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ABSTRACT The inherent coupling of the electric and natural gas systems due to the operation of gas
generating units and power-to-gas facilities, along with the uncertainties faced in both systems due to the
variability in electricity and gas demand and the vastly increasing volatile renewable injections, create an
imperative need to schedule and operate the two systems in a coordinated manner. In this paper a new model
for the fully integrated stochastic day-ahead scheduling of electric and gas systems is presented, coping
with the uncertainties of both systems. The stochastic parameters comprise the electricity demand and the
renewable injections, which collectively create several net electricity load scenarios, and the gas residen-
tial/industrial demand. The integrated scheduling problem concerns a unit commitment for the electricity
problem, amended with additional constraints imposed by the underlying natural gas transmission system
considering steady-state flow. A two-stage stochastic programming model is devised, having as second
stage the possible realizations of net electricity load and gas demand in real-time. The model is tested in
medium-size real-world test systems – the Greek electricity and gas systems – deriving useful insights on the
advantages of the integrated stochastic scheduling versus the deterministic scheduling of the electricity and
gas systems.

INDEX TERMS Electricity system, natural gas system, integrated scheduling, mixed integer linear
programming, two-stage stochastic programming.

I. NOMENCLATURE
A. INDICES AND SETS
a ∈ A Set of gas network arcs a = (m, n) ∈ A , where

Api ⊆ A is the subset of passive arcs, Aact the
subset of active arcs, Acm the subset of active arcs
with compressors and Acv the subset of active arcs
with control valves; Acm ∪ Acv = Aact ⊆ A

b ∈ B Set of steps of generating units’ priced energy
offers

g ∈ G Set of generating units, where G thr is the subset of
thermal units, Ghdr the subset of hydro units and
Ggas is the subset of gas-fired generating units;
Ggas
⊆ G thr

r ∈ R Set of available reserve types; res = {1: Fre-
quency Containment Reserve (FCR), 2up: auto-
matic Frequency Restoration Reserve (aFRR) up,
2dn: aFRR down, 3: manual Frequency Restora-
tion Reserve(mFRR)}

d ∈ D Set of directions (up / down) for reserve provision
m ∈ V set of gas nodes where Ven ⊆ V is the subset of

entry nodes, Vex ⊆ V the subset of exit nodes, Ven
the subset of non-electric exit nodes and Ve the
subset of electric exit nodes; Vne∪Ve = Vex ⊆ V

s ∈ S Set of scenarios
t ∈ T Set of scheduling/dispatch periods (in hours)
x ∈ X Set of bidding areas in the power system
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B. PARAMETERS
Pbgt/EQ

b
gt Price / quantity pair of step b of the energy

offer of gen. unit g in trading period t , in
(e /MWh, MWh)

Prgt Price of the reserve offer for the provision
of reserve type r of gen. unit g in trading
period t , in e /MW/h

SUCg/SDCg Generating unit g start-up/shut-down costs,
in e

Qimpt /Qexpt Total imports / exports in trading period t ,
in MWh

Emaxg /Eming Maximum / minimum technical power out-
put of generating unit g, in MW

Emandgt Mandatory injection of hydro generating
unit or generating unit under commision g
in trading period t , in MW

RUg/RDg Maximum ramp-up / ramp-down rates of
generating unit g, in MW/min

UTg/DTg Minimum up / down time of generating
unit g, in hours

Dxts Electricity load forecast in bidding area x
in trading period t and scenario s, in MWh

FLmax
xx ′t Maximum flow in the corridor between

bidding areas x and x ′ in trading period t ,
in MW

Rrg Maximum technical capability of generat-
ing unit g to provide reserve type r, in MW

RRrt System reserve requirement for reserve
type r in trading period t , in MW

ag, bg, cg Gas-fired generating unit g ∈ Ggas fuel
consumption coefficients, in GJ, GJ/MWh
and GJ/MW2h, respectively

ca Compressor operation cost, in e /kW/h
γ Non-electric gas demand shedding cost,

in e /Nm3/h
dmts Non-electric gas demand target at outgoing

node m ∈ Vex in trading period t and
scenario s, in Nm3/h

pm/pm Min/Max pressure technical bounds of gas
node m at arc m ∈ V , in bar

qa/qa Min/Max gas flow bounds through gas
node a ∈ A , in Nm3/h

ηa Adiabatic efficiency of compressor at
active arc a ∈ Acm

HPa/HPa Min/Max horsepower technical bounds of
compressor at active arc a ∈ Acm, in MW

rta/rta Min/Max pressure ratio bounds of com-
pressor at active arc a ∈ Acm

1a/1a Min / Max pressure decrease bounds of
control valve at active arc a ∈ Acv, in bar

Lα/Dα Length and diameter and cross-sectional
area of a ∈ A , in m

Aα Cross-sectional area of pipeline a ∈ A ,
in m2

λα pipeline roughness of a ∈ A , in m

z Mean Compressibility factor
T Mean temperature, in K
Rs Universal gas constant, in J/mol K
k Gas constant isentropic exponent
H Higher Heating Value of natural gas, in GJ/Nm3

πs Realization probability for scenario s, in %

C. MAIN VARIABLES
ugts/uAGCgts Binary variable denoting that generating unit

g is committed / in AGC mode during trading
period t and scenario s, if equal to 1

wgt Binary scenario-independent variable associ-
ated with ugts/uAGCgts , denoting the commitment
status of thermal unit g during time period t

ygts/zgts Binary variable denoting that thermal unit g
starts-up / shuts-down during trading period t
and scenario s, if equal to 1

vgt/ζgt Binary scenario-independent variables associ-
ated with ygts/zgts, denoting the start-up/shut-
down status of thermal units g during time
period t

iαts Binary variable denoting the operational state
of compressor a ∈ Acm during trading period
t and scenario s; active if equal to 1, closed if
equal to 0

ibαts Binary variable denoting the operational state
of parallel bypass valve at active arc a ∈ Acm
during trading period t and scenario s; open if
equal to 1, closed if equal to 0

hαt Binary scenario-independent variable associ-
ated with iαts, denoting the operational status
of compressor a ∈ Acm during trading
period t

jαts Binary variable denoting the operational state
of control valve a ∈ Acv during trading period
t and scenario s; active if equal to 1, closed if
equal to 0

ξαt Binary scenario-independent variable associ-
ated with jαts, denoting the operational status of
control valve a ∈ Acv during trading period t

egts Cleared energy production of generating unit
g in trading period t and scenario s, in MWh

eqbgts Cleared quantity of step b of generating unit g
energy offer in trading period t and scenario s,
in MWh

rrgts Reserve award for reserve type r by generat-
ing unit g in trading period t and scenario s,
in MW

flxx ′ts Electricity flow between bidding areas x and
x ′ in trading period t and scenario s, inMWh/h

pmts Node pressure at node m in trading period t
and scenario s, in bar

qats Gas flow through arc a ∈ A in trading period
t and scenario s, in Nm3/h
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smts Curtailed residential/industrial gas demand at out-
going node m ∈ Vex in trading period t and
scenario s, in Nm3/h

HPats Horsepower of compressor at active arc a ∈ Acm
in trading period t and scenario s, in kW

II. INTRODUCTION

THE interdependency of the power system and the natural
gas network has been highlighted by the research com-

munity and practitioners in the last ten years [1]–[3]. Such
interdependency stems mainly from the increased utilization
of flexible / fast-response gas-fired power units in the elec-
tricity production portfolio, (a) used to offset the variations
of the vastly increasing renewable injections, and (b) fol-
lowing global environmental concerns leading to politically-
driven binding decarbonization targets, and to less extent
from power-to-gas (P2G) facilities. This interdependency is
expressed in many ways; indicatively we refer to (a) the gas
network pressure and flow constraints that affect the commit-
ment and scheduling of gas power units, (b) the effect of gas
transportation cost on the overall variable cost of gas power
units and consequently on their competitiveness in the whole-
sale electricity market, (c) the effect of gas storage facilities
on handling the variability and uncertainty introduced by
the renewable injections and on the security of supply of
the power system, (d) the effect that contingencies on the
electricity grid have on the pressures and flows at the gas
network, and inversely (e) the effect of gas network contin-
gencies on the commitment and scheduling of gas power units
when covering the electricity load and the system reserve
requirements. The increasing interdependency between the
two energy systems are expected to lead to even tighter
coordinated -or even integrated- scheduling and operation
approaches.

In the literature there is a clear differentiation between:

(a) the coordinated operation of the power and gas systems
[4]–[8], namely the separate scheduling and operation
of each system, but with a -usually iterative- coordina-
tion process during which the technical infeasibilities
of one problem are passed as binding constraints to
the other problem until all infeasibilities are gradually
resolved at the end of the coordination process, and

(2) the integrated co-optimization (scheduling and opera-
tion) of the two systems [9]–[14], namely the solution
of a single problem targeting at the minimization of the
overall cost of both systems, respecting the technical
constraints of both systems, and being solved at one-
shot for the optimal combined solution.

Apparently, the theoretically optimal solution is the sec-
ond one, leading to the overall optimal solution. Further
differentiation in such problems concerns the consideration
of the steady-state or transient gas flows, and the determin-
istic or stochastic formulation of the coordinated/integrated
scheduling problems.

There is a rich literature on deterministic formulations
[4]–[14]; an extensive and thorough discussion on recent
research works is provided in [15]. Recently, more sophisti-
cated approaches have been presented with novel lineariza-
tion algorithms, as per second order cone relaxations in
[8] and [14]. However, the deterministic approaches may fail
to incorporate the inherent stochasticity of several parame-
ters affecting the day-ahead power and gas scheduling solu-
tion, such as the level of the electricity load, the renewable
injections (especially of wind and PV stations) and the gas
load from residential, commercial and industrial consumers.
On the contrary the stochastic formulation of the integrated
problem is able to provide a solution that considers a large
set of probable realizations of the stochastic parameters in
real-time (based on respective realization probabilities).

Several stochastic formulations for the efficient operation
of power systems under high renewable generation have been
presented in the last years [16]. The application of stochastic
methodologies on the common scheduling problem of elec-
tricity and gas systems has been studied during the last years
due to their increasing interdependence. The majority of the
relevant literature relies on two-stage stochastic formulations
that calculate optimal commitment schedules for generat-
ing units and gas wells under several stochastic parameters.
In [17] the authors examine the effects of contingencies on the
day-ahead scheduling using mixed-integer relaxation of the
gas constraints. The effect of uncertainty in gas supply is also
examined in [18], where a two-stage coordination algorithm
on a simplified Great Britain network is applied to evaluate
the significant change in costs and energy reallocation that
supply disruptions cause on the electricity scheduling. The
same network is also utilized by Qadrdan et al in [19] under
two- and multi-stage formulations that demonstrate the effec-
tiveness of stochastic consideration of wind uncertainty in
terms of operational cost savings. Authors in [20] address
the wind uncertainty by considering the use of energy storage
applications in multi-objective market clearing, whereas [21]
offers a clear comparison of scheduling under wind uncer-
tainty between deterministic and stochastic approaches to
demonstrate the economic effectiveness of the latter. In [22]
the authors execute a stochastic SCUC considering com-
ponent outages and load forecasting errors in an iterative
procedure with natural gas network feasibility subproblems.

Reference [23] extends the stochastic consideration of
energy systems in a micro-grid level where operational
and environmental objectives are optimized against various
stochastic parameters exploiting the P2G concept. In [24],
Zhao et al. formulated a two-stage stochastic approach
where the operational costs of gas-fired units are opti-
mized by considering uncertainty on fuel price and scarcity.
In [25] the authors presented a multi-stage stochastic frame-
work with adaptive refinements and a thorough model-
ing of the configurations and transitions of combined-cycle
units, which led to better operational utilization of the gas
network.
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The uncertainty consideration in the form of robust pro-
gramming implementations has also gained traction recently
in the literature [26]–[28], where the integrated optimization
problem is optimized over the worst-case situation based
on a predefined uncertainty set. In [26] the authors propose
a robust formulation for wind power uncertainty to ensure
that the system can sustain N–1 contingency events of trans-
mission line and gas pipeline loss. A decomposition-based
approach is adopted in [27] to iteratively solve the long-term
co-planning problem; the method optimizes base-case opera-
tional decisions in a master problem and checks the solution
quality of the master problem via N-1 and probabilistic relia-
bility criteria in two subproblems that identify the worst-case
realizations. A two-stage robust problem is presented in [28],
which is decomposed by second-order cone-based column
and constraint generation into the first-stage base case oper-
ation master problem and gas security-check subproblems,
highlighting the gas-side contribution in system efficiency
enhancement. Additional applications of robust optimiza-
tion framework have been proposed in [29] and [30], where
second-order cone programming is applied to address various
uncertainties and contingencies for day-ahead energy and
reserve scheduling. The authors in [29] consider a two-stage
adaptive model which is in turn converted and solved via a
novel iterative algorithmwhich reduces the number of scenar-
ios, while in [30] energy and reserves are scheduled against
load and renewable uncertainty with SOC-based relaxation of
nonconvexities is followed by gas-flow corrections in order to
avoid sequential, less efficient solutions.

A new approach for dealing with uncertainties in the inte-
grated power-gas system has also been proposed in the form
of distributionally robust optimization, where the system is
optimized considering worst-case probability distributions as
ambiguity sets with partial distributional information. In [31]
a two-stage formulation for calculation of locational prices
under demand response from both systems is implemented,
while in [32] the integrated system is optimized under wind
uncertainty.

Overall, the basic features of each stochastic power-gas
research work along with the respective features in this paper
are summarized in Table 1.

All relative works have presented results that, while con-
sidering different gas network configurations and various gas-
side stochastic variable realizations, utilized the gas network
mainly to schedule the power network in a more reliable and
robust way, without consideration for gas network schedul-
ing decisions. Additionally, even though the considered gas
networks range from small single-node systems to real-
world systems, they are generally modelled without increased
attention to precise parameterization that could considerably
alter the attained results. In this paper, the authors present a
two-stage stochastic optimization problem with uncertainty
on both the electricity and the gas side, that incorporates
(a) the full unit-commitment modeling for the explicit mod-
eling of the electricity power system and (b) a detailed

configuration of the gas network incorporating linearized gas
network constraints. The main contributions of this paper are
the following:

a) the incorporation of the detailed gas flow modeling
with three distinct linearization techniques (extended
incremental method, outer approximation method, big-
Mmethod) for the linearization of theWeymouth equa-
tion, the compressor flow equation and the electricity/
gas coupling equation, respectively,

b) the consideration of binding scheduling decisions of
the active, controllable gas network components (com-
pressors, control valves) in the first stage (i.e. day-
ahead scheduling phase) regarding their configuration/
operation mode, which provides an operating schedule
to be followed at the second stage (i.e. real-time dis-
patch phase), as well as the assessment of such bid-
ing scheduling decisions in the real-time gas network
operation,

c) the evaluation of the stochastic programming model in
a medium-size real-world test system.

The remaining of the paper is organized as follows:
Section III presents the analytical formulation of the proposed
novel two-stage stochastic mathematical problem. Section IV
presents the computational results of the model application in
a real-world test case system. Finally, Section V quotes the
basic conclusions and findings of the conducted research.

III. MATHEMATICAL FORMULATION
The following section presents the mathematical formulation
of the proposed stochastic integrated approach.

A. OBJECTIVE FUNCTION
The objective function is formulated as follows:

Min
∑
s∈S

πs

[
CEL
s + C

GAS
s

]
(1)

where

CEL
s =

∑
t

∑
g

[
Pbgt · eq

b
gts +

∑
r
Prgt · r

r
gts

+SUCg · ygts + SDCg · zgts

] ∀s ∈ S

(2)
CGAS
s = CCM

s + CSH
s ∀s ∈ S (3)

CCM
s =

∑
t∈T

 ∑
a∈Acm

[
ca · Pats

] ∀s ∈ S (4)

CSH
s =

∑
t∈T

 ∑
m∈Vne

[
γ · smts

] ∀s ∈ S (5)

The two terms of the objective function represent the costs
of the electricity and the gas systems; the electricity system
cost comprises the offer-based generation cost for energy pro-
duction and reserve provision plus the start-up and shut-down
costs, whereas the gas system cost comprises the compressor
cost (cost of operating the compressor at a certain mechanical
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TABLE 1. Relevant features of stochastic programming and robust optimization works reported in the literature.

power level) and the gas shedding cost (cost incurred in case
of residential/industrial gas load curtailment).

B. ELECTRICITY SYSTEM CONSTRAINTS
The electricity subproblem is presented in this section;
the following equations express the system and unit

operating constraints.∑
g∈Gx

egts + Q
imp
t − Dxts − Q

exp
t

=

∑
x ′∈X

(flxx ′ts − flx ′xts) ∀x ∈ X , t ∈ T , s ∈ S (6)
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flxx ′ts ≤ FLmaxxx ′t ∀x, x ′ ∈ X , t ∈ T , s ∈ S (7)∑
g∈G

rrdgts ≥ RR
rd
t ∀d ∈ D, r ∈ R , ∀ t ∈ T , s ∈ S

(8)

Equation (6) denotes the area power balance constraint,
constraint (7) limits the energy exchange between two
neighboring bidding areas to the respective corridor flow
limit, whereas equations (8) denote the system-wide reserve
requirements for primary, secondary up & down and tertiary
reserve that should be covered from the generating units.

ygts + zgts ≤ 1 ∀ g ∈ G, t ∈ T , s ∈ S (9)

ygts − zgts = ugts − ug,t−1,s ∀ g ∈ G, t ∈ T , s ∈ S
(10)

uAGCgts ≤ ugts ∀ g ∈ G, t ∈ T , s ∈ S (11)
τ=t∑

τ=t−UTg+1

ygts ≤ ugts ∀ g ∈ G thr , t ∈ T , s ∈ S (12)

τ=t∑
τ=t−DTg+1

zgts ≤ 1− ugts ∀ g ∈ G thr , t ∈ T , s ∈ S

(13)

Constraints (9)-(13) denote the logical relationship
between binary variables ugts, uAGCgts , ygts and zgts. Equa-
tion (9) forces that a generating unit may not simultaneously
start-up and shut-down at the same trading period, whereas
equation (10) ensures the continuous operation of generat-
ing unit g, between its synchronization and its shut-down.
Constraint (11) allows generating unit g to enter in its AGC
mode only if it is committed. Finally, equations (12) and (13)
enforce minimum up and down limits to thermal generators’
operation; it is assumed that hydro generating unit have the
capability to start-up and shut-down within one hour; thus,
such constraints are deemed unnecessary.

egts − eg,t−1,s ≤ 60 · RUg ·
(
ugts − uAGCgts

)
+ 60 · RUAGC

g · uAGCgts +M
U
· ygts

∀ g ∈ G thr , t ∈ T , s ∈ S (14)

eg,t−1,s − egts ≤ 60 · RDg ·
(
ugts − uAGCgts

)
+ 60 · RDAGCg · uAGCgts +M

D
· zgts

∀ g ∈ G thr , t ∈ T , s ∈ S (15)

Equations (14) and (15) denote the ramp-up and ramp-
down limitations of thermal generating units. Big M values
MU and MD are used for the deactivation of the afore-
mentioned constraints, during the start-up and shut-down
procedures. It is assumed that hydro units exhibit increased
flexibility, being able to reach their maximum capacity within
one hour; thus, no ramping constraints are required for hydro
units.

rFCRgts ≤ R
FCR
g · ugts ∀ g ∈ G thr , t ∈ T , s ∈ S (16)

raFRRupgts +raFRRdngts ≤RaFRRg · uAGCgts ∀ g∈G thr , t ∈T , s∈S
(17)

rmFRRgts ≤ RmFRRg · ugts ∀ g ∈ G thr , t ∈ T , s ∈ S (18)

rFCRgts ≤ R
FCR
g ∀ g ∈ Ghdr , t ∈ T , s ∈ S (19)

raFRRupgts + raFRRdngts ≤ RaFRRg ∀ g ∈ Ghdr , t ∈ T , s ∈ S
(20)

rmFRRgts ≤ RmFRRg · ugts ∀ g ∈ G thr , t ∈ T , s ∈ S (21)

Constraints (16)-(21) enforce upper limits to the provision
of primary, secondary and tertiary reserve by thermal and
hydro generating units.

egts = Emandgt +

∑
b∈B

eqbgts ∀ g ∈ G, t ∈ T , s ∈ S (22)

eqbgts ≤ EQ
b
gt ∀ g ∈ G, t ∈ T , s ∈ S (23)

egts−raFRRdngts ≥ Eming ·

(
ugts− uAGCgts

)
+Emin,AGCg · uAGCgts

∀ g ∈ G thr , t ∈ T , s ∈ S (24)

egts+r
aFRRup
gts ≤Emaxg ·

(
ugts− uAGCgts

)
+Emax,AGCg · uAGCgts

∀ g ∈ G thr , t ∈T , s ∈ S (25)

egts+r
FCRup
gts +raFRRupgts +

mFRRup
gts ≤ Emaxg · ugts

∀ g ∈ G, t ∈ T , s ∈ S (26)

egts − raFRRdngts ≥ 0 ∀ g ∈ Ghdr , t ∈ T , s ∈ S (27)

Generating units’ power output is limited by equations
(22)-(27). Unit output is equal to a mandatory component
(depicting either the unit commissioning-related generating
profile or mandatory hydro injection) and the cleared part
of the respective priced energy offer (the clearing quantity
is limited by the submitted priced energy offer – eq. (23)).
Equations (24)-(27) express that the total power output along
with the reserve contribution should be limited by the tech-
nical characteristics of the examined generating unit. In gen-
eral, thermal generating units have different minimum and
maximum capacity limits when they operate in AGC mode,
whereas the technical minimum of hydro units was taken
equal to zero.

C. GAS SYSTEM CONSTRAINTS
The modeling of gas transportation networks refers to the set
of partial differential equations that govern the physics of
spatio-temporal relations between gas flows and pressures.
The formulation of gas network in this paper follows the
analytical description presented in [33] and [35], where the
network is described by means of a directed finite graph G =
(V ,A) of a set of nodes m, n ∈ V and arcs a = (m, n) ∈ A .
The node set V is further partitioned into gas injection nodes
Ven and gas withdrawal nodes Vex , which in turn are denoted
according to the load distinction as electric gas loads Ve,
corresponding to gas consumption of gas-fired generating
units, and non-electric gas loads Vne, corresponding to gas
consumptions of residential, commercial and industrial loads.
Arc setA is partitioned into passive pipes setApi and active set
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Aact , further denoted as either compressor set Acm or control
valve set Acv. Positive pressure and free flow variables are
associated with nodes and arcs, respectively, and are both
bounded by technical upper and lower limits, as per (28)-(29).

pm ≤ pmts ≤ pm ∀m ∈ V , t ∈ T , s ∈ S (28)

qa ≤ qats ≤ qa ∀ a ∈ A, t ∈ T , s ∈ S (29)

Nodal balance dictates that gas mass flow is conserved
through every node m:∑
a∈δin(m)

qats −
∑

a∈δout (m)

qats = qmts ∀m ∈ V , t ∈ T , s ∈ S

(30)

where δin(m) and δout (m) denote the ingoing and outgoing
arcs for every node m.
In order to ensure pressure feasibility, withdrawal target dmts

is relaxed via a shedding term smts , such that:

qmts + s
m
ts = dmts ∀m ∈ Vex , t ∈ T , s ∈ S (31)

Assuming isothermal conditions, pressure decrease along a
passive pipe is calculated by the well-established Weymouth
equation:

pm2ts − p
n2
ts =,

La · λα · Rs · z · T
A2a · Da

·
∣∣qats∣∣ · qats

∀a ∈ Api, t ∈ T , s ∈ S (32)

where the mean temperature T is equal to 289.15 K,
the pipeline roughness λα equal to 0.00810e−3 and the aver-
age compressibility factor z equal to 0.9.
In order to compensate pressure decrease over long dis-

tances, compressor machines are utilized to provide pressure
boost. Their operating range is defined by its characteristic
diagram, which is given by a set of curves obtained by
(bi)quadratic least squares fits frommeasured data points that
are expressed as nonlinear inequalities in the form of:

f (qa,Ha
ad ) ≤ 0 ∀ a ∈ Acm (33)

Typically, compressors constitute mechanical machines
whose power consumption HPats is calculated as follows:

HPats =
qats · Rs · T · z

ηa
·

k
k − 1

· [
(
pnts
pmts

) k−1
k

− 1]

∀ a ∈ Acm, t ∈ T , s ∈ S (34)

where the constant isentropic exponent k is equal to 1.38 and
the compressor adiabatic efficiency ηa equal to 0.84.
The operating mode of the compressor for every time

period is denoted by the binary variable iats, which is equal
to 1 for open active status and 0 for closed status, in which
case flows and adjacent pressures are decoupled. This con-
figuration is expressed by the following set of equations:

iats · q
a
≤ qats ≤ i

a
ts · qa ∀ a ∈ Acm, t ∈ T , s ∈ S (35)

iats · HP
a
≤ HPats ≤ i

a
ts · HP

a
∀ a ∈ Acm, t ∈ T , s ∈ S

(36)

pnts − p
m
ts ≥ 1

a
· iats + (pn − pm) · (1− iats)

∀a = (m, n) ∈ Acm, t ∈ T , s ∈ S (37)
pnts − p

m
ts ≤ 1

α · iats + (pn − pm) · (1− iats)
∀a = (m, n) ∈ Acm, t ∈ T , s ∈ S (38)

pnts ≥ rt
a
· pmts − (1− iats) · (rt

a
· pm + pn)

∀a = (m, n) ∈ Acm, t ∈ T , s ∈ S (39)
pnts ≤ rta · p

m
ts − (1− iats) · (rta · p

m
+ pn)

∀a = (m, n) ∈ Acm, t ∈ T , s ∈ S (40)

where rta denotes the compressor pressure increase ratio
pnts/p

m
ts and

rta ≤
pnts
pmts
≤ rta ∀a = (m, n) ∈ Acm, t ∈ T , s ∈ S (41)

Furthermore, gas flow can circumvent the compressor
through by a parallel bypass valve, whose operating mode is
denoted by binary ibats and for which condition (42) holds for
every dispatch period.

iats + ib
a
ts = 1 ∀ a ∈ Acm, t ∈ T , s ∈ S (42)

Control valves represent active elements that, when active,
decrease pressure along pipes a = (m, n) ∈ Acv at prede-
termined set points at their outgoing nodes. Their operation
is modelled through binary variable jats, denoting their status
as either open when equal to 1 and closed when equal to 0.
The analytical modelling of control valves is described by
equations (43)-(45).

jats · q
a
≤ qats ≤ j

a
ts · qa ∀ a ∈ Acv, t ∈ T , s ∈ S (43)

(pnts − p
m
ts +1

a) · jats + p
n
ts − p

m
ts ≤ p

n
ts − p

m
ts

∀a = (m, n) ∈ Acv, t ∈ T , s ∈ S (44)
(pmts − p

n
ts −1

α) · jats + p
m
ts − p

n
ts ≤ p

m
ts − p

n
ts

∀a = (m, n) ∈ Acv, t ∈ T , s ∈ S (45)

where 1α denotes the available pressure decrease along the
control valve.

From an operation standpoint, the gas network operation
is usually considered by researchers as a feasibility check
problem for the stanionary case. However, since the opera-
tion of the compressor incurs actual costs, the gas problem
objective CGAS is selected such that all pressure, flow and
active components’ operational status constraints (28)-(45)
are respected, while minimizing compressor costs CCM

s and
ensuring target non-electric demand offtakes, expresed by the
penalization of their associated penalty shedding costs CSH

s .

D. ELECTRICITY-GAS SYSTEMS COUPLING CONSTRAINT
Themathematical expression of the system coupling equation
is formulated as:

ugts
ag + bgegts + cg

(
egts
)2

H
= qmts

∀g ∈ Ggas, m ∈ Ve, t ∈ T , s ∈ S (46)

Using this constraint, the electricity generation egts of ther-
mal gas-fired units is converted to gas consumption qmts . The
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fuel consumption coefficients (ag, bg, cg) of generating units’
gas consumption and the higher heating value of natural gas
H are used to perform the conversion. It is assumed that
gas composition does not vary among the system entries and
therefore no gas mixing is taken into account.

FIGURE 1. Two-stage scenario tree.

E. NON-ANTICIPATIVITY CONSTRAINTS
Equations (47)-(51) describe the non-anticipativity con-
straints of the problem. To be more specific, equations
(47)-(49) denote the electricity-side constraints, enforcing
the common commitment, start-up and shut-down status of
lignite units and CCGTs among all examined scenarios s,
respectively. OCGTs and hydro units’ commitment deci-
sions are allowed to be taken at intra-day dispatch horizon,
therefore no such constraints are required for these units.
Equation (50) on the other hand enforces the common hourly
compressor operating state, which constitutes the gas side
binding binary scheduling decision, while (51) selects the
control valve state, respectively. Fig. 1 presents the 1st stage
(here and now) and 2nd stage (wait and see) decisions of the
integrated scheduling model.

ugts = wgt ∀ g ∈ G, t ∈ T , s ∈ S (47)

ygts = vgt ∀ g ∈ G, t ∈ T , s ∈ S (48)

zgts = ζgt ∀ g ∈ G, t ∈ T , s ∈ S (49)

iats = hat ∀ a ∈ Acm, t ∈ T , s ∈ S (50)

jats = ξ
a
t ∀ a ∈ Acv, t ∈ T , s ∈ S (51)

F. RELAXATION OF NONLINEAR EQUATIONS
Mathematical relaxation is applied to all nonlinear model
equations in order to render the stochastic problem compu-
tationally tractable. Since all nonlinearities lay on the gas
part of the combined model, the following discretization
techniques are performed:

a) The extended incremental method is used to handle
the nonlinearities in Weymouth equation (32) and in
coupling equation (46). The idea is to construct piece-
wise MIP-relaxations of the nonlinearities in the equa-
tions with predefined errors ε1 and ε2, respectively,
as described in more detail in the Appendix [34].
For the model described herein, the predefined errors
for the extended incremental method are selected as
15 bar2 and 1000MW2, for squared pressures and gas-
fired power generation, respectively.

b) The coupling equation (46) is further decoupled from
the unit commitment binary by applying the big M
method, as analyzed in the Appendix.

c) Finally, the compressor operating range inequalities
(33) are linearized via an outer approximation scheme
for convex relaxations [36], which follows the mixed-
integer linear reformulation procedure analytically pre-
sented in Chapter 6 of [37].

After the relaxation of all non-linear model constraints,
the overall two-stage optimization problem is formulated as
a Mixed Integer Linear Programming (MILP) model.

IV. ILLUSTRATIVE IMPLEMENTATIONS
A. CASE STUDY
A test case based on actual real-world conditions (typical
days of January 2020) of the Greek electricity and natural
gas systems is used in this section for the evaluation of the
two-stage stochastic optimization approach. The examined
test system comprises a total number of 28 thermal generating
units and 18 hydro units; the range of energy and reserve
offers per unit category is presented in Table 2.

TABLE 2. Summary of Generation Units in the Greek Power
System.

The Greek gas transmission system is graphically pre-
sented in Fig. 2, where the topology of the gas-fired gener-
ating units is depicted. The Greek gas transmission system
constitutes a radial tree structure comprising 3 supply entries,
34 non-electric and 11 electric gas demand nodes, along
with a compressor and one control valve. The full system
representation is analytically described in [38] as GasLib-134
gas network. The historical (2017-2020) gas entry distribu-
tion of the three entry nodes has been considered for the
designation of the typical nominations of suppliers in the
entry points, which led to 45% of the gas injections supplied
through Sidirokastro, 15% supplied through Kipi and 40%
supplied by Revythoussa LNG terminal. The pressure at the
prevalent entry node (Sidirokastro) was set to its lower bound
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FIGURE 2. Graphical illustration of the Greek gas transmission
system.

FIGURE 3. Electricity net load and non-electric gas load
scenarios.

for every time period in order to stress the operation (technical
constraints) of the gas network.

The stochastic parameters for the integrated schedul-
ing problem constitute the electricity net load and the gas
non-electric (residential, commercial, industrial) demand.
Fig. 3 presents the examined three electricity net load
(demand minus RES injections) scenarios stemming from
a typical day-ahead forecast and considering that the RES
injections forecast errors increase with the forecast lead
time (as a percentage of the level of RES injections) [39].
These scenarios are hereinafter designated as EL-EM-EH.
Similarly, the three gas non-electric load scenarios stem
from typical hourly load profiles of winter days in Greece,
expressing typical low, intermediate and high demand
cases (hereinafter designated as GL-GM-GH, respectively),
ranging from 7500 to 8100 thousand Nm3 on daily basis.

FIGURE 4. Electric gas consumption in the nine designated
scenarios.

As a result, the cartesian product of the above electricity and
gas load scenarios define nine scenarios in total to be inserted
in the presented stochastic programming model with equal
probabilities.

B. TEST CASE RESULTS
The results of the stochastic model are provided in this
section. Fig. 4 depicts the total gas consumption of gas-fired
generating units in all nine designated scenarios, which essen-
tially reveals their production schedules during the examined
days. As expected, there is a significant differentiation in the
low and high electricity net load scenarios, since the CCGTs
constitute intermediate load units in Greece (see Table 2),
i.e. covering the intermediate load of the day, whereas their
production is ‘‘shaved’’ in peak-load hours of 20-23 due to
increased non-electric gas demand activating the gas network
(i.e. lower pressure) constraints.

FIGURE 5. Compressor horsepower schedule in the stochastic
model solution.

Fig. 5 illustrates the compressor scheduled horsepower for
the nine scenarios as a result of the stochastic model execu-
tion. The compressor is up-and-running (binary decision) at
hours 1-2 and 7-24 considering all possible real-time real-
izations. The illustrated day-ahead compressor horsepower
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schedules are slightly differentiated due to the different con-
ditions encountered in each scenario, but at the day-ahead
horizon they represent indicative schedules; the actual dis-
patch shall be determined closer to real-time considering the
actual realization of system conditions.

In order to evaluate the solution attained by the stochas-
tic model, we simulate the current practice in the daily
scheduling and dispatch process of the power and gas TSOs,
which is to execute deterministically the day-ahead schedul-
ing process with the base case (selected as the intermediate
scenario EM-GM) and then, considering the attained commit-
ment decisions for the generating units and the compressor,
respectively, dispatch both units and the compressor1 in real-
time based on the electric and gas load realizations.

The deterministic solution of the scenario EM-GM yields
the commitment decisions depicted in Fig. 6 in blue color
for the generating units and for the compressor, whereas
the stochastic solution respective commitment decisions
are illustrated in pink color. Only the CCGTs with dif-
ferent commitment decisions, as compared to the stochas-
tic model’s solution, are illustrated (namely ‘‘LAVRIO4’’,
MEGALOPOLI5 and ‘‘THISVI’’), shown in Fig. 6(a)(b)(c).
A different commitment schedule is also derived for the
compressor, as shown in Fig. 6(d), while the control valve
remains open throughout the whole examined day.

Considering the commitment decisions of the stochastic
model solution, all electricity net load and gas load realiza-
tions result in feasible dispatch of the resources covering
the load of both systems. On the other hand, considering
the commitment decisions of the deterministic model solu-
tion, both intermediate electricity and gas load realizations
(EM-XX and XX-GM, respectively) do not lead to any type
of infeasibilities, expressed as either RES curtailments for the
electricity system or non-electric gas load shedding for the
gas system. However:

a) The low net electricity load realizations (EL-XX) lead
to RES curtailments at the 15th and 16th hours of the
day, as shown in Fig. 6(e). This is attributed to the fact
that the electricity net load reaches its daily minimum
level and, even though all thermal units operate at their
technical minimum, there still is electricity production
surplus expressed as RES curtailments of 26 and 38MWh
during these hours, respectively. This surplus stems from
the fact that in the deterministic model solution THISVI
(having a technical minimum of 230 MW) is committed
during hours 15 and 16, whereas in the stochastic model

1In practice, most gas TSOs do not even dispatch on hourly basis the
compressor in real-time but decide its dispatch level in day-ahead and operate
the compressor at this level without any intra-day dispatch fluctuations.
However, for the sake of the comparison with the stochastic case and in
order to be more fair with the deterministic approach, we consider that
the gas TSOs act in a vigilant way and change the compressor horsepower
when needed to constantly regulate the nodal pressures and optimize the
gas transmission system operation in terms of compressor cost savings.
In addition, compressor horsepower exhibits hourly ramping constraints in
real operation, which were omitted in the current model to alleviate the
computational burden.

solution THISVI is non-committed but LAVRIO 4 (with
a technical minimum of 94 MW) is taking over to cover
the electricity load and the reserve requirements. The
difference of 136 MW in the dispatch of the two units
leads to the RES curtailment in the deterministic model
solution.

b) The high gas load realizations (XX-GH) lead to non-
electric gas load shedding (10886 Nm3 in total) at the
15th and 16th hour of the day, as shown in Fig. 6(f). Even
though all CCGT units are dispatched at their technical
minimum in order to provide extra network capacity for
the gas supplies to meet the (priority) non-electric gas
demand, shedding still occurs due to the combined effect
that: (a) the main supply entry (i.e. SIDIROKASTRO at
the northern part of the network) is operating at mini-
mum pressure, (b) the compressor is out of operation (see
Fig. 6(d)) during these two hours, (c) the LNG source lies
at the southern part of the network, and (d) the shed gas
load is located at the middle of the north-south axis of
the gas transmission network (in exit point ‘‘VOLOS’’
in Fig. 2). Thus, the overall gas network (i.e. pressure)
constraints and the maximum injection bound of the LNG
terminal to the pipeline cannot facilitate the full covering
of the gas target load at node ‘‘VOLOS’’. On the other
hand, in the stochastic model solution the compressor is
committed as active during hours 15 and 16 (see Fig. 6(d))
and the pressure constraints for the gas flow from the
northern to the southern part of the network are not acti-
vated, resulting in no gas shedding.

TABLE 3. Dispatch Cost In each Scenario Realization.

The overall dispatch cost in each of the nine realiza-
tions in both the deterministic and stochastic models’ solu-
tions is presented in Table 3, considering a penalty cost
equal to 150 e/MWh for RES curtailments and equal to
1.725 e/Nm3 for the shed gas quantities. As shown, in all
realizations except from EM-GM (base case, which was used
as input for the deterministic model solution) and EM-GL
the stochastic model outperforms the deterministic model
in terms of overall system cost. The cost differences range
from 220-313 ke in realizations EH-XXwhere themaximum
savings are attained, 2-19 ke in realizations EL-XX, and
about 6 ke in realization EM-GH. As noted above, in realiza-
tions EM-GL and EM-GM the deterministic model solution
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FIGURE 6. Deterministic vs. stochastic solution results.

is better than the stochastic one by about 24 and 10 ke,
respectively. Considering the probabilities of the stochastic
scenarios, the average savings encountered by use of the
stochastic model amounts to about 91 ke.

C. COMPUTATIONAL ASPECTS
The proposed optimization model was solved in a desktop
PC equipped with an i7/8-Core/4.0 GHz CPU processor and
16 GB of RAM, using the GAMS modeling software [41]
and the Gurobi 9.0 solver with a MIP optimality gap toler-
ance 0.1% [42]. The implemented linearized gas model was
built with the C++ software LaMaTTo++ [43]. The prob-
lem comprises 511,723 constraints with 37,896 binary and

359,659 continuous variables. The overall computational
time for the examined 9 scenarios is about 20 minutes, which
is considered acceptable for the current industry standards.

The selection of error ε in the extended incremental
method plays an important role in the execution of the
integrated model. The smaller the error selected, the closer
the relaxed problem’s solution would be to the respective
masterMINLP, to the detriment of model size and complexity
since a very tight relaxation leads to increased number of
continuous and binary variables. This would make it impos-
sible to solve the problem within reasonable execution times.
On the other hand, a large selected error would result in short
execution times, albeit with random solutions that would have
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no practical meaning for the examined problem. In order to
examine the effect of changing the error bounds, a sensitivity
analysis is performed in this section. For the integrated model
presented in this paper, the decrease in the error bound for
the squared pressures ε1 from 15 bar2 to 10, 5 or 1 bar2

makes the model intractable, regardless of the selected error
for the squared power outputs. For this reason, ε1 is kept
constant and a sensitivity analysis with the error bound for the
squared power outputs ε2 was performed; the results in terms
of number of equations and variables as well of execution
times are presented in Table 4. As shown, the only value of ε2
that yields a solution time less than one hour (which was set
as the solution time maximum limit) is 1000 MW2. All other
selections result in higher accuracy but also to higher solution
times.

TABLE 4. Solution Performance Indices.

V. CONCLUSION AND FURTHER RESEARCH
This paper presents a stochastic two-stage formulation for
the integrated solution of the electricity and gas systems with
uncertainty on both the electricity and the gas side, that incor-
porates (a) the full unit-commitment modeling for the explicit
modeling of the electricity power system and (b) a detailed
configuration of the gas network incorporating linearized gas
network constraints. Three distinct linearization techniques
(extended incremental method, outer approximation and big
M method) for the linearization of the Weymouth equation,
the compressor operating range and the electricity-gas cou-
pling equation, respectively, were incorporated in a stochastic
model for the integrated solution of the two systems. The use
of the binary/discrete decisions for the operating control com-
ponents of the gas network (i.e. the compressor commitment)
provides extra control to the gas TSO at the scheduling stage.

The stochastic model has been evaluated in a medium-size
real-world test system considering nine electricity net load
and gas load scenarios. The test results prove that the pre-
sented stochastic model solution outperforms the respective
deterministic one (which constitutes the current best practice
of electricity and gas TSOs), since it leads to zero infeasi-
bilities and curtailments (i.e. RES curtailments and/or non-
electric gas load shedding) in real-time. The stochastic model
was solved one-shot using a commercial solver in acceptable
time limits.

Further research shall be targeted at handlingmore electric-
ity and gas scenarios and at the implementation of adequate
decomposition techniques for (a) the solution of the under-
lying optimization problem in shorter execution times and
(b) to accommodate tighter mixed-integer relaxations.

APPENDIX
The extended incrementalmethod is adopted for the lineariza-
tion of the nonlinearities that arise in the gas subproblem
due to its better performance compared to other linearization
methods [40] and its well-examined application in large-scale
gas networks [37]. The target is to construct MIP approxi-
mations of a univariate nonlinear function f (y) that satisfy a
predefined upper bound ε for nonlinearity violations.

To this end, a piecewize linear interpolation ϕ(y) of
f is constructed over a finetely bounded interval [y, y],
such that the approximation error bound ε is satisfied, i.e.
maxy |f (y)− ϕ(y)| ≤ ε, as proposed in [32]. The ϕ(y) func-
tion is expressed as the piecewise interpolation of n-1 break-
points b ∈ [bo = ymin, bn = ymax] defined over n segments,
and the extended incremental method is applied after the
substitution of z = ϕ(y) by the following system:

y = bo +
n∑
i=1

(bi − bi−1)δi (52a)

z = f (bo)+
n∑
i=1

(f (bi)− f (bi−1))δi + τ (52b)

δi+1 ≤ wi ≤ δi ∀i = 1, . . . , n− 1 (52c)

0 ≤ δi ≤ 1 ∀i = 1, . . . , n (52d)

wi ∈ {0, 1} ∀i = 1, . . . , n− 1 (52e)

Each of the δ variables is associated with a discretization
interval n and due to the filling condition (52c) 0 ≤ δn ≤

wn−1 ≤ δn−1 ≤ . . . ≤ w1 ≤ δ1 ≤ 1, we ensure that every
feasible point of the above system δi ≥ 0 requires δj = wj = 1
for all j ≤ i and that δi ≤ 1 requires δj = wj = 0 for all j ≥ i.
This way, there can only be at most one active index i of an
interval with 0 < δi < 1 with all preceding intervals j at
δj = 1.
With the addition of the variable τ in (52b) τ ∈ [−ε, ε],

all points (y,z) lay within a box of 2t height that encloses
the graph of the piecewise linear function, ensuring that
|f (y∗)− z∗| ≤ ε holds for all feasible points that satisfy (52).
We again refer to [34] and [35] for more details on the
method.

The extended incremental method is applied for the given
model equations in the form of nonlinear functions f (y) = y2

which, in the case of the integrated power-gas problem, are
expressed by (y, z) =

{
(pm, πm) , (pn, πm) , (ωg, eg)

}
, where

p2m = πm, p
2
n = πn and e

2
g = ωg. All equations of the system

are indexed by time t ∈ T and scenario s ∈ S sets, though
not displayed here for simplicity purposes.

To futher decouple the binary variables ug from the power
generation variables eg in coupling equation (46), after the
discretization of the squared power generation, the big M
method is applied as follows:

δig ≤ ug (53a)

ψg =
ag + bgeg + cgωg

H
(53b)

ϕg ≥ ψg − (1− ug)M (53c)
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ϕg ≤ ψg + (1− ug)M (53d)

ϕg ≤ ugM (53e)

ϕg ≤ ψg (53f)

where ϕg and ψg auxiliary positive variables and e2g =
ωg. Parameter M is taken equal to

(
ag + bgemaxg +

cg
(
emaxg

)2 )
/H , with emaxg being the highest maximum avail-

able capacity of all gas-fired units g ∈ Ggas.
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