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ABSTRACT The increased penetration of renewable energy resources poses challenges for grid stability.
The stochastic generation of solar and wind power cannot be controlled to follow load. And, the transition
away from synchronous generators is reducing the capacity to arrest and recover from frequency disturbances.
Smart electric water heaters provide utilities with an appliance that can be remotely controlled and serve as
a form of energy storage. They have very fast response times and make up a large amount of residential
energy consumption, making them useful for load peak shifting as well as other ancillary grid services.
As smart appliances become increasingly widespread, more and more devices can be brought into the utility
control network and aggregated into a flexible resource on a multi-megawatt scale. This paper demonstrates
the usefulness of aggregated electric water heaters for providing two ancillary services: peak shifting and
frequency response. Because a large number of assets are required, emulators are developed based on
observations of real devices. Emulated water heaters are then connected to an energy resource aggregator
using an internet-of-things network. The aggregator uses these assets to shift consumption away from peak
hours and for detecting upward frequency disturbances.

INDEX TERMS Water heaters, DER, demand response, frequency response, peak shifting, aggregation.

I. INTRODUCTION

THE increasing contribution of renewable energy sources
to electricity generation comes paired with new chal-

lenges for power grid reliability. Traditionally, the vast major-
ity of electric power has been provided by a relatively small
group of large, centrally-controlled generators. These gen-
erators can be dispatched to operate above or below their
normal levels in response to changes in the balance between
supply and demand. Additionally, they provide stability to
the grid electrical frequency through their mechanical inertia.
However, both of these qualities may be lost in the transition
to renewable energy sources. Two of the main renewable
sources, wind and solar power, are inherently stochastic in
their generation capacity. The sun cannot be made to shine,
and the wind cannot be made to blow. The times when
supply is available often do not match the times of peak
consumption, and the climatic factors that influence power
output often also affect the load profile, leading to greater
unpredictability. Generation sources that provide energy to

the grid through DC/AC or AC/AC power conversion, such as
photovoltaics, battery-inverter systems, and Type 4 wind tur-
bine generators, have no mechanical inertia whatsoever, and
detract from the grid’s resilience to frequency disturbances.
Due to the distributed nature of sources such as rooftop solar
installations, accidental or intentional disconnection of a load
region from the grid results in loss of generation as well, and
may exacerbate problems.

Regardless of the transition to renewable generation, some
characteristics of the power system will not change. The
amount of energy supplied and consumed by the grid must
always match. This balance can be maintained through con-
trol of generation, control of load, or both. The large-scale
storage of readily dispatchable electric power, such as
through batteries or pumped-storage hydroelectricity, is not
currently economically feasible and possibly never will
be [1]. If the new means of generation cannot be controlled
sufficiently to provide grid stability, then the solution must
lie with real-time control of power consumption. Providing
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the grid with energy balancing and ancillary services through
control of the load is known as ‘‘demand response’’ (DR).
This research characterizes smart electric water heaters as an
asset for DR, and tests their use for load peak shifting and
recovery from frequency disturbances.

Water heaters are primary candidates for DR, and a large
body of work covering their potential application already
exists [2]–[4]. The research presented here distinguishes itself
by incorporating the individual devices into an aggrega-
tor called Distributed Energy Resource Aggregation System
(DERAS). DERAS is a custom-built aggregation system that
uses an internet-of-things (IoT) framework to concurrently
communicate with multiple assets. Each individual asset
is equipped with a distributed control system (DCS) that
observes and reports parameters such as the asset’s current
state and the amount of energy that it can absorb. DERAS
aggregates these parameters for all of the assets in its net-
work and provides the user with data describing the entire
system. Some benefits of this approach are that numerous
small resources can be observed and controlled on a very
large scale while preserving customer anonymity. Addition-
ally, the stochastic differences between devices are evened
out as more assets are added to the network, yielding more
predictable load and generation patterns. By sending control
signals to the assets, DERAS can then provide several ser-
vices, such as executing a predetermined energy-balancing
schedule or responding to frequency disturbances.

One of the enabling technologies for this is the CTA-2045
communication protocol specification, which allows DERAS
to communicate with a variety of devices from different man-
ufacturers. Two water heater models are used for this study:
one with resistive heating elements, and one hybrid with both
a heat pump and resistive elements. Each device comes from
the manufacturer equipped with a CTA-2045 interface. The
objective of this work is to demonstrate that DERAS can
provide valuable ancillary services to a utility using a group of
water heater assets via CTA-2045, specifically peak shifting
and frequency response.

For the remainder of this work, the term ‘EWH’ will
be used to refer to traditional resistive water heaters, and
‘HPWH’ will be used for heat pump water heaters.

II. LITERATURE REVIEW
A. THE CTA-2045 COMMUNICATIONS SPECIFICATION
The CTA-2045 specification was developed from 2008
through 2012 by the Electric Power Research Institute (EPRI)
and the Smart Grid Interoperability Panel (SGIP), with the
goal of creating a universal demand response communica-
tions standard for a wide variety of devices and manufac-
turers [5]. The standard also defines a socket interface so
that devices come ready for energy management functions
directly from the manufacturer. Utilities can design and sell
universal communication modules (UCMs) that plug into the
CTA-2045 interface. The utility is then able to exchange
telemetry with the UCM using whatever communication

system they desire, such as Wi-Fi, radio, cellular networks,
or even systems that haven’t yet been invented [6]. The UCM
translates that telemetry to and from the CTA-2045 standard.
This flexibility is critical for appliances with long service
lives, because major developments and changes to communi-
cation networks can take place over the device’s lifespan. The
cost of equipping devices with UCMs is expected to decline
steeply as CTA-2045 becomes more widespread. A study by
the Bonneville Power Administration (BPA) has projected the
cost of equipping a single water heater with a UCM dropping
to $25 by 2030 [5]. Beyond the benefit of allowing utilities to
design whatever UCM is most practical for them, the modular
approach also has cybersecurity advantages. If vulnerabili-
ties in the interface are exposed, the UCM is much cheaper
and easier to update or replace than the appliance’s built-in
hardware.

B. WATER HEATERS FOR DEMAND RESPONSE
Utilities have been making use of DR in the industrial sector
for years by engaging the largest energy consumers through
dynamic tariffs or incentivized direct load control [1], [7].
However, the residential sector’s DR resources remain largely
untapped. The residential sector constitutes 37% of electric-
ity consumption in the U.S. [8] Water heating makes up a
significant portion of this - 17% of the national residential
consumption [9], and up to 30% in some regions [10]. Addi-
tionally, the times of water heater usage coincide with the
peaks in overall electricity demand, meaning that control of
water heaters can be a powerful tool for peak shifting.

Water heaters are valuable DR assets for several more
reasons: First, the rated power consumption of an individual
device (typically 4500W) is high, meaning that relatively few
devices can quickly accumulate to have a bulk-scale impact.
Second, EWHs turn on and off very quickly. The ramp rate
from zero to full rated power is effectively instantaneous,
allowing for more precise control and response to short-term
transient events such as frequency disturbances. Third, resis-
tive water heaters are almost purely resistive and do not
require reactive power support from the grid (unlike HVAC
systems or induction machines, for example). Finally, water
heaters serve as a form of energy storage, and the time of hot
water use is not highly correlated to the time of electricity
consumption.

The usefulness of water heaters for DR increases with the
number of available assets, and is therefore directly depen-
dent on customer participation and the market penetration
of accessible devices. A pilot study of CTA-2045-equipped
water heaters conducted by the BPA projects that, if 26.5%
of all electric water heaters in the states of Oregon and
Washington were enrolled in a DR program, the combined
dispatchable load would be equivalent to a 301 MW peaking
plant. This resource has an estimated long-term value of
$106million, and on a national scale extrapolates to $2 billion
[5]. The report claims a benefit-cost ratio of 1.0 even if
customer participation is as low as 5%. The BPA also pro-
poses a market plan for utilities and the three major electric
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water heater manufacturers (AO Smith, Rheem, and Brad-
ford White) to fill the Oregon and Washington markets with
CTA-2045-equipped water heaters starting in 2025. Given the
expected life-spans of traditional water heaters already in use,
the report expects 91% of all water heaters in the region to
have CTA-2045 interfaces by 2039.

Another challenge to residential DR is recruiting and
maintaining a large number of participating customers. The
primary concern for water heaters is that shed events will
cause customers to run out of hot water, but this was only
a minor issue in the BPA pilot study. The BPA enrolled
277 households, and sent approximately 600 DR commands
over the course of 220 days. Customers received different
compensation based on their local utility. Portland General
Electric (PGE) offered customers a total of $50 for starting
and $100 for completing the pilot [5]. Customer feedback
was majority positive; 80% of customers reported that they
were very satisfied with the program, and 94% stated that
they would be very likely to enroll in similar programs in
future. Only two households left the program due to hot water
shortages.

Although HPWHs are more energy-efficient than resistive
EWHs, they are less useful from a DR point of view. They
aren’t capable of absorbing as much energy from the grid,
they takemuch longer to turn on, and the rated power of a heat
pump is usually much less than the rated power of a resistive
heating element. The BPA points out that, even though EWHs
will only make up 69% of water heaters in 2019, they will still
represent 80% of the utility benefits. Additionally, because
HPWHs reheat more slowly, utilities must be more conserva-
tive when shedding them to avoid hot water shortages [5].

C. FREQUENCY RESPONSE SERVICES
The ongoing retirements of synchronous generators around
the country and the increase in power provided by sources
with little or no mechanical inertia erode system frequency
response. While NERC’s 2018 long-term reliability assess-
ment predicts that the national grid frequency response
resources are expected to remain adequate through 2022,
the large-scale transitions to renewable resources may put the
system in serious jeopardy in the following decades. Type 1,
2, and 3 wind turbines use induction generators and are not
mechanically synchronous with the grid electrical frequency.
As such, they cannot provide governor response in the same
way as more traditional power plants. Type 4 wind turbines,
which connect to the grid through electronic AC/AC power
conversion, and DC energy sources that require inverters,
such as battery systems and PV, do not naturally provide any
inertia to the grid.

Frequency response capacity has a high monetary value.
The Salem Smart Power Center (SSPC) is a PGE R&D
project located in Salem, Oregon, and is home to a 5 MW,
1.25 MWh battery energy storage system (BESS). One of the
goals of the SSPC is to determine the value of different ancil-
lary services, including frequency response. While the SSPC
only engaged in frequency response for a total of 17 hours in

a full year, it was still found to be more valuable than all other
services combined [11].

While NERC requires utilities to provide frequency
response services, they do not specify when an event is
occurring, or exactly how the response must be executed. The
SSPC’s event detection and response algorithms were created
by PGE, and only react to negative frequency deviations.
As soon as an event is detected, the battery output ramps up as
quickly as possible to nearly full power. The power remains
at this level for 3 minutes, before slowly ramping down
as the Secondary and Tertiary frequency control resources
take over. 300 kWh (24%) of the SSPC battery’s storage
capacity is reserved for frequency response at all times, which
is roughly equal to the total energy discharged during a
response.

Battery inverter systems are one of the best options for pro-
viding frequency response to negative frequency deviations
because they can maintain an energy reserve to discharge
to the grid whenever needed. Water heaters cannot generate
power, but they can change the overall load. In the event of
a negative frequency deviation, water heaters would need to
turn off in order to provide frequency response. However,
because water heaters are already off for most of the time
[12]–[14], a very large number of devices would be required
to provide a significant response to a frequency decline. How-
ever, EWHs are an ideal resource for responding to upward
frequency disturbances. Caused by a sudden loss of load or
spike in generation, these disturbances are less common but
pose similar threats to grid reliability as downward distur-
bances. Arresting the positive frequency change requires a
decrease in generation or increase in load. Because they ramp
up to their full power in sub-cycle time frames, EWHs are
capable of responding to these events even faster than battery
inverter systems. Additionally, if this service is delegated to
EWHs, battery inverter systems on the same network won’t
need to maintain any charging headroom.

Frequency disturbance events are fairly recognizable after
they have occurred. However, effective frequency response
requires that events be detected within the first few seconds.
This requires service providers to create an automated event
detection algorithm. Because the grid’s generation/load bal-
ance is in a constant state of change, a detection algorithm that
is too sensitive may generate many false positives. For exam-
ple, the SSPC successfully responded to 15 out of 18 regis-
tered frequency disturbances over the course of 10 months
in 2016, equating to an 83.3% detection rate, but also trig-
gered erroneously nearly eight times as often [11]. Responses
to these false positives are both a waste of resources and an
additional stress on the system. A balance must be struck in
order to minimize both false negatives and false positives.
NERC provides little guidance for detecting frequency events
in real time, but does establish a minimum stable frequency
for each Interconnection. If the grid frequency does not drop
below this ‘‘floor frequency,’’ there is no need for a frequency
response. In the Western Interconnection, this frequency is
59.976 Hz. Frequency response measures should be able to
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detect and arrest a frequency decrease somewhere between
59.976 Hz and 59.5 Hz, where the last-resort measure of
under-frequency load shedding (UFLS) begins [15]. NERC
generally refers to frequency changes as+/− deviations from
60 Hz, so equivalent thresholds can be applied to upward
frequency disturbances.

III. METHODS
This work seeks to evaluate the usefulness of an aggregation
of water heaters in providing demand response and frequency
response services. By nature, a large number of devices is
required [14]. Conducting a study such as the BPA pilot
project requires the participation of utilities and a large num-
ber of their customers, which far exceeds themeans and scope
of this research. Additionally, the internet-of-things network
that is used to exchange telemetry between the aggregator
and devices is a novel approach that has not yet expanded
beyond a local area network (LAN). Obtaining, installing,
and operating a large number of water heaters would also
be very expensive and labor intensive, require an extravagant
amount of space, and consume a large amount of water.

For these reasons, virtual devices are used primarily here,
rather than physical devices. Developing these virtual device
models does require the characterization of physical devices,
and a test station was built for that purpose. A thermal model
for a small electric water heater was developed by a previous
study [16]. Part of the work presented here builds on that orig-
inal model and expands it to larger resistive and heat-pump
water heaters.

Evaluation of the CTA-2045 interface is also necessary,
both as a means of controlling and monitoring the devices,
and because the exchange of telemetry is limited by the
interface capabilities and functionality. Once emulators have
been developed that adequately reflect the characteristics
and behavior of the physical devices, a large number can
be run and connected to the aggregator simultaneously. The
aggregator is unaware that these devices are virtual, and they
send the same information that a CTA-2045 interface would
provide.

The starting energy condition and usage schedule of each
virtual device is randomized to simulate the stochastic con-
ditions of real appliances. The net power consumption and
energy capacity of the virtual devices can then be used
to evaluate the effects of demand response and frequency
response efforts by the aggregator. In this study, the goal for
demand response is to shift power consumption away from
when it would normally occur [17]. The goal for frequency
response is to detect upward frequency disturbances and react
accordingly by changing the net load.

A. DEVICE RESPONSES TO CTA-2045 COMMANDS
One of the purposes of the DCS is to convert instructions from
the aggregator into the most appropriate CTA-2045 com-
mand. As far as the aggregator is concerned, water heaters are
assets that can be either importing their full rated power (on)
or not (off). Relevant instructions for water heaters therefore

TABLE 1. Available import energy thresholds (watt-hours) under
different CTA-2045 commands.

come as a request to either turn on or turn off. The asset’s
ability to follow these instructions is dependent on its current
energy state and the temperature thresholds set by the man-
ufacturer. Every water heater has a default regulation range
bounded by upper and lower thresholds. The stored energy
bounces back and forth between the thresholds as the tank is
heated and water is drawn.

CTA-2045 commands effectively switch the water heater
between different sets of thresholds, therefore shifting and/or
changing the size of the regulation range. Because the water
heater will always try to keep its stored energy inside of the
regulation range, adjusting the regulation range can result in
the device turning on or off. Ideally, it would be possible to
set very narrow regulation ranges at either extreme of the
allowable energy range, which would allow the most precise
control of the device. The total range over which it is possible
to turn the device on and off freely is referred to as the
‘dispatchable’ range from this point on. This dispatchable
range is limited by the absolute limits on acceptable water
temperature set by the manufacturer, and by the thresholds of
the different regulation ranges available through CTA-2045
commands. Keeping the dispatchable range as wide as pos-
sible maximizes the aggregator’s utility by increasing the
number of devices that it is able to control at any given time.
Additionally, determining the thresholds for the different
CTA-2045 commands is necessary in order to properly model
device behavior.

The thresholds for each CTA-2045 command can be
observed by logging the available import energy (how much
more energy the device can import before being fully heated,
from here on referred to simply as ‘import energy’) over a
period of time while drawing hot water occasionally. These
thresholds were observed to be the same regardless of the
temperature setpoint, so all tests were conducted with a set-
point of 120 ◦F. To avoid possible correlations between usage
pattern and water heater behavior, randomized draw sched-
ules were used. The observed thresholds for the CTA-2045
commands shed, load up, and critical peak event, as well as
the baseline thresholds when no commands are issued, are
summarized in Table 1.

Most of the regulation ranges are much wider for the
HPWH than for the EWH,meaning that control of the HPWH
is more limited. Additionally, the shed command does not
effectively turn off the heat pump of the HPWH unless it is
nearly fully heated. The critical peak event does a better job
of controlling the HPWH, but this command is intended to be
used infrequently.
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TABLE 2. Peak shifting schedule used for emulator and demand
response validations.

FIGURE 1. EWH emulator validation. Behavior of the emulated
EWH (blue) closely matched that of the physical device
(orange).

B. EMULATOR VALIDATION
Programming emulators that faithfully represent the physical
devices required modeling of five main observable dynamics:
1) Convection losses
2) Change in stored energy from usage events
3) Power consumption and heating
4) Device behavior (when the resistive elements and/or

heat pump turn on and off)
5) Response time to CTA-2045 commands
For validation, the emulator and physical device were run

with the same schedule of usage events and CTA-2045 com-
mands. The usage schedule was obtained using a probabilis-
tic tool for generating realistic water heater usage sched-
ules created by NREL [12]. The CTA-2045 commands fol-
low a generic peak-shifting dispatch schedule summarized
in Table 2.

A side-by-side comparison of the emulator and physical
EWH is shown in Figure 1. The emulator is a close, but
not a perfect match for the physical device. The goodness
of fit, determined using a normalized root mean square error
cost function, is 78.66%. While this match is less than ideal,
particularly in the period between noon and 4PM, the physical
device is also not particularly consistent from day to day. The
difference between the physical and emulated devices’ energy
states is never greater than a few hundred watt-hours, so the
emulators were considered to be good enough to substitute
for physical devices.

C. DEVICE RANDOMIZATION
The emulator programs used for aggregate testing take sev-
eral measures to provide the stochastic differences in usage
expected from real customers. The first measure is accounting
for household size. TheNRELwater heater profile generation
tool was used to create separate schedules for houses with one

to five bedrooms. The U.S. Census reports that, as of 2017,
13% of households had no bedrooms or one bedroom, 26.3%
had two bedrooms, 39.6% had three bedrooms, 16.5% had
four bedrooms, and 4.4% had five or more bedrooms [18].
Each time an emulated device is created, it receives a sched-
ule based on the probabilities listed here using a random
number generator. The second measure is randomization of
the starting condition. The initial import energy of a new
device is determined using a normal distribution with a mean
of 50% and standard deviation of 30% of the rated value.
The third measure is randomization of the usage schedule.
Both the times and volumes of use are spread over normal
distributions. For each usage event, the mean for the time
distribution is the base value, and the standard deviation is
one half-hour. For the volumes, the mean is the base value,
and the standard deviation is 30% of that.

D. AGGREGATOR
DERAS, the aggregator used in this work, was first devel-
oped and presented in [19]. DERAS is a C++ program
that uses Alljoyn, an open source software framework for
creating networks of different devices. The user can query
information on the total aggregate or on individual devices,
directly request the aggregate to begin importing or export-
ing a specific amount of power, or begin different services.
A service for scheduled dispatch commands was previously
developed [19]. The frequency response service was devel-
oped for this research.

E. DIGITAL TWINS
In order to include a large number of assets on the network,
it is necessary to limit the amount of network traffic created
by each device. To accomplish this, DERAS uses digital twins
to represent devices in its network. Each time a device is
added to the network, DERAS creates a digital twin for it
locally, which serves as a placeholder for the asset’s energy
and power properties. For example, if an EWH joins the
network, DERAS queries its rated power and energy capacity
as well as its current state, and stores all of these values in a
new digital twin. If the EWH is instructed to be on, DERAS
automatically begins updating the energy value stored in the
digital twin using the rated power. Digital twins also include
an idle loss rate. The digital twin is not intended to accurately
track the state of the asset over a long period of time, but rather
only to reduce the necessary frequency of metrology requests.
For this research, the DCSs were programmed to send prop-
erty updates once every hour, or any time the device import
energy changed by more than 10% of its rated value. In this
way, any sudden changes to the device energy state, such
as a large usage event, are soon reported to the digital twin.
However, for most of the time, when very little is happening,
the device only needs to send an update once every hour.
This dramatically reduces the total network traffic necessary
for a fairly accurate real-time assessment of the aggregate.
A validation test with a physical EWH demonstrated that the
digital twin never strayed from the device’s reported energy
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FIGURE 2. Comparison of physical EWH behaviour (blue) to that
of its Digital Twin (orange).

values by more than a few hundred watt-hours, as shown
in Figure 2.

Using the available machines and software, it was possible
to include about 100 assets in the DERAS Alljoyn network.
Adding more assets made the system increasingly unsta-
ble, resulting in communication timeouts and disconnections.
Therefore, all tests for this research were performed using
100 assets.

F. PEAK SHIFTING SERVICE
To test the load-shifting capacity of an aggregate of water
heaters, the DERAS peak shifting service was used. This
experiment used the same generic 24-hour dispatch schedule
used in the emulator validation tests and shown in Table 2,
with the goal of shifting power consumption away from the
traditional peak hours in the morning and evening. First,
a baseline test was run to show the pattern of the aggre-
gate if no commands were sent. The aggregator was then
programmed to send the scheduled commands to all devices
in its network, staggering the load up command and prior-
itizing colder heaters to avoid sudden spikes in power con-
sumption from all devices coming on at once. Because [5]
predicts a 31%market penetration of HPWHs by the time that
CTA-2045 interfaces are essentially ubiquitous, the mixed
test was done with an aggregate of 69 EWHs and 31 HPWHs.

G. FREQUENCY RESPONSE SERVICE
The DERAS frequency response service consists of two
algorithms: one for detecting positive frequency disturbance
events, and one for responding to them. In actual use, DERAS
would receive second-by-second updates of the grid fre-
quency in order to detect events. For this research, DERAS
was provided with a data file containing actual frequency data
from previous disturbances provided by PGE.

The detection algorithm continuously monitors frequency
and calculates slew rate using a sliding window. A posi-
tive frequency event is declared if a slew rate greater the
0.3 mHz/s is detected and if the frequency deviates above
60.025 Hz.

This work treats water heaters as upward dispatchable
resources, which are normally idle but can be turned on. Once
an event is detected, DERAS initiated the response algorithm.
Because frequency response is a high-value and time-critical

FIGURE 3. Power Consumption of Aggregate without any DERAS
Commands.

FIGURE 4. Import Energy of Aggregate without any DERAS
Commands.

service, the aggregator initially responds to an events with its
full capacity. All possible devices will be turned on as soon as
possible. After three minutes of all devices in the aggregate
importing as much power as they can, the aggregator ramps
down the power to zero over the course of another three
minutes.

IV. RESULTS
A. PEAK SHIFTING TEST
To demonstrate the utility of DERAS for peak shifting using
EWHs, an aggregate of 100 EWH emulators was first run
with no CTA-2045 commands to show the power and energy
trends with no outside influence. The baseline power con-
sumption is shown in Figure 3.

The typical residential water heater load curve is discern-
able within Figure 3, with high consumption in the morning
and evening, and low consumption in the afternoon and at
night [20], [21]. Though, the power profile is nosey due to
the small number of assets used in this study. The greatest
consumption is around midnight, when nearly 40% of the
aggregate’s devices are on. This spike at midnight is anoma-
lous and most likely due to the randomization of the usage
schedules. The import energy for the same aggregate is shown
in Figure 4.

Aside from a peak during the biggest usage hour leading up
to midnight, the baseline import energy does not follow any
particular pattern, but generally stays within a band between
40 and 50 kWh. This meets expectations, because the devices
are all staying within the same regulation range for the entire
test. The baseline regulation range is from 0 to 900Wh, which
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FIGURE 5. Aggregate Power of Mixed Devices with Staggered
Peak-Shifting Schedule.

FIGURE 6. Aggregate Import Energy of Mixed Devices with
Staggered Peak-Shifting Schedule.

for 100 devices aggregates to a range of 0 to 90,000Wh. If the
aggregate import power averages to around 45,000 Wh, this
puts it right in the middle of the regulation range.

In the next test, DERAS controlled 69 emulated EWHs and
31 emulated HPWHs over 24 hours using the generic dispatch
schedule described in Table 2 with its peak shifting service.
The resulting aggregate power and energy plots are shown
in Figures 5 and 6. Load up times are shaded red, and shed
times are shaded blue.

There is a clear reduction in power consumption during the
shed hours. Particularly at the start of the peak usage hours,
from 6 AM to 9 AM and from 4 PM to 9 PM, there is a sig-
nificant reduction in power consumption because the devices
begin with a large amount of energy and widen their regu-
lation ranges. The effectiveness of the evening shed period
does gradually expire as it gets closer to midnight, as the
aggregate’s amount of stored energy becomes exhausted and
more devices turn back on. The maximum effective length of
a shed period therefore appears to be around 4 hours, although
this will always depend on usage patterns.

B. FREQUENCY RESPONSE TEST
To test DERAS’s capacity to detect and respond to positive
frequency disturbances, frequency data containing an event
were applied to an aggregate of 100 emulated EWHs. The
response to this event is shown in Figure 7.

As shown in Figure 7, the event is detected during the ramp
period of the event, and the response occurs very quickly.
Only four of the devices were on before the event, but all

FIGURE 7. Aggregate Frequency Response to Upward
Disturbance.

FIGURE 8. Aggregate Import Energy during Frequency
Response.

100 were on within seconds of the event beginning. Given the
fast load up response time for EWHs, this test indicates that
a very large number of EWHs could be dispatched in the first
few seconds of a frequency disturbance, even considering
the delay between the DERAS command and the physical
response. All 100 devices are able to remain on for the desired
3 minutes, and then ramp down back to pre-disturbance
conditions at the end of the following thee minutes. The
response demonstrated here is a successful recreation of the
SSPC’s frequency response, modified for upward frequency
disturbances. This work does not suggest that water heaters
alone are sufficient for frequency response. The Western
Interconnection is a massive system and no single asset is
capable of such an impact on the grid frequency. This work
only proposes that aggregated water heaters can contribute to
the system’s net resilience to upward frequency disturbances.
The effect of this response on the aggregate’s available import
energy is shown in Figure 8.

Over the course of the response, the aggregate’s import
energy was decreased roughly from 136 kWh to 112 kWh,
or by about 24 kWh. An aggregate of 100 EWHs will almost
always have this much available import energy unless it is
already loading up. Because the power consumption is also
proportional to the number of devices in the aggregate, it is
safe to say that an EWH aggregate of any size can be expected
to respond to upward frequency disturbances with its full
capacity most of the time.

The frequency response experiment was repeated with a
mixture of 31 HPWHs and 69 EWHs to demonstrate that
HPWHs are a less useful asset than EWHs for frequency
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FIGURE 9. Aggregate Power during Frequency Response with
Mixed Devices.

response due to their lower power consumption and longer
response times. The results of this test are shown in Figure 9.

Replacing some of the EWHswith HPWHs has clearly vis-
ible effects on the frequency response. The heat pump emula-
tor was programmed with a one-minute turn-on delay based
on observations of the physical device. Therefore, the initial
spike in power at the beginning of the disturbance consists
only of the EWHs and possibly the resistive elements of some
HPWHs which had very high import energy (HPWHs only
respond to load up commands with their resistive elements if
they have more than 1425 Wh of import energy). Two heat
pumps are on before the event begins, and 64 elements are
energized in the initial response. This means that not all of
the 69 EWHs are able to turn on, which is most likely due
to them already being too warm to respond to the load up
command. The heat pumps turn on one minute later, and
slowly ramp up their power consumption over the course of
the response. However, because the heat pumps consume less
than 10% of a resistive heating element’s power, even when
all 31 heat pumps are on this only makes a small difference
to the total response power. The ramp down is also less
smooth because the different devices are consuming different
amounts of energy. Some usage events occurred during the
response, so at the end nine devices are unable to turn off
(this is anomalous and could also have happened in the test
with only EWHs). In general, replacing EWHs with HPWHs
reduces the total power available for frequency response as
well as the precision of DERAS’s control.

V. DISCUSSION
A. SUMMARY OF RESULTS
The peak shifting and frequency response capabilities of
aggregatedwater heaters demonstrated in this researchmet all
of the initial goals and expectations. Satisfactory emulators
were created for CTA-2045-equipped EWHs and HPWHs,
and groups of 100 emulated devices were controlled using
the custom-built DERAS aggregation system. The tests were
conducted both exclusively with EWHs and with a mixture
of EWHs and HPWHs.

The peak shifting tests demonstrated that it is possible
to displace significant power consumption during periods
of high usage, although the duration of this displacement
is typically limited to 4 or 5 hours. In initial experiments,
the control signal to turn on at the end of a displacement
period was sent to all devices simultaneously, resulting in

a sudden, severe spike in consumption. However, this was
corrected by adding a limit to the percentage of devices in
the network that received the command at once. DERAS
prioritizes devices with more available energy, so the coldest
heaters come on first.

The frequency response tests demonstrated both that the
aggregator’s frequency disturbance detection algorithm is
capable of quickly triggering a response to disturbances,
and that EWHs have great potential to respond to upward
frequency disturbances due to their very fast activation times,
ramp rates, and high power consumption. An aggregate of
EWHs was able to provide a frequency response nearly iden-
tical to examples from the SSPC. HPWHs were shown to be
less useful for frequency response because of their low power
consumption and the necessary turn-on delay of heat pumps.
Frequency response is a high-value ancillary service, and ded-
icating water heater assets to responding to upward frequency
disturbances could be extremely beneficial to utilities while
minimally impacting customers.

B. POTENTIAL SOURCES OF ERROR
The experimental design had several flaws. One shortcoming
is the small number of devices used in the aggregate tests.
Aggregate sizes were limited to 100 devices because the
Alljoyn network would otherwise become unstable and begin
losing devices. Alljoyn has already been absorbed by a larger
project and lost most of its support, so the only solution for
this problem is to switch to a new, more robust framework.

Another weakness in the experimental design is the small
group of profiles used to simulate stochastic customer usage.
Only one original profile was made for each household size,
and then the emulated devices created unique profiles by
randomizing the original ones. This led to a lack of over-
all variety in the aggregate usage patterns as well as some
anomalous results such as the large peak at midnight seen
clearly in Figure 3. Diversifying the group of original usage
profiles would be an improvement to the experimental design.

VI. CONCLUSION
This work successfully demonstrated the utility of DERAS
for peak shifting and frequency response using aggregates of
water heaters. These services have high monetary value to the
current grid, and will increase in value as renewable energy
sources contribute more of the total generation. Turning large
numbers of water heaters off at peak hours can help even out
the balance of supply and demand and reduce the ramping
requirements of the worsening duck curve on the rest of the
system. Turning water heaters on in response to upward fre-
quency disturbances can help replace the mechanical inertia
of traditional generators as these machines are replaced with
inverter-based generation.

This research leaves several opportunities for future work.
One possible development is the use of machine learning for
frequency disturbance detection. As demonstrated by both the
SSPC detection algorithm and the algorithm developed for
DERAS, accurately detecting frequency disturbances without

VOLUME 7, 2020 29



responding to false positives is very difficult. Because a large
corpus of frequency data with many identified disturbances
already exists, this is an excellent application for guided
machine learning.

Increasing the number of devices that can be included in the
aggregator’s network would improve the reliability of experi-
ments and is also a necessary step for expanding this work
into a real-world application with thousands of customers.
Therefore, an immediate and pressing task is the transfer of
the aggregator and device controllers to a new communication
framework. The creators of DERAS are currently building
new versions of DERAS and the DCS that will use the IEEE
2030.5 smart energy profile application protocol.
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