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ABSTRACT Residential-scale distributed energy assets, like residential electric water heaters, individually
present a negligible load to the power grid. When aggregated, however, these assets can impart significant
effects within a balancing area; they may be dispatched en masse to provide grid services. An aggregation of
water heaters may be controlled to assume generator-like functions with the ability to effectively ‘‘decrement
power’’ through dispatch of load. This resource study examines the capabilities of a 10,000 unit water heater
aggregation by subjecting the aggregate to dispatch requests of various size and duration, then analyzing how
the aggregate responds to and recovers from these requests. Results show that a large-scale aggregation of
electric water heaters may effectively decrement power on the scale of megawatts when the dispatch request
size and duration are appropriately considered.

INDEX TERMS Demand response, distributed energy resources, DERMS, aggregation, CTA-2045, electric
water heaters, energy take.

I. INTRODUCTION

D ISTIBUTED Energy Resources Management Systems
(DERMS) have been recognized as a means to pro-

vide energy or manage loads to better operate the power
grid [1]. By injecting power into the grid or reducing load,
DERMS can accomplish a number of useful grid functions.
In the most basic of terms, when generation is greater than
load, DERMS can turn on additional loads to reestablish
the balance. Likewise, when load is greater than generation,
DERMS can turn off loads. These simple dispatch commands
may be used to provision specific ancillary grid services such
as frequency regulation, spinning and non-spinning reserve,
and peak demand mitigation [2].

Aggregations of Electric Water Heaters (EWH) could be
managed by a DERMS to fulfill energy bids. Laurent and
Malhame developed a model to consider the physical char-
acteristics of EWHs including insulation, element rating,
and water demand [3]. They used this model to test the
aggregate behavior of the EWHs after power interruptions.
Fitzgerald et al. simulated an aggregation of 100,000 EWHs
to improve efficiency of wind generation, observing a
decrease of 25% in electric power usage and a 38% decrease

in energy costs [4]. Roux et al. developed a peak demand
manager algorithm that encouraged EWHs to compete for use
of the grid during peak hours, limiting electricity to EWHs
with the greatest need [5]. Li et al. simulated an aggregator
with EWHs, solar panels, battery energy storage, and electric
vehicles intended for large multi-tenant buildings [6]. They
developed control algorithms for the resources to minimize
power costs through load shifting and energy trading, leading
to shorter return on building investment and lower energy
bills for tenants. Kapsalis and Loukas simulated a comput-
erized optimal scheduling algorithm that aimed to keep elec-
trical costs low while minimizing customer discomfort [7].
They assumed control of the setpoint features of their EWH
aggregation. Kapsalis et al. presented a heuristic scheduling
algorithm to balance decisions between consumer comfort
and power costs [8]. They simulated their algorithm in a
real-time energy market and found it performed as well as a
standard computerized optimization model with considerably
less overhead.

EWHs have been harnessed by utilities via large-scale
DERMS programs. Utility load control projects involving
residential EWHs were implemented as far back as the late
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1970s when Florida Power and Light installed controllable
EWHs in customer homes in Boca Raton [9]. By the 1990s,
this program had grown to include hundreds of thousands of
customers. More recently, Great River Energy, an electrical
cooperative in rural Minnesota, implemented a residential
EWH aggregation system to provide demand response [10].
Currently, Great River Energy manages an aggregation of
over 110,000 EWHs, amounting to almost 20% of its cus-
tomer base. Hledik et al. examined the use of on/off switches
to control theGreat River Energy aggregation, which includes
a mixture of resistive water heaters and heat pump water
heaters [11]. The Pacific Northwest GridWise demonstration
project conducted a field demonstration in communities of
the Olympic Peninsula [12]. Participants provided access to
a variety of residential loads, including water heaters. These
were used to manage feeder congestion through peak load
reduction using price signals via a two-way communication
system.

The purpose of this manuscript is to investigate the
resource availability of a large aggregation of EWHs, to sub-
ject these aggregated EWHs to dispatch requests of various
bid sizes and duration, and to analyze how the aggregation
responds to, then subsequently recovers from, a dispatch. The
EWH aggregation model uses dispatch commands that con-
form to the industry-developed ANSI/CTA-2045 commu-
nication standard, developed by the Consumer Technology
Association [13].

The remainder of this paper is organized as follows.
Section II discusses the methods and methodology used to
build this EWH aggregation and simulate its behavior to
energy bids. Section III presents the results of the aggregator
simulation to various energy bids. Section IV discusses the
results of the simulation. In Section V, the authors provide
concluding remarks [14].

II. EXPERIMENT METHODS
A. AGGREGATION MAKEUP
Amodel of 10,000 EWHswith unique hot water draw profiles
was developed. The water draw profiles were produced using
the Domestic Hot Water (DWH) Schedule Generator created
by Hendron et al. for the U.S. Department of Energy [15].
This event generator randomly produces a schedule of hot
water draws for households in the United States. The event
list is built using macros within Excel. The key inputs to
the event generator are setpoint of the water heater, number
of bedrooms, and a U.S. city from which weather data are
gathered.

The behavior of water heaters depends on household size.
U.S. census data were used to apportion a population of one,
two, three, four, and five bedroom households [16]. House-
holds noted to have ‘‘zero bedrooms’’ in the Census data were
assumed to behave like households with one bedroom.Where
the Census referenced ‘‘five or more’’ households, these were
assumed to all be five bedroom households.

For this simulation, all water heaters were given a standard
setpoint of 120◦F . Weather data came from the U.S. city of

TABLE 1. Percent make up of water heater units.

Portland, Oregon. The number of bedrooms varied to match
the census data. The event generator was a macro-enabled
Excel spreadsheet, with an event generating macro written
in Visual Basic that generates an annual draw schedule for
a single set of inputs; a typical annual schedule has around
15,000 water draws per household. For this work, the macro
was modified to produce annual water draw schedules for
10,000 households.

The EWHs themselves were modeled using the char-
acteristics of smart-grid enabled units. These units use
CTA-2045 application-layer messages to communicate with
a DERMS. Three sizes of EWH were used: 40-, 50-,
and 80-gallon. The number of bedrooms in the house-
hold influences the size of the EWH. One and two bed-
room households were assigned 40-gallon EWHs, three
bedroom households 50-gallon EWHs, and four and five
bedroom households 80-gallon EWHs. The details of the
10,000 unit aggregation are shown in Table 1.

The CTA-2045 standard defines a universal communi-
cation module (UCM), which is a standardized appliance
socket that facilitates communication between the appli-
ance and a grid operator or aggregator [13]. The standard
is being adopted by both manufacturers and jurisdictions.
The State of Washington codified CTA-2045 in 2019; the
law will require all EWHs manufactured after 2020 to be
CTA-2045-compliant as a condition for sale and installation
within the state [17].

By using the CTA-2045 standard, an aggregator can read
water heater properties such as tank size, element power, and
energy take, the latter being explain in detail in Section II.B.
An aggregator can also issues several different commands to
the water heaters, of which the shed and load up commands
are relied upon for this work [13]. These commands are more
dynamic than the on/off switching utilized by the Great River
Energy aggregation [11]. The commands are service-oriented
in that they request services from the appliance, the response
to which is left to the interpretation of the manufacturer. This
is in contrast to the direct-control approach, wherein a grid
operator has the freedom to adjust customer setpoints, as in
the Kapsalis and Loukas study [7].

B. EWH MODELING
The EWHs heat water to a setpoint, which for this work is
120◦F for all units. The tank is insulated, but thermal energy
slowly dissipates from the tank. When hot water is drawn
from the tank, it is replaced by cold water sourced from the
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water utility. When the tank temperature drops below a dead-
band temperature, heater elements turn on to increase water
temperature back to the set point. This represents normal
operation for an uncontrolled water heater [18]. The model
assumes that the temperature of the inlet cold water is 51◦F
based on the average cold water temperature in Portland,
Oregon. Heuristically, it was found that a 50 gallon EWH lost
36.3 Wh to ambient conditions of 70◦F over the course of
an hour. The surface area for this measured 50 gallon EWH
was used to scale ambient losses for 40 gallon and 80 gallon
units.

A smart-grid enabled EWH can be operated as a controlled
load. The unit can be given the CTA-2045 shed command
to tell the water heater to lower its minimum temperature
setpoint. The EWH will follow this command past its normal
deadband temperature, the temperature at which the unit
would ordinarily begin reheating. The EWH will continue
to follow this shed command until the temperature in the
unit drops below the manufacturer’s low-limit comfort shut-
off temperature. When an EWH drops below this low-limit
comfort shutoff temperature, the EWH asserts local control
and stops responding to the shed command from the grid
operator. The EWH starts reheating and continues to reheat
until reaching the deadband temperature, at which point the
EWH cedes control back to the grid operator.

By continuously sending shed commands to the EWH
aggregation, the EWH temperatures will oscillate between
their deadband temperature and their low-limit comfort shut-
off temperature. For this research, the deadband temperature
was set to 117◦F , and the low-limit comfort shutoff tempera-
ture was set to 114◦F . These values derive from observations
in other work [19]. By operating the aggregate EWH load in
this manner, the EWH aggregation can provide a steady load
available for dispatch.

Each EWH has two resistive heating elements. For the
smart-grid enabled water heaters modeled in this work, these
elements are rated at 4500 W. Only a single coil may operate
at a time. The modeled EWHs draw the entire 4500 W of
power when a heating element is on.

The energy take of an EWH describes the amount of
electrical energy an EWH can import. As a water heater
looses thermal energy, the tank temperature decreases.
Thermal losses occur parasitically due to radiative, conduc-
tive, and convective cooling to the environment. Losses also
occur due to customer water draws, in which case cold inlet
water displaces the withdrawn hot water. In either case, loss
of thermal energy results in an increase in energy take. When-
ever the measured tank temperature is below the setpoint
temperature, the EWH has a positive energy take, which is
a measure of the electrical energy that can be imported from
the grid to raise the temperature back to the setpoint. As such,
water heaters provide a means for incrementing load within
an electrical balancing area, which is effectively equivalent to
decrementing generation.
Energy take is measured inWh, and is defined as the energy

necessary to heat the volume of water in the storage tank to

the setpoint temperature.

Q = m c (Tsetpoint − Ttank )

Here, m is the mass of the water in the tank, and c is the
specific heat of that water, 4180 kJ/(kg oC). This assumes
100% efficiency from the resistive heating heating coils. The
energy take is zero when the temperature in the tank is equal
to the setpoint temperature.

C. EWH DISPATCH
EWHs respond to dispatch commands from the aggregator.
For this model, the aggregator is only able to control EWHs
that are responding to the shed command. Those EWHs that
have gone past their low-limit comfort shutoff temperature
have asserted local control, so they cannot be dispatched by
the aggregator.

The aggregator makes a decrement bid into an energy
market. Typically, a decrement bid is a commitment by a
generator to reduce its generation for a given period of time.
However, an aggregator ‘‘reduces generation’’ indirectly by
increasing load, in this case by turning on a large aggregation
of EWHs. Supposing the aggregator’s bid clears the market,
the aggregator will dispatch EWHs to cover this bid. The
dispatch algorithm sorts through the available EWHs and
calls on some of them to match the bid over each 5 minute
operating interval. The aggregator turns on these individual
EWHs by sending them the CTA-2045 load up command.

A five minute dispatch window is used because it matches
the fastest time intervals over which real-time energy markets
operate. A dispatch algorithmwas written that sorts EWHs by
energy take from highest to lowest at each 5 minute interval.
The dispatch algorithm selects the units with the highest
energy take first that are under control of the aggregator (i.e.
not heating by local control). It then calculates the amount of
energy owed over the course of each 5 minute interval and
dispatches EWHs to meet that load.

As the bid period continues, EWHs that are heating may
reach their setpoint temperature. At this point, the EWH stops
heating and becomes idle. At each successive interval over
which the bid lasts, the aggregator continues to dispatch units
that were already heating and still able to heat. The aggregator
assigns additional EWHs to cover for the EWHs that have
stopped heating.

To properly account for the utility’s energy commitments,
the authors assumed that water heaters are part of the demand
forecast. Water heaters that have already started heating due
to local control are not allowed to cover the energy required
by the decrement bid. Additionally, if a dispatched EWH
would have turned on in a later 5 minute interval of the bid
period, the energy required to heat the EWH from its low-
limit comfort level to its deadband would be added to the
energy requirement of those later 5 minute intervals. At the
end of the bid period, all water heaters return to either local
control if the water heaters are below their low-limit comfort
temperatures or to their idle state where they can receive and
respond to shed commands.
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FIGURE 1. State diagram for electric water heater model.

D. SIMULATING THE EWH AGGREGATION
The 10,000 water draw profiles were loaded into an array
within Matlab. EWHs were assigned an initial energy take
and state (shedding or heating) through a random number
generator. The EWHs were first simulated to develop a base
case that did not include any bidding, thereby providing a
reference aggregate energy take profile to which other exper-
iments could be compared.
Energy take is affected by water draws, ambient ther-

mal losses, and locally-controlled heating. The EWHs cycle
between two states, as shown in Figure 1. In State 1,
Aggregator-Controlled Shed, EWHs continuously received
the shed command, gaining energy take as they loose thermal
energy to ambient conditions and water draws. In State 2,
Locally-Controlled Heating, they gain thermal energy due to
internal control while also losing thermal energy to ambient
conditions and water draws.

A full year of data were simulated using the algorithms
in Table 2. Every five minutes, the energy take and state
of each individual EWH are stored in an array for all
10,000 units. The new energy take values and states, along
with the water draw schedules, are used to calculate the next
energy take values and states of the EWHs.

Participation in aggregated dispatch does not result in
customers changing their hot water draw profiles. An EWH
that is dispatched by an aggregator defers reheating to a
later time, which is a temporal shift in energy consumption
rather than a change in energy consumption magnitude. Cus-
tomer water draw profiles are expected to stay unchanged so
long as the water heater temperature does not drop below
the minimum threshold temperature. As such, customers
are unlikely to notice that their water heaters are partici-
pating in the programs. Studies by both Pacific Northwest

TABLE 2. EWH calculations at each state.

National Laboratory and Bonneville Power Administra-
tion have shown that such modifications to tank temper-
atures do not significantly impact customer participation
satisfaction [12], [20].

An algorithm to dispatch EWHs to cover cleared bids was
scripted using Matlab. This algorithm established a State 3,
Aggregator-Controlled Heating. The transitions between all
three states are illustrated in Figure 1. When a dispatch is
activated, an array is built to describe the aggregation’s net
energy take and the states of all EWHs for the current day
and the next day. The base case is used to describe the energy
states until the dispatch occurs. Once the dispatch occurs,
the aggregation is resimulated.

The EWHs are sorted from high energy take to low energy
take. The unit with the highest energy take is assigned to cover
the bid if the unit is in State 1. To assign a unit to a bid means
changing the unit’s state from State 1 to State 3. If the EWH is
in State 2, it is skipped because it is not responding to aggre-
gator commands. This process is illustrated in Figure 2. After
a unit is assigned to cover the bid, the energy that unit can
provide across the next five minute period is calculated and
subtracted from the total energy required across the current
five minute interval. This process of assigning the highest
energy take units continues until the energy required to cover
the bid is met for the current five minute interval. At this
point the units are simulated across the five minute interval
using the algorithms from Table 2. The ending energy take
values and states are then recorded.

After resimulating over a five minute interval, the program
checks to see if the bid time period has ended. If the bid has
ended, the program reassigns units that were in State 3 back to
State 1. If the bid has not ended, the program lets all the units
in State 3 remain there, and again calculates the necessary
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FIGURE 2. The aggregator dispatches the units with the highest
energy take, skipping those in State 2.

energy to provide across the next five minute interval. The
energy provided by the units in State 3 is calculated across
the new five minute interval and subtracted from the required
energy to cover the bid across that interval. If additional units
are required, EWHs are dispatched according to the dispatch
algorithm, with the highest energy take units being selected
first. The simulation repeats across this interval and continues
until the bid period ends. Once the bid period ends, all units
are restored to either States 1 or 2.

III. RESULTS OF SIMULATING AGGREGATED EWH
Simulations were used to test four cases: no bidding, a one
hour bid, an 18 hour bid, and a 5 minute bid. For consistency,
all of the test bids start at 02:00 on the 6th of June. Bid power
and duration were chosen in order to demonstrate the impact
that bids have on the aggregate system. Bids were also chosen
that stressed the system by requesting either more energy than
was available from the aggregate or more power than was
available. By analyzing the results from these simulated bids,
one may observe how water heater units are allocated to meet
the bid, how the aggregate energy take changes as a result of
a bid, and how the aggregate energy take recovers once the
bid is complete. Bids were not selected by considering the
perspective of a dispatcher, wherein a bid size needs to be
determined to meet demand requirements. Rather, bid sizes
were chosen to perturb the system and observe the results.

A. NO-BIDDING CASE
In this case, no bids were made, so the simulated data only
relied on the water heaters to act due to ambient heat losses
and water draws. Figure 3 shows the aggregation’s energy
take over the course of the day. The upper horizontal line
shows the energy take if all units were at their low-level
comfort shutoff temperature. This is the point at which the

FIGURE 3. The simulated energy take of the EWH aggregation
with no bids.

FIGURE 4. The percent of the EWH aggregation heating and
percent of households experiencing hot water draws during a
summer weekday.

EWHs assert local control and start heating themselves. The
lower horizontal line shows the energy take if all the water
heaters were at their shed deadband temperature. With no
bids, this is the minimum energy take the EWHs would have
when responding to an aggregator’s constant shed commands.
The amount of energy take is a keymetric in that it shows how
much energy the EWH aggregation can draw from the grid.

The EWHs see a rise in energy take in the morning hours
around 06:00 to 08:00, and a rise in the evening from 18:00 to
22:00. The main cause of variation here comes from water
heaters responding towater draws. Figure 4 shows the percent
of water heaters in the aggregation experiencing a water draw,
and the percent of EWHs in the aggregation that are heating.
The EWHs heating appears to slightly lag the hot water
draws, as expected. During the morning peak, a little over
15% of EWHs are heating. The percent of EWHs heating is
another key metric as it speaks to the power capacity of the
aggregate.
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FIGURE 5. The energy take of the EWH aggregation responding
to a 1 hour bid from 02:00 to 03:00.

FIGURE 6. The percent of the EWH aggregation heating while
responding to a 1 hour bid from 02:00 to 03:00.

B. ONE HOUR BIDDING CASE
As Figure 3 shows, for an aggregation of 10,000 EWHs,
a little over 5 MWh of energy take is reliably available
throughout the day. This bidding simulation examines one
hour bids of 4.5 MW and 6 MW to analyze the effects of a
bid that meets its obligations versus an over bid, which fails
to meet the bid commitment.

Figure 5 shows a nearly-linear drop in energy take across
the hours of 02:00 to 03:00 as EWHs are dispatched and start
heating. The 4.5 MW bid drops the energy take to around
1MWhwhile the 6 MW bid drops the energy take to 0 MWh.
Figure 6 shows the percent of EWHs heating. In the 4.5 MW
bid, about 20 to 25 percent of the EWHs are dispatched during
the bid period. In the 6 MW bid, the dispatch looks similar to
the 4.5 MW bid until the last two intervals when it dispatches
100% of its units but still cannot cover the bid. After the bid
period, the EWH aggregation starts to recover. A 2% settling
time compared to the no-bid case occurs around 10:00 am.

Power output of the system is shown in Figure 7 for bids
over a two hour period. The aggregation offers power until

FIGURE 7. The power absorption of the EWH aggregation
responding to a 2 hour bid from 02:00 to 04:00.

FIGURE 8. The energy take of the EWH aggregation responding
to an 18 hour bid from 02:00 to 20:00.

it runs out of energy take and power drops to near zero. Due
to the consistent presence of hot water draws and ambient
losses, the floor of the power output remains around 0.4 MW.

C. 18 HOUR BIDDING CASE
An 18 hour bid offers a much smaller amount of power over a
long period of time. 1.5MWand 2.0MWbids were simulated
over a time period from 02:00 to 20:00. Figure 8 shows the
energy take throughout the bid period starting at midnight on
the day of the bid and going to noon on the following day.

Figure 9 shows the percent of the EWHs heating over each
interval. The 1.5 MW bid has no problems absorbing power,
but the 2.0 MW has two periods from 04:30 to 06:00 and
14:00 to 18:00 over which the aggregation fails to absorb
the necessary power despite all the EWHs heating. Figure 10
shows the aggregation’s power absorption throughout the bid
period.

D. 5 MINUTE BIDDING CASE
Previous bids were limited by the EWH aggregation running
out of energy take; the bids were limited by the aggregation’s
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FIGURE 9. The percent of the EWH aggregation heating while
responding to an 18 hour bid from 02:00 to 20:00.

FIGURE 10. The power absorption of the EWH aggregation
responding to an 18 hour bid from 02:00 to 20:00.

ability to store energy. Shorter period bids can be limited
by power rather than energy take. Figure 3 shows roughly
5 MWh of energy take, which would equate to 60 MW of
power over a single 5 minute period. However, the EWHs
themselves only have a 4500 W coil, so the aggregation
of 10,000 units can absorb a maximum of 45 MW.

Additionally, the unit dispatch can only call on EWHs in
State 1, which are the units under control of the aggregator.
When units have dropped below their low-limit cutoff, State
2, they cannot be dispatched. Figure 11 shows the results of
a 45 MW bid simulated across a 5 minute period. A sizable
armound of energy is absorbed across the 5minute period, yet
about 1.7 MWh of energy take remain. Figure 12 shows the
amount of units heating, and it appears 100% of the units are
heating. Checking the simulation’s numerical output, 99.7%
of the units are actually heating and 0.3% remain shedding.
With only 43 MW being absorbed from the aggregation, this
bid situation has a surplus of energy take, but is limited by the
aggregated power of the heating elements.

FIGURE 11. The energy take of the EWH aggregation responding
to a 5 minute bid from 02:00 to 02:05.

FIGURE 12. The percent of the EWH aggregation heating while
responding to a 5 minute bid from 02:00 to 02:05.

IV. DISCUSSION
EWHs have a primary purpose: to provide hot water to cus-
tomers. An EWH aggregation could provide a grid service,
but this should be considered secondary to their primary pur-
pose. Otherwise, customers would likely be dissuaded from
participating in a DERMS program. This model assumes that
the EWHs are able to provide hot water at all times, and that
any grid service functionality comes second.

The simulations of the 10,000 EWH aggregation demon-
strate the ability of an aggregator to follow decrement bids
in a 5 minute market. The model consisted of 39.5% of
households with 40 gallon units, 39.6% with 50 gallon units,
and 20.9% with 80 gallon units. This could be a particularly
useful model for the State of Washington, which recently
passed a law requiring new EWHs be CTA-2045 compli-
ant [17]. The model also assumes assets that had turned on
before the bid or would turn on due to ambient heat losses
could not be used as part of the aggregation, as these assets
should be considered part of the load forecast. The model
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FIGURE 13. The maximum bid the EWH aggregation can cover
over a given number of five minute intervals starting at 02:00.

additionally assumed that the power availability of the units
was 4500 Watts, which is not an unreasonable assumption as
most water heaters have power ratings of this value.

With these assumptions inmind, a 10,000 unit EWH aggre-
gation would have around 5 MWh of energy available at
any given time. The available power would be related to the
units that were not heating or forecasted to be heating. The
maximum available power would be the sum of the power of
all heating elements in all of the units, or 45 MW. However,
since some of these would already be heating (State 2), this
could be de-rated by as much as 20%, to around 36 MW.

When overbidding occurs, the aggregation is unable to
deliver the necessary power over the required time period.
This leads to the power drawn by the aggregation diminishing
in the later intervals. For short, high power bids, the sys-
tem does not recover, and the power diminishes to about
0.4 MW, or the continuous energy coming from the hot water
draws as in Figure 7. However, when fewer megawatts are bid
across longer intervals, the hot water draws could allow the
system to recover back to full power, except for a few non-
compliant 5 minute intervals, as shown in Figure 10.

Because overbidding would result in insufficient power
over certain intervals, the dispatch algorithm should asses the
bid prior to dispatch. The demonstrated algorithm dispatches
units to cover the bid energy until the bid energy can no
longer be covered and the system starts to fail. An alternative
approach would be to recognize first that the aggregator
cannot cover the bid, and then even out deficiencies in the
bid over the entire time interval. For short bids, like a 1 hour,
6 MW bid, the solution is to simply offer 5.2 MW over
the entire hour. The dispatch algorithm can be simulated
across any number of 5 minute intervals to determine how
much power can be bid without failing to deliver across any
individual interval. Figure 13 illustrates the maximum power
that can be bid across any number of five minute intervals
up to two hours, yet this tool cannot be utilized at bid time
without perfect forecasting. A probabilistic model could be
developed to account for imperfections in forecasting. For

longer intervals like the 18 hour period, a 2 MW bid that
reduces the amount of disturbance across all intervals would
be more desirable than a dispatch that assigns units until
failure. Again, this solution also depends on a tool utilizing a
probabilistic forecast.

After nearly depleting themselves, the aggregation of
EWHs takes roughly 7 hours to recover back to the non-bid
energy take level. Here there are two settling times, the energy
settling time for when energy take recovers to within 2% of
the non-bid levels and the power settling time for when the
number of units heating returns to within 2% of the non-
bid levels. After these settling times, the aggregate system
effectively returns to its normal energy state as if no bids had
occurred.

V. CONCLUSION
Standards bodies within the electric power industry have
recently developed several open protocols designed to facil-
itate the aggregation and dispatch of large numbers of res-
idential distributed energy resources such as EWHs. These
include CTA-2045, the Modular Communications Interface
for Energy Management; IEEE 2030.5, the Smart Energy
Profile Application Protocol; and, OpenADR, an open proto-
col for automated demand response. Consequently, utilities,
aggregators, and software developers are now developing
software systems and utility dispatch services capable of
aggregating and dispatching large numbers of residential-
scale distributed energy resources.

This study considered the aggregation of EWHs enabled
with CTA-2045. This smart-grid protocol allows an aggrega-
tor to dispatch EWHs en masse in order to provide decrement
capacity, while concurrently allowing EWHs to provide hot
water as their primary service. This study provides insights
that should prove useful to the electric power industry. First,
this study demonstrated the energy and power capacities that
are available when aggregating large numbers of EWHs,
and how those capacities change over time. An aggregation
of 10,000 EWHs has at least 5 MWh of energy take available
and can dispatch between 30 and 43 MW at any given time;
these numbers are scalable to larger aggregations. Second,
the study showed that distributed energy resources, which
have finite energy needs, have limited energy take available
to contribute to energy bids, and that they can take multiple
hours to recover to pre-bid energy take states. And third,
the study showed that dispatch of distributed energy resources
is limited by the aggregate power capacities of the assets
minus those that are not available because they are below their
low-limit comfort shutoff temperature.

This research simulated the dispatch of a large number
of EWHs, each featuring a unique hot water draw profile.
The work demonstrated the ability of aggregations of EWHs
to provide ‘‘generator’’-like decrement capacity to a grid
operator through various-sized energy bids. For the purpose
of making bids, an aggregator would want to predict an
amount of power and dispatch duration that could be offered
based on forecast data, and to understand how the energy take

VOLUME 7, 2020 89



capacity would rebound after the bid. Doing so would require
a probabilistic model, and should be an endeavor of future
work.
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