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ABSTRACT Online transient stability assessment (TSA) is essential for the reliable operation of power
systems. The increasing deployment of phasor measurement units (PMUs) across power systems provides
a wealth of fast, accurate, and detailed transient data, offering significant opportunities to enhance online
TSA. Unlike conventional data-driven methods that require large volumes of transient PMU data for accurate
TSA, this paper develops a new TSA method that requires significantly less data. This data reduction is
enabled by generative and adversarial networks (GAN), which predict voltage time-series data following
a transient event, thereby minimizing the need for extensive data. A classifier embedded in the generative
network deploys the predicted data to determine the stability of the system. The developed method preserves
the temporal correlations in themultivariate time series data. Hence, compared to the state-of-the-art methods,
it is more accurate using only one sample of the measured PMU data and has a shorter response time.

INDEX TERMS Classification, generative adversarial networks, phasor measurement unit, transient
stability.

NOMENCLATURE
δi Rotor angle of machine i.
ωi Rotor speed of machine i.
σ Sigmoid activation function.
Bij, Gij Conductance and susceptance in the ith row

and jth column of admittance matrix Y.
D, G Discriminator and Generator of the GAN

model.
Di Damping constant of generator i.
e (eh) Prediction error at each (hth) forecast time

step.
Ei Internal bus voltage of machine i.
ht−1 Output from the previous GRU.
ht Final GRU output.
h

′

t The current memory unit of GRU.
Mi Angular momentum of machine i.
Pmi , P

e
i Mechanical/electrical power input of ith

machine.
rt The reset gate output of GRU.
tanh Hyperbolic tangent activation function.
xt Input data to GRU.
zt The update gate output of GRU.

I. INTRODUCTION

THE increased levels of power grid uncertainties has
renewed calls for rapid online transient stability assess-

ment (TSA) tools that will grant the system operators ade-
quate time formitigative actions, such as intentional islanding
or controlled load shedding. Conventional TSA methods
belong to one of three categories: 1) time-domain simula-
tions, 2) direct methods, and 3) trajectory-based approaches.
Time-domain methods solve a set of high-dimensional and
nonlinear differential-algebraic equations to assess transient
stability [1], [2]. These methods assume complete knowledge
of the system model parameters and its operating conditions.
However, their high computational complexity makes them
impractical for near real-time applications. To enable a
faster TSA, direct methods have been developed, e.g., the
Lyapunov method [3], [4], [5] and the extended equal area
criterion [6], [7]. The direct methods simplify TSA by energy
functions that evaluate the dynamic performance of the
system [8], [9]. Yet, these methods do not scale well because
of the need to simplify the dynamic models. Trajectory-based
methods, such as Lyapunov exponents [10] and apparent
impedance [11] methods, are relatively fast. However, at least
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a few cycles of post-fault transient data are needed to warrant
TSA accuracy.

With the increased availability of high-resolution Phasor
Measurement Unit (PMU) data, new TSA approaches have
emerged where physical system constraints and system data
inform each other for TSA. Hence, without a complete
dynamic grid model, the stability status of the power grids
can be determined. Machine learning (ML) methods such
as decision trees [11], [12], [13], core vector machine [14],
support vector machine (SVM) [15], and extreme learning
machine [16], [17] have been deployed for TSA using system
measurements, formulating TSA as a two-class (stable and
unstable) classification problem. These methods transform
raw PMU data into specific features before feeding them into
themodel. This transformation process can inadvertently lead
to the loss of critical dynamic information inherent in the
raw data, potentially compromising the accuracy of TSA.
Deep learning methods, such as the convolutional neural
network [18], [19], long-short-term memory (LSTM) [20],
[21], gated recurrent unit (GRU) [22], and stacked denoising
autoencoder [23] have addressed information loss by directly
utilizing raw PMU data. However, to guarantee assessment
accuracy, longer durations of post-contingency time series
data are needed, which will result in undesirable TSA delays.
Given the critical importance of rapidly assessing transient
events in power systems, there is a significant need for shorter
TSA response time.

To address the aforementioned gaps in data-driven TSA,
a new and accurate TSA approach is developed that requires
shorter durations of post-contingency measurements, thereby
significantly reducing the total response time. The novelty
of the developed TSA lies in its ability to predict the post-
contingency measurements that are used for classification.
The prediction capability is enabled by extending Generative
Adversarial Networks (GAN), a model-free ML method
for generating datasets that closely mimic real transient
datasets.

A GAN model consists of two neural networks: generative
and adversarial networks. The generative network converts
the input data, drawn from a Gaussian distribution, to syn-
thetic data. The adversarial network classifies the generated
synthetic data as either real or synthetic. The objective of the
adversarial network is to maximize the difference between
real and synthetic data, while the generative model aims to
minimize this difference [24]. GAN has been deployed in
various domains for generating synthetic datasets, including
images [25] and music [26]. In power system applications,
GAN is deployed to generate missing PMU data [27] or
address the lack of realistic PMU time series data [28], [29],
[30]. Unlike the existing work that aimed to enhance the
historical data, in this paper, GAN is extended for predicting
the future PMU data. Hence, a different approach to adopting
GAN is required to generate realistic future data and predict
the system transient state based on those data. This approach
should: a) learn the temporal features of the transient data; b)
predict the post-fault PMU data; and c) assess the transient

stability of the system. The developed GAN-based TSA
approach addresses these requirements for a fast and accurate
stability assessment.

The novelty of the developed TSA approach stems from
the ability to rapidly and accurately determine transient
stability while only utilizing one sample of the measured
post-contingency PMU data. This is achieved by developing
a hierarchical structure, shown in Fig. 1, for the refined
GANs. Several GAN models are stacked to construct the
HGAN. The hierarchical generative adversarial network
(HGAN) input is the measured post-contingency PMU data.
The lowest level GAN utilizes the measured PMU data
to predict the measurements for the next sampling time.
Higher-level GANs use predictions to further predict the
PMU time series data. With the proposed structure, HGAN
requires only a single sample of the measured data to predict
the post-contingency time series transient data. In addition
to the predicted sequence of the transient data, a binary
classifier is embedded in the generative network of each
sub-GAN. Each sub-GAN performs TSA individually, based
on the measured one sample PMU data and the predicted
subsequent time-series data from the lower-level sub-GANs.
The TSA is achieved by combining the assessment results
from all sub-GANs with the aim of reducing the error. As raw
measured data are used to determine the transient status in the
developed method, the possibility of losing critical dynamic
information during feature selection is avoided. The main
contributions of this work are as follows:

1) A hierarchical GAN-based TSA is developed to predict
the transient status after a disturbance. Only a single
sample of post-contingency PMU data is needed.
Hence, TSA can be performed in a short time. Here,
as the voltage enables providing insights into the ability
of the system to maintain stability, PMU voltage data is
utilized;

2) The generative and adversarial networks are designed
to retain the temporal features of the multivariate PMU
time-series data and improve TSA accuracy;

3) The case studies demonstrate that in comparison to
the conventional ML-based TSA, the developed model
achieves better performance in terms of accuracy and
speed.

FIGURE 1. The structure of the developed HGAN-based TSA.

This paper is organized as follows: Section II formulates
the TSA problem. Section III introduces the conventional
GAN model and illustrates each element of the developed
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TSA. Section IV tests the developed HGAN model on the
IEEE 118-bus system. Conclusions are provided in SectionV.

II. TRANSIENT STABILITY ASSESSMENT
During a power system disturbance, such as a transmission
line fault, large swings appear in generator rotor angles, bus
voltages, or line currents [23]. To ensure a stable grid, all
generators should maintain synchronism after the clearance
of the faults. If synchronism is lost, prompt mitigations such
as controlled islanding need to be taken to prevent further
failures. This remarks on the need for an online TSA approach
that can promptly and precisely identify the transient state at
the earliest stages of a fault clearance.

In a system with n generators and loads modeled as
constant impedances, the equation of motion for generator i
is [31],

ω̇i =
Pmi − Pei − Diωi

Mi
(1.1)

δ̇i = ωi (1.2)

Pei = E2
i Gii +

n∑
j̸=i

[EiEjBijsin(δij) + EiEjGijcos(δij)] (1.3)

δij = δi − δj. (1.4)

The rotor speed, electrical and mechanical powers are
functions of the rotor angle. Since the rotor angle is typically
used to determine the transient stability, analyzing these
three terms, i.e., Pm, Pe, and ω, can also indirectly infer
the system transient stability. During a large disturbance,
electrical power will change immediately. Variations in
mechanical power and rotor speed, due to inertial and
governor response, occur after the first swing, when stability
is assessed. The difference in the response time leads to a
net accelerating power and may cause an unstable transient.
As the imbalanced power is mainly due to sudden changes in
electrical powerPe, the change in electrical power can be used
to assess the transient stability of the system. Furthermore,
as observed in (1.3) that the electrical power Pe is a function
of the voltage, the trajectory of the voltage can thus be used
to study the transient.

During a transient event (fault), large excursions occur
in the trajectories of the generator rotor angles and bus
voltages. To classify the transient stability status of the
system, a stability index based on rotor angles is commonly
used [14], [20], [32]:

η =
360◦

− 1σmax

360◦ + 1σmax
(2)

where 1σmax is the maximum post-fault angle difference
between two generators. The stability is defined as,

φ =

{
stable; η > 0
unstable; η ≤ 0.

(3)

It may take tens of cycles to obtain 1σmax , which is not
desired for online TSA. The developed TSA acquires the
transient status in the early stages of a contingency. Unlike

the other ML-based TSAmethods that require a large volume
of post-contingency PMU data, the developed method only
requires the first sample of the PMU data after fault
clearance.

Here, the PMU voltage data are selected for TSA.
As mentioned in [33], the generator rotor angle cannot be
measured directly by PMUs. Since the focus here is on
determining the transient stability of the system from PMU
data, voltage magnitudes are used. Various data-driven TSA
methods have used voltage data to study the transients [20],
[33], [34], [35], [36]. The studies in [35] and [36] demonstrate
that TSA algorithms with voltage magnitudes are fast and
eliminate the errors and extra pre-processing needed to
calculate an angle reference. As explained in Section IV-B
only utilizing PMUvoltagemagnitude data is sufficient for an
accurate TSA. However, other measurements that contain the
response of the system can also be used by the developed TSA
method. Only some buses are equipped with PMUs. PMUs
are added in a manner to ensure full system observability
(discussed in Section IV-A).

III. PREDICTIVE ONLINE TSA
To address the gap in the existing data-driven TSA tech-
niques, a new approach is developed for near real-time, which
is accurate and requires significantly less PMU data than
the conventional methods. The developed method takes a
twofold approach: 1) predicting the post-contingency PMU
voltage time-series data and 2) TSA using the predicted data.
In this section, as the prediction capability of the developed
TSA approach is enabled by GAN and gated recurrent units
(GRUs), fundamentals of the GAN and GRUs are introduced
first. Then, a detailed description of each element of the
developed HGAN-based TSA is discussed.

A. THE GENERATIVE ADVERSARIAL NETWORK
GAN is an unsupervised learning approach that has been used
in many applications for generating synthetic images, music,
time series data, among others [25], [26], [37], [38], [39].
GAN learns the distribution of a real dataset and generates
synthetic data that are close to the real data [24]. In the context
of power systems, GAN-based methods have been developed
to recover missing PMU data [27] and generate synthetic
PMU datasets [28], [29].

GAN consists of two deep neural networks: generator G
and discriminator D. The generator generates synthetic data
while retaining the statistical features of the real data. The
discriminator differentiates the real data from the fictitious
data generated by the generator. The two networks G and D
are trained iteratively until a Nash equilibrium is achieved,
which indicates that the generated synthetic data and real data
cannot be distinguished [27].

Specifically, for a random Gaussian noise space Z, the
generator maps the input noise z drawn from Z to a synthetic
dataset x̂ as,

G(z|θg) : z → x̂ (4)
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Algorithm 1 The GAN training steps

1 Initialize the neural network parameters of the
generator and discriminator, i.e., θg and θd
respectively;

2 for ep = 1, · · · , epmax do
3 Obtain a minibatch of the random noise z from

P(z), and another minibatch of the real data x
from P(x);

4 Generate the synthetic data x̂ = G(z|θg);
5 Feed the generated synthetic data x̂ and the real

dataset x into the discriminator D, and obtain the
estimated probability D(x|θd ) and D(x̂|θd );

6 Update G and D by descending their gradients:

▽θg (Ez∼P(z)[log(1 − D(x̂))])

▽θd (Ex∼P(x)[logD(x)] + Ez∼P(z)[log(1 − D(x̂)])
7 end

where θg is the neural network parameters ofG. The objective
of the generator is to map a random noise to synthetic data,
such that the distribution of the synthetic data P(x̂) is close
to the real data P(x). In other words, the objective of G is to
minimize the difference between the real and synthetic data,

Min
G

V (G,D) = Ez∼P(z)[log(1 − D(x̂))]. (5)

The discriminatorD estimates the probability,D(·|θd ), that
the input data is real rather than synthetic, where θd the is the
neural network parameters of D. The discriminator aims to
maximize the difference between the real and synthetic data
so that they could be distinguished,

Max
D

V (G,D) = Ex∼P(x)[logD(x)]

+ Ez∼P(z)[log(1 − D(x̂)] (6)

where V (·) is the loss function. The first term
Ex∼P(x)[logD(x)] is the probability that the discriminator
classifies the real data as real. The second term is the
probability that the synthetic data x̂ generated from G is
classified as fake by D.

As the generator and discriminator are trained together, the
objective of GAN is to address a minimax problem:

Min
G

Max
D

V (G,D) = Ex∼P(x)[logD(x)]

+ Ez∼P(z)[log(1 − D(x̂))]. (7)

The GAN training algorithm is described in Algorithm 1.
In each training episode, by leveraging the stochastic gradient
descent algorithm, the generator and discriminator are
updated, such that the synthetic data are closer to the real data.

B. GATED RECURRENT UNITS FOR FEATURE
EXTRACTION
When predicting the future dynamic response in a power
system, it is critical to preserve the temporal features of
the time series data. GRUs, a variant of RNN, enable this

by learning the temporal features of time series data [40].
RNN retains information from past data and combines it
with present data to accurately predict the future sequence
of data. If RNN is not designed properly, the gradient may
exponentially update towards zero, referred to as a vanishing
gradient, or exponentially diverge to infinity, referred to
as exploding gradients. With a mechanism to determine
the volume of past data, GRU eliminates the problem of
vanishing or exploding gradients. As illustrated in Fig. 2,
GRU consists of three elements: the reset gate, the update
gate, and the current memory unit [40]. The update gate
determines the volume of past data used to predict the future
data sequence. The reset gate determines the volume of the
stored past data to be forgotten. The current memory unit uses
the output from the reset gate to store the relevant information
from the past data. The GRU output is the sum of the output
from the three gates. The three gates and the final output can
be described as,

rt = σ (W rxt + U tht−1) (8.1)

zt = σ (W zxt + U zht−1) (8.2)

h′
t = tanh(Wxt + rt ⊙ Uht−1) (8.3)

ht = zt ⊙ ht−1 + (1 − zt ) ⊙ h′
t . (8.4)

In (8), W and U are the weights of the GRU network, and ⊙

is the Hadamard product (elementwise). This GRU structure
predicts the transient sequence with only one sample of the
measured PMU data. This critical advantage is enabled by
learning the temporal features of the transient data. The
added discriminator to the GRU, enables further capturing the
distribution of the transient data.

FIGURE 2. The structure of GRU.

C. THE DEVELOPED HGAN-BASED TSA METHOD
The HGAN-based TSA, shown in Fig. 1, predicts post-fault
transients and the system’s transient stability status. TheGAN
structure is improved by learning the temporal features of the
multivariate PMU time-series data. As the deployment of one
type of PMU data is sufficient to assess the transient stability,
PMU voltage magnitude data are utilized for TSA. However,
other PMU measurements could also be used. The developed
HGAN adjusts the conventional GAN model to predict the
PMU sequence data. The conventional GAN takes random
noise to produce synthetic data, while the refined GAN takes
real measurements as input to predict the transient sequence.

Here, themeasured post-fault PMUvoltagemagnitudes are
the inputs to the GAN model, i.e., x(t). Data for the next
time, that is, x̂(t + 1), are predicted by the aforementioned
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GAN structure. However, the measured data x(t) and the
predicted data x̂(t + 1) may not have sufficient information
to determine the transient status. To address this deficiency,
a multi-step prediction strategy, particularly a hybrid direct
recursive strategy, is utilized to predict the transient sequence
and uncover its oscillation patterns to address this deficiency.
The hybrid direct-recursive model uses predictions from
previous time steps to forecast values in future time steps,
incorporating both direct and recursive strategies. Assume h
is the prediction horizon. The direct strategy uses observed
PMU data to predict voltage magnitude x̂t+h, as x̂t+h =

f directh (x(t)) + Edirect
h , where f (·) is the prediction model and

Eh is the accumulated prediction error at the hth time step.
In the direct strategy, separate models are developed for each
time step. Since only one sample of PMU data is available
and separate models are used, direct strategies cannot learn
the temporal correlations between the predictions. As a result,
Edirect
h is relatively large. In the recursive strategy (9), the one-

step-ahead prediction model uses the previous predicted data
as input.

x̂t+h =

{
f recursive(x(t)) + E recursive

h h = 1
f recursive(x̂(t + h− 1)) + E recursive

h h > 1

(9)

Since the correlations between the sequence data are
retained, the prediction error is smaller than the one using
direct strategy, i.e., E recursive

h ≤ Edirect
h . However, as the

prediction model is used recursively at each time step, the
prediction error E recursive

h ≈
∑h

1 e will accumulate as h
increases. To overcome the shortcomings of the direct and
recursive strategies, a hybrid direct-recursive strategy (10) is
developed [41],

x̂t+h =


f hybridh (x(t)) + Ehybrid

h h = 1

f hybridh (x̂(t + h− 1), · · · , x̂(t + 1), x(t))

+Ehybrid
h

h > 1

(10)

In this hybridmodel, a separate predictionmodel is trained for
each forecast time step, where the model uses the previously
predicted and observed PMU data as input. The accumulated
prediction error at time step h can be represented as Ehybrid

h ≈∑h
1 eh. Since separate models are trained for each time step,

the prediction error is smaller than the recursive strategy,
i.e., eh ≤ e. Hence, the hybrid strategy achieves a smaller
accumulated error, that is, Ehybrid

h ≤ E recursive
h . In short, the

multi-step prediction using hybrid direct-recursive strategy
enables generating accurate and longer sequence data than
the direct and recursive strategies. Therefore, more distinct
transient oscillation patterns are uncovered for accurate TSA.

In this study, the hybrid direct-recursive strategy is to stack
multiple GANs to predict a longer sequence of future data.
With N stacked GANs, the measured post-fault voltage data
are fed into the lowest level GAN, i.e., GAN 1 to predict
the data for the next time instant x̂(t + 1). The predicted

data and the measured data x(t) and fed into GAN 2 for
subsequent predictions. Therefore, the HGAN-based TSA
with N GANs generates N + 1 voltage time series data,
{x(t), x̂(t + 1), · · · , x̂(t + N )}.
A binary classifier is embedded in each generator of the

stacked GANs for TSA. In GAN k , the input sequence data
{x(t), x̂(t + 1), · · · , x̂(t + k − 1)} is deployed to classify
stability as stable or unstable. The classification results from
all sub-GANs are combined by an average-based ensemble
strategy to determine the final transient stability assessment.
The generator has three objectives: 1) learn the distribution
of the real measurements; 2) predict the next sequence of the
time series data; 3) assess the stability status. Based on these
objectives, the GAN k loss function is formulated as,

LGk = log(1 − D(x̂(t + k))) + (x̂(t + k) − x(t + k))2

+ y log(p(y)) + (1 − y) log(1 − p(y)) (11)

where y is a binary label, with y = 0 assigned to unstable
and y = 1 to stable transients. The probability of a stable
classification is denoted by p(y). In the loss function in (11),
the square of the error, (x̂(t + k) − x(t + k))2, is used to
minimize the error of the predicted data x̂(t + k). The cross
entropy loss y log(p(y)) + (1 − y) log(1 − p(y)) is included
so that the generator correctly classifies the system stability
status. The structure of the discriminator D is consistent with
the conventional GAN, where the difference between the real
and predicted data will be maximized. The GRU structure
is used to construct adversarial and generative networks to
better learn the temporal features of the time series data.

The structure of GAN k (k ∈ {0, 1, · · · ,N }) is illustrated
in Fig. 3. The input to GAN k is the measured and predicted
PMU voltage data X = {x(t), x̂(t+1), · · · , x̂(t+k−1)}, X ∈

Rk×NPMU , where NPMU is the total number of PMUs. The
GRU cell in the generator learns the temporal features of the
time series data from the input X . The fully-connected layer
is added to the GRU to improve learning efficiency. As the
generator has two different outputs, i.e., the predicted label
and subsequent data, two parallel layers are used to perform
the two tasks of classification and prediction separately.
To generate the predicted label y and the predicted data x̂(t +
k), the activation functions softMax and Sigmoid are used to
interpret the output of the fully-connected layer. The output
from the discriminator GRU is sent to the fully-connected
layer, followed by a linear activation function that converts
the output to the estimated probability of the input data
D(·|θd ). The probability is backpropagated to the generator to
update the parameters of the generative network. Maximizing
the discriminator loss function during training (reformulated
in (12)), leads to maximal Doptimal(x) =

P(x)
P(x)+Pg(x)

[24],
where Pg(·) is the distribution of the data generated from G
and P(·) is the real data distribution. The optimal probability
Doptimal minimizes the generator, so the distributions of the
real and predicted transient data are the same, i.e., P(·) =

Pg(·). Hence, with the learning signal from discriminator, the
transient data can be better learned in generator. Detailed
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proof for the optimal discriminator and generator can be
found in [24].

V (G,D) =

∫
x
p(x) logD(x)dx +

∫
z
p(z) log(1 − D(g(z)))dz

=

∫
x
p(x) logD(x) + pg(x) log(1 − D(x))dx (12)

FIGURE 3. The structure of GAN k in the HGAN-based TSA.

The prediction accuracy of the upper level GAN depends
on the accuracy of the lower GANs. A small prediction error
from a lower GAN propagates to higher levels and eventually
lead to a large error. We address this problem by sequentially
training GANs, i.e., when training GAN k , the network
parameters of the trained lower GANs i, (i ∈ {0, · · · , k−1}),
are kept fixed. Otherwise, repeatedly updating the parameters
of the lower GANs will lead to overfitting.

To improve the learning efficiency of the HGAN-based
TSA, the training data is normalized first. Here, the min-max
normalization is used so that the maximum normalized
voltage is one. Starting from the lowest level GAN, the
sub-GANs will be trained sequentially. For each GANmodel,
by deploying the minibatch stochastic gradient descent
algorithm, the generator and the discriminator are updated
iteratively until the convergence of the cross-entropy loss.
The well-trained HGAN-based TSA can be deployed for
online TSA. Upon measuring the first post-fault PMU
voltage data, v(0), the HGAN-basedmodel withN sub-GANs
generates the subsequent voltage data {v(0), v̂(1), · · · , v̂(N )}.
The TSA results of these N sub-GANs will be combined
using an average-based ensemble technique for the final
TSA classification. Here, the final TSA result is assumed
to be stable if more than half of the sub-GANs vote for
stable; otherwise, the system is unstable. This averaging
process takes into account the unique attributes of each
sub-GAN. Therefore, it diminishes the impact of individual
model errors, and effectively reduces the overall prediction
variance [42].

IV. CASE STUDIES
The IEEE 118-bus system is studied under various conditions.
The performance of HGAN-based TSA is compared with
decision trees, SVM, LSTM, GRU, and stacked GRU. As the

TABLE 1. PMU placement in the IEEE 118-bus system.

TSA accuracy of the HGAN-based method is based on
PMU measurements, sensitivity studies are performed to
investigate the impact of noise, the number and the location
of PMUs on the TSA accuracy. Simulations are conducted on
an i7 computer with a 3.2GHz CPU and 64GB RAM.

A. PMU DATA GENERATION
The post-fault PMU voltage time series for testing and
training are generated with simulations using the Transient
Security Assessment Toolbox (TSAT) of DSATools [32].
Here, as demonstrated in subsection IV-B, it is found that only
PMU voltage magnitude data is sufficient for accurate TSA.

Various operating conditions, ranging from 90% to 110%
of the nominal load, are simulated under normal conditions
and with one line out of service (due to maintenance). Note
that this study assumes load variations are confined to a
single season. To accommodate the substantial variations
across different seasons and significant grid upgrades, it is
suggested to train the GAN-based TSA model separately
for each specific season. Furthermore, in scenarios where
there are substantial upgrades in grid topology, updating and
retraining the GAN-based TSAmodel is essential to maintain
the prediction accuracy. The transient scenarios considered
are three-phase faults on every bus and transmission line
(located at 30%, 50%, and 80% of the lines). In alignment
with other TSA studies, faults in our simulations are cleared
after 5 cycles [35]. Additionally, breaker auto-reclosure
is simulated to occur five cycles after the initial fault
clearance. Note that simulation data are collected after the
clearance of faults. To minimize the adverse impacts of an
imbalanced dataset on the accuracy of TSA, 5000 stable
and 5000 unstable transients are randomly selected from
the generated transients. Furthermore, 80% of the data are
used for training and the remaining 20% for testing. As the
stability index (2) is widely used in TSA studies [14], [20]
and industry, this study utilized this index to create the ground
truth information.

To generate the PMU data, the simulation sampling
frequency is set at 120 frames per second. To mimic
real power grids where not every bus is equipped with
PMU, 20 PMUs, determined by the minimum spanning tree
method [43], [44], [45], are deployed in the IEEE 118-bus
system to ensure full observability. The locations of the
PMUs are provided in Table 1 and can be found in Fig. 4. The
training and testing data can be found at the IEEE DataPort
(https://dx.doi.org/10.21227/6f5v-q924). Note that this study
compares the proposed method with other state-of-the-art
methods using the same dataset.
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FIGURE 4. IEEE-118 bus system.

TABLE 2. Parameters of the HGAN-based TSA model.

B. PERFORMANCE ANALYSIS OF THE HGAN-BASED TSA
—Performance Analysis: Upon obtaining the datasets for
transient events, each level GAN is trained. The training
parameters are provided in Table 2. The HGAN-based model
with three GANs is found to be sufficient for an accurate
TSA. Although more GANs generate a longer duration of
voltage time-series data and better represent a transient
pattern, a small error in lower-level GANs propagates through
the stacked GANs and eventually leads to a large cumulative
error. The learning rates of the generator and discrimi-
nator are set to 0.001 and 0.0001, respectively. A larger
rate increases the learning speed, but the results may be
suboptimal.

To stabilize training and avoid GAN mode collapse,
as suggested by [37], the generator is trained twice, and the
discriminator is trained once in each training episode. The
training time for three sub-GANs is approximately 3.5 hours
with CPU. As the training of the HGAN is only conducted
once and offline and can be significantly reduced with GPU,
this training time is reasonable.

To demonstrate the performance of the HGAN-based
model, the cross-entropy loss and the squared error of each
sub-GAN are depicted in Fig. 5. The test data (not used for
training) check the model for overfitting. As seen in Fig. 5,
the cross-entropy loss and the squared error dramatically
decrease at the beginning of the training. Furthermore, with
predicted data from lower GANs, the cross-entropy loss
of GAN2 and GAN3 drops faster than the loss in GAN1,
indicating that the combination of predicted and measured
data leads to more distinguishable transient features for

the GAN. Since the cross-entropy loss of the testing data
does not increase as the loss of the training data decreases,
no overfitting occurs.

FIGURE 5. The cross-entropy loss and the squared error for each
of the three GANs in the HGAN-based model.

Upon training the HGAN model, the testing data, i.e.,
1000 stable and 1000 unstable events, are used to evaluate the
classification accuracy, which is presented in Table 3. With
the single measured PMU voltage data, the classification
accuracy of GAN1 is 95.35%. However, combining the real
measured data and the predicted data from the lower level
GANs yields an accuracy of 99.95% for GAN2 and GAN3.
Since a single sample of data contains limited transient
information, the classification accuracy ofGAN1 is low.With
more predicted data that contain the temporal features of a
transient event, the hidden oscillation patterns of the event
are more apparent to the classifiers and result in higher
classification accuracy.

The confusion matrix for each GAN is shown in Fig. 6.
For GAN1, all unstable transient data are correctly identified,
while 8.6% of the stable events are incorrectly classified.
Benefiting from the predicted data, in GAN2, the percentage
of misclassified stable events drops to 0.1%. Combining
the classification results of these three GANs with an
average-based ensemble strategy yields a TSA accuracy of
99.95% under various conditions. The computation time for
TSA with three GANs is 0.00298s (0.359 cycles). As GAN1,
GAN2, and GAN3 share an identical structural framework,
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TABLE 3. TSA classification accuracy (F1 score) of each GAN in
the HGAN-based TSA.

the execution time of each GAN is equal. The total response
time, including the waiting time for one cycle of the PMU
data, is 1.359 cycles, which is reasonable for near real-time.

FIGURE 6. The confusion matrix of each GAN.

—Comparison with Baseline Methods: The developed
TSA is compared to conventional data-driven methods that
deploy decision trees, SVM, LSTM, and GRU. The inputs
to the baseline methods are the measured post-fault PMU
voltage data. For the highest classification accuracy, the
LSTM hyperparameters, namely, the learning rate, training
iteration, the number of layers, hidden layers, and batch size,
are set to 0.0005, 40000, 2, 40, and 128, respectively. For
GRU, the optimal learning rate, training iteration, number
of layers, and hidden layers are 0.0005, 40000, 2, and 50,
respectively. Comparisons are presented in Table 4 and Fig. 7.
Compared to SVM, LSTM, and GRU, the decision trees and
the HGAN-based TSA are more accurate, using only one
sample of PMU measurements. The HGAN-based method
reaches an accuracy greater than 99% in a shorter time.
The SVM, GRU, and LSTM-based TSA achieve similar
classification accuracy at around two cycles. The reduction
of 0.65 cycles achieved by the developed method is critical
for online TSA. The response time is the sum of the time for
PMU samples to be available and the TSA computation time.
Although decision tree TSA achieves a high classification
accuracy with one data sample, unlike the developed HGAN-
based TSA, decision trees do not predict the transients. The
predictive capability makes the developed method suitable
for further applications, such as stability margin prediction
and cascading failure analysis. Furthermore, even though the
training time for HGAN is much longer compared to decision
trees, the training is carried out offline. Hence, its real-time
utility is not affected.

A stacked-GRU model is used for TSA to demonstrate
the benefits of the discriminator in the HGAN model, where
only the generator is retained. The stacked-GRU has the
same configuration as the HGAN model. The classification
accuracy, response time, and the accuracy of each sub-GRU
are given in Table 4, Fig. 7 and Table 5, respectively.
The stacked-GRU also learns the temporal correlations of
the sequence data and achieves a high TSA classification
accuracy, i.e., 99.1% in 1.12 cycles, as opposed to 99.95%
in 1.359 cycles with the HGAN-based method. Compared to

TABLE 4. TSA accuracy of the baseline methods and the
HGAN-based TSA with only one sample of the 20 PMU
measurements.

TABLE 5. TSA classification accuracy (F1 score) of each GRU in
the stacked-GRU model.

the TSA classification accuracy of each sub-GAN in Table 3,
GAN2 and GAN3 achieve higher accuracy than GRU2 and
GRU3 in Table 5. The discriminator helps the generator
better capture the dynamics of the transients, hence resulting
in higher accuracy. Since the HGAN-based model and the
stacked-GRU have a similar response time and the TSA accu-
racy is more critical, the HGAN-basedmodel outperforms the
stacked-GRU.

In summary, HGAN-based TSA outperforms the other
baseline methods in terms of accuracy and applicability.
Although in [22] a stacked-GRU model was developed to
classify transient events, this model is a multilayer GRU,
where the higher-level GRU uses the output of the lower-level
GRU in the same time step. This stacked-GRU model is the
baseline GRUmodel studied in Table 4, with twoGRU layers.
Furthermore, this model can only be used for classification
and requires at least several measurement cycles to achieve
high TSA accuracy.

FIGURE 7. Comparison of response times for IEEE 118-bus
system (20 PMUs). To achieve the same accuracy as the HGAN
TSA, other methods use more data and have a longer response
time.

C. IMPACT OF PMU MEASUREMENT VARIATIONS
The simulation-generated PMU measurements are noise-
free. In practice, PMU measurements are contaminated by
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TABLE 6. PMU placement scenarios.

noise. Therefore, the impacts of noisy PMU measurements
are analyzed. Following the study in [46], and [47], white
Gaussian noise is added to the simulated PMU data. Different
signal-to-noise ratios (SNRs) of 50dB, 60dB, 70dB, and
80dB are considered. The classification accuracies under
these noise levels, presented in Fig. 8, show that noise
only degrades the performance of GAN1. Larger noise will
lead to lower classification accuracy in GAN1. However, the
classification accuracy of GAN2 and GAN3 is not affected by
noise.

Interestingly, GAN1 achieves the highest classification
accuracy when a noise of 80dB is added to the measurements.
This accuracy is even higher than that obtained using clean
PMU data. This observation can be explained by the fact that
adding a small amount of noise to the input data leads to a
better and more robust GAN performance, as more features
of the transient data are learned for classification [48].

FIGURE 8. TSA classification accuracy of each sub-GAN under
different noise conditions. The testing data are used for
evaluation.

In practice, PMUs are not deployed at all locations within
the power grids. The performance of the developed TSA is
evaluated under varying PMU placement scenarios, listed
in Table 6. The classification accuracies listed in Table 7
show that the location of PMUs significantly impacts the
performance of GAN1. Due to the benefits offered by the
predicted data, the impact of placement is reduced in GAN2
and GAN3. The accuracy decreases slightly in GAN3 due to
the small accumulation of errors in the lower GANs.

The impact of the number of PMUs is demonstrated
in Table 8. Increasing the number of PMUs improves the
TSA accuracy for GAN1. The classification accuracy of
GAN2 and GAN3 are around 99% for more than 12 PMUs.
However, with less than 10 PMU, the classification accuracy
of GAN2 and GAN3 drops, indicating that the predicted data
from the lower GANs are not close to the real data. The
prediction error propagates to higher GANs and increases
the cumulative error, degrading the classification accuracy.

TABLE 7. The TSA classification accuracy of each GAN with
different PMU locations. A total of 16 PMUs are used.

TABLE 8. TSA classification accuracy of each sub-GAN with
different numbers of PMUs.

While more PMU data improves the classification accuracy,
after a threshold, it remains fixed in higher-level GANs.
Nevertheless, to ensure a robust TSA, it is recommended that
redundant PMUs be deployed throughout the grid.

The prediction accuracy of the sequence data relies on
each sub-GAN. The error in lower-level GANs propagates
to higher-level GANs and results in a large accumulated
error. To improve the prediction, we suggest: (1) freezing
the lower-level GANs when training the higher-level GANs
to avoid overfitting; (2) adding an additional encoder and
decoder to the generator to better predict the sequence data.
The training dataset is made balanced, i.e., the number of
stable and unstable transients is close. In real world, the ratio
between unstable and stable events is less than 5%, since
unstable transients are rare. An imbalanced training dataset
can adversely affect classification accuracy. To address
this, two strategies are suggested: data resampling and
redesigning the classifier algorithm. Data resampling, such as
oversampling and undersampling, increases the ratio between
the two types of events [49]. The classifier algorithm can
also be adjusted to be more sensitive to unstable events by
assigning a higher cost to an incorrect prediction of unstable
events [50].

D. DISCUSSIONS
Alongside GAN model enhancements, incorporating addi-
tional transient monitoring and prediction tools into grid
operations is critical. Although the developed GAN-based
TSA demonstrates a high prediction accuracy, the risk of
false predictions, which could potentially compromise grid
reliability, remains a concern. Therefore, it is suggested
to incorporate the GAN-based TSA approach with other
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TABLE 9. TSA classification accuracy against post-fault
Topology Change and 8-cycle fault clearing time.

real-time monitoring technologies, such as Wide Area
Monitoring Systems (WAMS) [51] and advanced real-time
simulation tools [52], to provide a robust and redundant
transient event assessment.

Additionally, this study utilizes a 5-cycle fault clearing
time, with post-clearing breaker reclosure enabled. Results
demonstrate the GAN-based TSA method’s effectiveness
with a single PMU data sample under varying system
conditions, topologies, and numbers of PMUswith respective
noise ratios. However, this study also acknowledges the
variability of fault clearing times and the absence of
auto-reclosing on some lines. Therefore, further evaluations
on the IEEE 118-bus system are performed for different
clearing times and scenarios without auto-reclosing. Specif-
ically, 30 transient events (15 stable and 15 unstable) with
an 8-cycle clearing time are generated. These events simulate
three-phase faults at the middle of a transmission line with
one line out of service. To evaluate the impact of post-fault
topology changes, 30 additional transient events (15 stable,
15 unstable) without auto-reclosing are simulated. Moreover,
four baseline methods, i.e., Decision tree, SVM, LSTM,
and GRU, are evaluated using the same test data. The TSA
classification accuracy for each method is given in Table 9.
It can be observed that the developed HGAN achieves the
highest classification accuracy of 96.67% under 8-cycle
clearing time and 86.67% under topology change after fault
clearing. However, in these evaluations, the HGAN exhibit
reduced prediction accuracy under 8-cycle fault clearing and
topology change scenarios, compared to the initial 99.95%
classification accuracy. Similarly, the other four baseline
methods also show a decline in classification performance
under these scenarios. This classification accuracy decrease
is due to the training process focusing primarily on scenarios
with auto-closing enabled and a standard 5-cycle fault
clearing time. Variations in post-fault conditions, such as
longer fault clearing times or topology alterations, are found
to influence stability results, thus impacting the prediction
accuracy of these TSA methods. Future improvements will
focus on training the TSA model with a more complex
contingencies, including diverse fault clearing times and
changes in topology after fault clearance.

V. CONCLUSION
A new GAN-based TSA is developed for the post-fault
transient assessment of a power system. Unlike the conven-
tional GAN model, the generator is redesigned such that the

modified GAN model predicts the sequence data from near-
real-time measurements. Taking advantage of the specific
hierarchical structure of multiple GANs, the HGAN-based
model maintains the temporal features of the multivariate
PMU time-series data. Therefore, with only one sample
of PMU measurements, the developed TSA achieves high
accuracy. The ability to utilize only one sample of data
to generate accurate predictions of system transients is a
significant achievement compared to conventional methods.
Case studies show that TSA accuracy can reach 99.95% using
predicted data. Compared to decision trees, SVM, GRU, and
LSTM, and the stacked-GRU model, the developed TSA
achieves higher accuracy in a shorter time. It is also observed
that the HGAN-based TSA is robust to measurement noise,
location, and number of PMUs.

In the future, the robustness of the classifier to imbalanced
training datasets can be improved. An encoder and decoder
can also be added to the generator to further improve the
predicted transient data and help predict the stability margins.
Additionally, more complex grid scenarios, such as different
clearing time and post-fault topology, will be studied to refine
the developed TSA approach.

REFERENCES
[1] A.-A. Fouad andV. Vittal,Power System Transient Stability Analysis Using

the Transient Energy Function Method. London, U.K.: Pearson Education,
1991.

[2] D. R. Gurusinghe and A. D. Rajapakse, ‘‘Post-disturbance transient
stability status prediction using synchrophasor measurements,’’ IEEE
Trans. Power Syst., vol. 31, no. 5, pp. 3656–3664, Sep. 2016.

[3] T. L. Vu and K. Turitsyn, ‘‘Lyapunov functions family approach to
transient stability assessment,’’ IEEE Trans. Power Syst., vol. 31, no. 2,
pp. 1269–1277, Mar. 2016.

[4] M. Pai and P.W. Sauer, ‘‘Stability analysis of power systems by Lyapunov’s
direct method,’’ IEEE Control Syst. Mag., vol. 9, no. 1, pp. 23–27,
Jan. 1989.

[5] E. Farantatos, R. Huang, G. J. Cokkinides, and A. P. Meliopoulos,
‘‘A predictive generator out-of-step protection and transient stability
monitoring scheme enabled by a distributed dynamic state estimator,’’
IEEE Trans. Power Del., vol. 31, no. 4, pp. 1826–1835, Aug. 2016.

[6] Y. Xue, T. Van Custem, and M. Ribbens-Pavella, ‘‘Extended equal area
criterion justifications, generalizations, applications,’’ IEEE Trans. Power
Syst., vol. 4, no. 1, pp. 44–52, Feb. 1989.

[7] M. Z. Jahromi and S. M. Kouhsari, ‘‘A novel recursive approach for real-
time transient stability assessment based on corrected kinetic energy,’’
Appl. Soft Comput., vol. 48, pp. 660–671, Nov. 2016.

[8] M. Pai, Energy Function Analysis for Power System Stability. Berlin,
Germany: Springer, 2012.

[9] P. Ju, H. Li, C. Gan, Y. Liu, Y. Yu, and Y. Liu, ‘‘Analytical assessment for
transient stability under stochastic continuous disturbances,’’ IEEE Trans.
Power Syst., vol. 33, no. 2, pp. 2004–2014, Mar. 2018.

[10] J. Yan, C.-C. Liu, and U. Vaidya, ‘‘PMU-based monitoring of rotor angle
dynamics,’’ IEEE Trans. Power Syst., vol. 26, no. 4, pp. 2125–2133,
Nov. 2011.

[11] M. Li, A. Pal, A. G. Phadke, and J. S. Thorp, ‘‘Transient stability prediction
based on apparent impedance trajectory recorded by PMUs,’’ Int. J. Electr.
Power Energy Syst., vol. 54, pp. 498–504, Jan. 2014.

[12] R. Diao, V. Vittal, and N. Logic, ‘‘Design of a real-time security assessment
tool for situational awareness enhancement in modern power systems,’’
IEEE Trans. Power Syst., vol. 25, no. 2, pp. 957–965, May 2010.

[13] T. Amraee and S. Ranjbar, ‘‘Transient instability prediction using decision
tree technique,’’ IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3028–3037,
Aug. 2013.

[14] B. Wang, B. Fang, Y. Wang, H. Liu, and Y. Liu, ‘‘Power system transient
stability assessment based on big data and the core vector machine,’’ IEEE
Trans. Smart Grid, vol. 7, no. 5, pp. 2561–2570, Sep. 2016.

216 VOLUME 11, 2024



Ma et al.: Predictive Online Transient Stability Assessment for Enhancing Efficiency

[15] J. Geeganage, U. D. Annakkage, T. Weekes, and B. A. Archer,
‘‘Application of energy-based power system features for dynamic security
assessment,’’ IEEE Trans. Power Syst., vol. 30, no. 4, pp. 1957–1965,
Jul. 2015.

[16] Y. Xu, Z. Y. Dong, J. H. Zhao, P. Zhang, and K. Po Wong, ‘‘A
reliable intelligent system for real-time dynamic security assessment of
power systems,’’ IEEE Trans. Power Syst., vol. 27, no. 3, pp. 1253–1263,
Aug. 2012.

[17] Y. Li and Z. Yang, ‘‘Application of EOS-ELM with binary Jaya-based
feature selection to real-time transient stability assessment using PMU
data,’’ IEEE Access, vol. 5, pp. 23092–23101, 2017.

[18] S. K. Azman, Y. J. Isbeih, M. S. E. Moursi, and K. Elbassioni, ‘‘A
unified online deep learning predictionmodel for small signal and transient
stability,’’ IEEE Trans. Power Syst., vol. 35, no. 6, pp. 4585–4598,
Nov. 2020.

[19] L. Zhu, D. J. Hill, and C. Lu, ‘‘Hierarchical deep learning machine for
power system online transient stability prediction,’’ IEEE Trans. Power
Syst., vol. 35, no. 3, pp. 2399–2411, May 2020.

[20] J. J. Q. Yu, D. J. Hill, A. Y. S. Lam, J. Gu, and V. O. K. Li, ‘‘Intelligent
time-adaptive transient stability assessment system,’’ IEEE Trans. Power
Syst., vol. 33, no. 1, pp. 1049–1058, Jan. 2018.

[21] Z. Li, H. Liu, J. Zhao, T. Bi, and Q. Yang, ‘‘Fast power system event
identification using enhanced LSTM network with renewable energy
integration,’’ IEEE Trans. Power Syst., vol. 36, no. 5, pp. 4492–4502,
Sep. 2021.

[22] F. Pan et al., ‘‘Stacked-GRU based power system transient stability
assessment method,’’ Algorithms, vol. 11, no. 8, p. 121, Aug. 2018.

[23] Q. Zhu et al., ‘‘A deep end-to-end model for transient stability assessment
with PMU data,’’ IEEE Access, vol. 6, pp. 65474–65487, 2018.

[24] I. J. Goodfellow et al., ‘‘Generative adversarial networks,’’ 2014,
arXiv:1406.2661.

[25] J. Bao, D. Chen, F. Wen, H. Li, and G. Hua, ‘‘CVAE-GAN: Fine-grained
image generation through asymmetric training,’’ in Proc. IEEE Int. Conf.
Comput. Vis., 2017, pp. 2745–2754.

[26] O. Mogren, ‘‘C-RNN-GAN: Continuous recurrent neural networks with
adversarial training,’’ 2016, arXiv:1611.09904.

[27] C. Ren and Y. Xu, ‘‘A fully data-driven method based on generative
adversarial networks for power system dynamic security assessment with
missing data,’’ IEEE Trans. Power Syst., vol. 34, no. 6, pp. 5044–5052,
Nov. 2019.

[28] X. Zheng, B.Wang, and L. Xie, ‘‘Synthetic dynamic PMU data generation:
A generative adversarial network approach,’’ inProc. Int. Conf. Smart Grid
Synchronized Meas. Analytics (SGSMA), May 2019, pp. 1–6.

[29] X. Zheng, B. Wang, D. Kalathil, and L. Xie, ‘‘Generative adversarial
networks-based synthetic PMU data creation for improved event classi-
fication,’’ IEEE Open Access J. Power Energy, vol. 8, pp. 68–76, 2021.

[30] R. Ma and S. Eftekharnejad, ‘‘Data generation for rare transient events: A
generative adversarial network approach,’’ in Proc. IEEE Ind. Appl. Soc.
Annu. Meeting (IAS), Oct. 2021, pp. 1–6.

[31] V. Vittal, J. D. McCalley, P. M. Anderson, and A. Fouad, Power System
Control and Stability. Hoboken, NJ, USA: Wiley, 2019.

[32] TSAT Transient Security Assessment Tool, PowerTech Labs Inc, Surrey,
BC, Canada, 2007.

[33] T. Guo and J. V. Milanovic, ‘‘Probabilistic framework for assessing the
accuracy of data mining tool for online prediction of transient stability,’’
IEEE Trans. Power Syst., vol. 29, no. 1, pp. 377–385, Jan. 2014.

[34] G. Gong, N. K. Mahato, H. He, H. Wang, Y. Jin, and Y. Han, ‘‘Transient
stability assessment of electric power system based on voltage phasor and
CNN-LSTM,’’ in Proc. IEEE/IAS Ind. Commercial Power Syst. Asia (ICPS
Asia), Jul. 2020, pp. 443–448.

[35] A. D. Rajapakse, F. Gomez, K. Nanayakkara, P. A. Crossley, and V.
V. Terzija, ‘‘Rotor angle instability prediction using post-disturbance
voltage trajectories,’’ IEEE Trans. Power Syst., vol. 25, no. 2, pp. 947–956,
May 2010.

[36] C.W. Taylor et al., ‘‘WACS-wide-area stability and voltage control system:
R&D and online demonstration,’’ Proc. IEEE, vol. 93, no. 5, pp. 892–906,
May 2005.

[37] J. Yoon, D. Jarrett, and M. van der Schaar, ‘‘Time-series generative
adversarial networks,’’ in Proc. 33rd Int. Conf. Neural Inf. Process. Syst.
(NIPS), Dec. 2019, pp. 5508–5518.

[38] A. Radford, L. Metz, and S. Chintala, ‘‘Unsupervised representation
learning with deep convolutional generative adversarial networks,’’ 2015,
arXiv:1511.06434.

[39] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and
H. Greenspan, ‘‘GAN-based synthetic medical image augmentation for
increased CNN performance in liver lesion classification,’’ Neurocomput-
ing, vol. 321, pp. 321–331, Dec. 2018.

[40] L. R. Medsker and L. Jain, ‘‘Recurrent neural networks,’’ Design Appl.,
vol. 5, pp. 64–67, Dec. 2001.

[41] A. Sorjamaa and A. Lendasse, ‘‘Time series prediction using DirRec
strategy,’’ in Proc. ESANN, vol. 6. Princeton, NJ, USA: Citeseer, 2006,
pp. 143–148.

[42] C. Zhang and Y. Ma, Ensemble Machine Learning: Methods and
Applications. Springer, 2012.

[43] S. Basumallik, S. Eftekharnejad, N. Davis, and Brian. K. Johnson, ‘‘Impact
of false data injection attacks on PMU-based state estimation,’’ in Proc.
North Amer. Power Symp. (NAPS), Sep. 2017, pp. 1–6.

[44] R. Ma, S. Basumallik, and S. Eftekharnejad, ‘‘A PMU-based data-driven
approach for classifying power system events considering cyberattacks,’’
IEEE Syst. J., vol. 14, no. 3, pp. 3558–3569, Sep. 2020.

[45] Y. Wu, M. Kezunovic, and T. Kostic, ‘‘Cost minimization in power
system measurement placement,’’ in Proc. Int. Conf. Power Syst. Technol.,
Oct. 2006, pp. 1–6.

[46] A. Al-Digs, S. V. Dhople, and Y. C. Chen, ‘‘Measurement-based sparsity-
promoting optimal control of line flows,’’ IEEE Trans. Power Syst., vol. 33,
no. 5, pp. 5628–5638, Sep. 2018.

[47] Y. Liu, N. Zhang, Y.Wang, J. Yang, and C. Kang, ‘‘Data-driven power flow
linearization: A regression approach,’’ IEEE Trans. Smart Grid, vol. 10,
no. 3, pp. 2569–2580, May 2019.

[48] H. Noh, T. You, J. Mun, and B. Han, ‘‘Regularizing deep neural networks
by noise: Its interpretation and optimization,’’ 2017, arXiv:1710.05179.

[49] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G.
Bing, ‘‘Learning from class-imbalanced data: Review of methods and
applications,’’ Exp. Syst. Appl., vol. 73, pp. 220–239, May 2017.

[50] B. Krawczyk, M. Woźniak, and G. Schaefer, ‘‘Cost-sensitive decision tree
ensembles for effective imbalanced classification,’’ Appl. Soft Comput.,
vol. 14, pp. 554–562, Jan. 2014.

[51] S. Meliopoulos, G. Cokkinides, R. Huang, E. Farantatos, S. Choi, and Y.
Lee, ‘‘Wide area dynamicmonitoring and stability controls,’’ inProc. IREP
Symp. Bulk Power Syst. Dyn. Control VIII (IREP), Aug. 2010, pp. 1–8.

[52] M. D. Omar Faruque et al., ‘‘Real-time simulation technologies for power
systems design, testing, and analysis,’’ IEEE Power Energy Technol. Syst.
J., vol. 2, no. 2, pp. 63–73, Jun. 2015.

RUI MA received the B.S. degree in electrical engineering from Central
South University, Changsha, China, in 2014, the M.S. degree from The Ohio
State University, Columbus, OH, USA, in 2015, and the Ph.D. degree from
Syracuse University, Syracuse, NY, USA, in 2022. His research interests
include power system stability analysis, protection, PMUs in smart grids,
application of AI, and cyber-security analysis.

SARA EFTEKHARNEJAD (Senior Member, IEEE) received the B.Sc.
degree in electrical engineering from the University of Tehran in 2006,
the M.Sc. degree from West Virginia University, WV, USA, in 2008, and
the Ph.D. degree in electrical engineering from Arizona State University,
AZ, USA, in 2012. She is an Associate Professor with the Department
of Electrical Engineering and Computer Science, Syracuse University,
Syracuse, NY, USA. Her research focuses on integrating renewable energy
resources, uncertainty quantification in power grids, and power system
stability with high penetration of renewables.

CHEN ZHONG received the B.S. degree in information engineering from
Beijing Institute of Technology, China, in 2014, the M.S. degree in electrical
engineering from the Stevens Institute of Technology, in 2016, and the Ph.D.
degree from Syracuse University, Syracuse, NY, USA, in 2022. Her research
interests include the areas of wireless communication and networking, signal
processing, and machine learning.

VOLUME 11, 2024 217


