGs, applica-
tions range from power quality issues requiring high-speed
computational requirements to the integration of several MGs
in complex networks structure with different criteria. For
example, [85]–[87] apply economic MPC inMGs, in order to
generate on-line optimal profiles and to solve optimization-
based control problems including day-ahead load demand
predictions, optimal operation of renewable sources, bat-
tery scheduling and cost minimization in MG. MPC is fur-
ther used to reduce the deviations between nominal and
actual values solving a tracking reference problem under a
set of constraints. The tracking MPC is often linked to an
economic MPC controller. Economic MPC provides opti-
mal profiles (tertiary or secondary level), as control inputs,
to the tracking MPC controller (secondary level) in order
to mitigate the discrepancies among the actual and the ref-
erence variables for voltage or frequency regulation [88].
A stochastic MPC model is formulated to deal with uncer-
tainties and disturbances causing significant performance
degradation. In this case, a probabilistic description of the
disturbance or the uncertainty allows the optimization of
the average performance. In addition, constraint violation
is enabled, by introducing the so-called chance constraints,
leading to an increased region of attraction where the confi-
dence level of the solution is high [89]. In [90], three different
stochastic programming-based MPC techniques are used to
deal with the uncertainty of power demand and power gener-
ation. These are:

a) the multiple-scenario MPC, which considers different
possible evolutions of the process disturbances;

b) the tree-based MPC, according to which uncertainty
spreads with time giving the possibility to predict more
accurately the energy demand and production;

c) the chance-constrained MPC, that uses explicit proba-
bilistic modeling of the system disturbances to calculate
explicit bounds for the satisfaction of the system con-
straints.

The use of MPC in decentralized and distributed control
of MG has been applied to regulate the set points of multi-
ple voltage controllers, operating in standalone mode [87].
In [91] decentralized MPC is used for cost-effective partic-
ipation of renewable sources in rural communities, by pro-
ducing day ahead forecasts of PV and load demand in order
to optimize the operation of thermal generation considering
system stability. In [92], a MPC controller for output voltage
control of inverters in an islanded MG with proper power
sharing is proposed. In [93] a distributed MPC for optimal
power dispatch within a grid-connected MG is used, where
each DER contains a local MPC. The overall optimization
problem is decomposed into small scale optimization sub-
problems, including algorithms which collaborate to provide
energy management.
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FIGURE 5. Simplified diagrammatic representation of
reinforcement learning.

Centralized MPC controllers have high performance in
reaching optimal solutions, since they consider globally the
components of the system. Nevertheless, they face difficul-
ties in large scale power system applications, with many
control variables and complex dynamical models, which can
require high computational times. Applying modern comput-
ing technologies however, calculation times have been hugely
decreased allowing the use of MPC also in lower control
levels [94], [95] and different architectures. Decentralized
and distributed approaches have been proposed to tackle the
scalability problem. However, in decentralized topologies,
where each subsystem is managed by a single agent applying
local optimization, the lack of knowledge about the overall
system leads to sub-optimal solutions, since the prediction
accuracy is decreased [96], [97]. Distributed MPC is also
based on communication among neighboring agents, which,
although limited, can suffer from related failures [84].

B. REINFORCEMENT LEARNING
Reinforcement learning (RL) methods allow controllers to
learn based on interactions with the environment by observ-
ing their own actions. The basic idea behind an RL model
is shown in Fig. 5. The basic equations describing the RL
principles are provided in Appendix B.Most practical control
problems are based on the Actor-Critic structure, where an
actor component (learning agent) applies an action or control
policy to the environment, and a critic component assesses
the value of that action. A family of real time RL methods
for finding optimal control policies have emerged under the
broad name of approximate/adaptive dynamic programing
(ADP). The main feature of ADP is that it approximates the
optimal policy without knowledge of system dynamics [98].
Deep reinforcement learning (DRL) methods approximate
the value and/or policy functions with deep neural networks.
Thus, DRL combines the perception ability of deep learn-
ing with the decision-making ability of reinforcement learn-
ing [99].

An extensive work on RL and DRL applications in power
systems have been presented in [99]–[101]. Reference [101]
focuses an overview of RL methods with emphasis on
demand response applications. RL methods have been used
for the control of standalone MGs [102]–[105]. A novel
actor-critic based implementation for the regulation of

autonomousMGs based on a heuristic dynamic programming
algorithm with partial knowledge of the MG’s dynamics was
first presented in [102]. In [103], a RL fuzzy controller is
proposed for the frequency regulation of an islanded MG is
proposed. A cooperative scheme based on adaptive critics to
regulate a network of islanded MGs has been used in [104].
The scheme uses local neighborhood information and partial
knowledge of the MG dynamics, while an actor-critic neu-
ral network with particle filtering is proposed to implement
the policy iteration. In [105] an adaptive secondary control
method for MGs in the presence of parametric uncertainties
is developed. A single critic neural network is used to approx-
imate the local index function and an optimal distributed
coordination controller is designed for the tracking problem,
while optimizing local performance indices.

Novel control schemes based on RL have been proposed
to address various MG problems, like participation in energy
trading [106], power quality, energy and storage management
[107]–[111], etc. A mixed iterative ADP algorithm to address
the optimal battery energy management and control problem
in residential MG is proposed in [108]. A dynamic energy
management technique for economical operation of MGs
is proposed in [110]. The real-time scheduling problem is
formulated as a Markov decision process over a day and a
recurrent neural network (RNN) architecture is designed to
approximate the optimal value function. Similarly, an ADP-
based approach for the optimal operation of islanded MGs by
considering battery lifetime, is proposed in [111]. An elec-
tricity market model with dynamic pricing and energy con-
sumption in a MG is studied in [106], where RL is applied to
reduce system costs for the service provider.

COMPARISON BETWEEN MPC AND RL
In comparison to optimal control methods, typically
employingmathematical programming, likeMPC, the biggest
advantage of RL is its rapid online computation. RL is model-
free, adaptive, with low online complexity, but contrary to
MPC, its stability and feasibility are not guaranteed and its
robustness is not backed by a solid theory, while it faces
difficulties in handling constraints [112]. In general, an MPC
agent is expected to outperform the corresponding RL imple-
mentation, if the identified model used is accurate. Moreover,
RL is difficult to adapt the behaviour of the controllers to
unforeseen situations, i.e. the ones that do not belong to the
training dataset. This might pose safety concerns for practical
applications. High dimensionality of the action spaces, noisy
environment, dynamic uncertainty (mismatch between the
degree of the model and the degree of the actual system),
limited number of actual samples for training are some of
the technical challenges that RL face. In general, however
RL has proven an effective approach for many power sys-
tem control and decision problems, including MGs. From a
numerical point of view, authors have noticed that MPC is
less robust than the corresponding RL implementation [113].
A comparison of RL between MPC characteristics, reported
in literature, is shown in Table 2.
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Combination of RL approaches with MPC and other
advanced control methods, like adaptive control, robust con-
trol etc. is expected to provide more rigorous techniques
for real world applications. It appears that the synergy of
MPC and RL opens a promising research avenue for handling
stability guarantees.

C. COOPERATIVE AND NON-COOPERATIVE METHODS
The problem of cooperative control aims to design appro-
priate distributed control laws, such that a group of agents
meets certain coordinated requirements. In its simpler form
this coordination focuses on reaching consensus or synchro-
nization of all dynamic agents. In the consensus regulator
problem each agent is reaching the same constant state while
in synchronization tracking problems each agent reaches the
state of the leader node [114].

Multiagent systems (MAS) have been applied for decen-
tralized MG energy management, already in [51]. More
recently, MAS based cooperative control, is proposed for
distributed MG secondary control [50]. A droop-free dis-
tributed method replaces the centralized secondary control
and the primary-level droop mechanism of each inverter by
data exchange with few neighboring inverters to update its
local voltage set points and synchronize its normalized power
and frequency.

Furthermore, a distributed architecture for optimal dis-
patch of DER is proposed in [115]. The impacts of commu-
nication delays through sparse communication networks is
tackled in [116]. A distributed optimal solution for energy
storage systems to maintain the supply-demand balance,
while maximizing their welfare and energy efficiency under
a multiagent system framework, is proposed in [117].

Cooperative and non-cooperative coordination control
approaches have been successfully applied at tertiary level for
MGs and MMGs [118]. Consensus-based control considers
that all MGs can be coordinated as a single unit, while

TABLE 2. Characteristics of model predictive control and
reinforcement learning.

non-cooperative coordination considers benefits of individual
MGs and the entire MMG. A distributed cooperative control
strategy for a MGs cluster is introduced in [119] to achieve
frequency restoration and power sharing using a two-layer
communication network. In [120] a non-cooperative dis-
tributed coordination control scheme based on game theory
is applied for multi-operator energy trading of MMGs. The
proposed method coordinates the individual benefits of each
MG and achieves a global objective based on differential
game theory.

Cooperative control has been applied for various control
problems in MGs and MMGs. The performance of coop-
erative distributed approaches is strongly dependent on the
operation of the communication topology and remains to be
proven for applications on higher-order nonlinear systems
and uncertain or unknown dynamics that comprise most prac-
tical applications. Game theory, due to its capability to model
complex interactions among independent players, is expected
to have a great contribution in the design and analysis of
MMGs. This has led to a new sort of differential game named
graphical games, where each agent has its own dynamics as
well as its own local performance index.

IV. HIERARCHICAL BOUNDARIES
ARE GETTING BLURRED
The specific characteristics of MGs challenge the classical
hierarchical control structure applied in large power systems
and characterized by different time response of the various
levels. For example, the low inertia and short lines in MGs
require that the highly variable nature of distributed renew-
able sources and loads must be compensated fast and accu-
rately in one step, if possible. Thus, current research shows
that applying distributed and decentralized techniques makes
it possible that MG controllers can adapt very fast to variable
and unknown conditions making the value of forecasting,
which is extremely challenging at this level and the manage-
ment of operating reserves mostly redundant. This means that
the three levels of the control hierarchy can be integrated in
two or one level, allowing as close to plug-and-play opera-
tion as possible, without imposing time- scales separation,
as proposed in [72] and applied in [121], [122]. For example,
in [123] a two-layer control scheme is developed to improve
the optimal economic operation of hybrid AC/DC MGs by
coordinating the frequency/voltage regulation in individual
AC and DC sections with the power exchange of interlinking
converters. The upper layer regulates the power exchange
by the primary, secondary and tertiary coordination of inter-
linking converters, while the lower layer solves iteratively
the decentralized economic dispatch for the individual AC
and DC sections, properly merging all levels of control. This
unified treatment of all control levels opens new possibilities
for truly plug and play DER operation in MG environments.

V. CONCLUSION AND FURTHER RESEARCH
This paper sketches the research evolution in MGs from
their first formulation until nowadays. It reviews the vari-
ous hierarchical levels adopted for MG control, namely the

338 VOLUME 7, 2020



Vasilakis et al.: Evolution of Research in Microgrids Control

primary, secondary and tertiary level and provides a system-
atic classification of the various methods applied, in central-
ized, distributed and decentralized methods. It also presents
effective implementations of the various methods and com-
pares their key characteristics. Published results show effec-
tive applications in all levels of MGs control that can be
further adapted depending on the physical characteristics of
each MG. It is shown that effective voltage and frequency
stability of the MG and proper power sharing among DER
is achieved at the primary level, restoration of voltage and
frequency excursions to nominal values and optimal eco-
nomic management is provided at the secondary level and
interactions with neighboringMGs and the upstream network
are effectively coordinated at tertiary level. Selected popular
distributed and decentralized methods are further described
and critically assessed. As a further direction for research,
the authors believe that the combination of RL methods with
MPC and other advanced control methods, is a promising
area, able to provide more rigorous techniques for real world
applications. Research on the performance of cooperative dis-
tributed approaches in MG and MMG applications is another
important area for further studies. Finally, the possibility of
considering a unified level of control merging the traditional
hierarchical levels of MGs by applying decentralized and
distributed techniques deserves further in-depth investiga-
tions. Such a unification of the hierarchical levels has the
potential to improve the speed, efficiency and optimality of
MG applications. The authors strongly believe that the decen-
tralization of power system control aided by further evolution
of MGs, in collaboration with large centralized systems at
transmission level is essential to face the challenges posed by
the increasing complexities of modern power systems with
increased levels of DER integration [8].

APPENDIX A
MODEL PREDICTIVE CONTROL BASICS
According to [84], MPC makes explicit use of the system’s
model in order to solve an optimization problem by minimiz-
ing a cost function subject to a set of constraints.

Consider the following nonlinear discrete-time system:

x̃(k + 1) = fd (x̃(k), ũ(k)), x(t) = x̃, k ≥ t,

with the state vector x(k) ∈ Rn and the control input
u(k) ∈ Rm. For the considered optimization problem, the cost
function to minimize is defined as [124]:

JMPC =
t+Np−1∑
k=t

(x̃(k)>Qx̃ x̃(k)+ ũ(k)
>Rũũ(k))

+ Ṽf (x(t + N )),

subject to : x̃(k + 1) = fd (x̃(k), ũ(k)),

x̃(k) ∈ X̃ ,
ũ(k) ∈ Ũ ,
x̃(t + Np) ∈ X̃f (terminal constraint),

where Qx̃ and Rũ are matrices of appropriate dimensions, X̃
is the set of state constraints andU the set of input constraints.
The term Ṽf (x(t+N )) represents the terminal cost and forces
the states to always exist in a particular set.

APPENDIX B
REINFORCEMENT LEARNING BASICS
Markov Decision Processes (MDPs) are mathematical frame-
works to describe an environment in reinforcement learning
and almost all RL problems can be formalized using MDPs.
An MDP consists of a set of finite environment states S,
a set of possible actions A in each state, a real valued reward
function R and a transition model P(St+1|St , αt ). Our goal is
to choose actions over time so as to maximize the expected
value of the return, i.e. choose the optimal policy.

To maximize the long-term cumulative reward, the return
Gt is equal to:

Gt = Rt+1 + γRt+2 + γ 2Rt+3 + . . . =
∞∑
k=0

γ kRt+k+1

where the discount factor γ ∈ [0, 1], values the immediate
reward above delayed reward. A policyπ is a distribution over
actions given states: π (α|s) = P(At = α|St = s).

The state-value function Vπ (s) gives the long-term value of
state s, when following policy π :

Vπ (s) = Eπ [Gt |St = s] = Eπ [
∞∑
k=0

γ kRt+k+1|St = s]

The action-value function Qπ (s, α), is the expected return
starting from states s, taking action α, and following policy π :

Qπ (s, α) = Eπ [
∞∑
k=0

γ kRt+k+1|St = s,At = α]

An optimal policy π∗ is a policy that achieves the largest
cumulative reward in the long run.

The optimal state-value function V∗(s) is the maximum
value function over all policies:
V∗(s) = max

π
Vπ (s).

Similarly, the optimal action-value function Q∗(s, α) is the
maximum action-value function over all policies:
Q∗(s, α) = max

π
Qπ (s, α)

We can find the optimal policy immediately bymaximizing
Q∗(s, α) over all actions:

π∗(α|s) =

1 if argmax
α∈A

Q(s, α),

0 else
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