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ABSTRACT We consider the problem of decentralized control of reactive power provided by distributed
energy resources for voltage support in the distribution grid. We assume that the reactance matrix of the grid
is unknown and potentially time-varying. We present a decentralized adaptive controller in which the reactive
power at each inverter is set using a potentially heterogeneous droop curve and analyze the stability and the
steady-state error of the resulting system. The effectiveness of the controller is validated in simulations using
a modified version of the IEEE 13-bus and a 8500-node test system.

INDEX TERMS Decentralized control, energy storage, power distribution systems, volt/VAr control.

I. INTRODUCTION

D ISTRIBUTED Energy Resources (DERs), including
both renewable energy resources and energy storage

devices, are changing the paradigm of power generation,
transmission and distribution. In traditional distribution net-
works (DNs), load variations over time cause fluctuations
in voltage due to a mismatch between reactive power sup-
plied and consumed. Such voltage fluctuations are typically
mitigated through the use of switched capacitor banks and
step voltage regulators. As the adoption of DERs increases,
and as consumers both produce and consume energy, often
referred to as prosumers, the time-varying, intermittent, and
unpredictable changes in load and generationwill lead to even
larger voltage fluctuations. Consequently, traditional voltage
regulation devices must operate more frequently, which may
reduce operational life of those devices and increase mainte-
nance costs [1], [2].

However, the inverters that connect these DERs to the dis-
tribution network are flexible power electronic converters that
are capable of controlling the reactive power they inject into
the DN independently of the real power injection, potentially

allowing for mitigation of voltage deviations through reactive
power compensation. Several algorithms, both centralized
and local, have been proposed to identify control strategies
for such inverters [3], [4], [5], [6], [7], [8]. Within the class of
local controllers, we can distinguish between distributed con-
trollers [9], [10], [11], [12], [13], which require neighboring
inverters to communicate with each other, and decentralized
controllers [14], [15], [16] that do not require any information
exchange. In this paper, we focus on the latter.

For decentralized control, a common practice (e.g., used
in IEEE 1547 standard) is to use volt/VAR droop curves
to determine the reactive power injected (or absorbed) by
the inverters into the power grid [17], [18], [19], [20], [21],
[22], [23], [24]. These local droop controllers do not require
communication among themselves to operate effectively, can
operate in parallel, and can operate within the hierarchical
voltage control scheme of distribution networks. However,
a known disadvantage of such droop controllers is that they
naively do not consider the effect of the droop controllers
present at other nodes. Since the entire distribution network
is dynamically coupled, droop controllers at various nodes
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can interact among themselves in a way that can lead to
them failing to deliver the required power quality and even
resulting in stability loss for the entire network that manifests
itself as steady-state oscillations in the voltage [17], [25].
If the droop gain is lowered, the effects of interactions are
mitigated, but larger steady state voltage error will result.

To overcome this issue, several techniques have been
proposed. Early contributions provided a rigorous stability
analysis by modelling the distribution system in continuous
time [26]. Because of the fast action response of the inverter
based DERs, [27] argues that a discrete time formulation
is more appropriate to model the problem and supplements
the droop curve with a first-order filter. A popular line of
work [17], [24], [28] is to develop a small-signal based sta-
bility analysis by assuming that the system operates in the
linear region of the droop curves. In [29], the authors identify
the stability conditions by assuming that the same controller
is being utilized at all nodes.

Since the distribution network is dynamically coupled, it is
not surprising that all the above proposed techniques require
the knowledge of the reactance matrix of the distribution
network for analysis and controller design (with sufficient
analysis conditions possible through a metric such as the
norm or the spectral radius of the matrix). This matrix is used
as part of an affine or linearized model that maps the changes
in the node power injections to the nodal voltage deviations.
The nodal reactance depends on factors such as the power
injected through the DERs, the power consumed by the loads
at each node, and the topology of the distributions system.
Distribution networks are typically insufficiently monitored
and model and parameter errors are very common [30]. Thus,
accurate knowledge of the reactance matrix is usually an
onerous assumption. Metrics such as spectral radius can be
very sensitive to precise values of the parameters or the
model. Further, most of these works assume that the reac-
tance matrix is time-invariant, which implies that the factors
listed above (such as the power injected through the DERs or
consumed at the loads) are time-invariant. This can limit the
applicability of the analysis or at least make it conservative
as the number of prosumers increases and changes in the
distribution network become more frequent.

We take a step towards a decentralized controller design to
guarantee voltage stability of a distribution networkwithmul-
tiple inverters when the reactance matrix may be unknown
and time-varying. We consider a discrete-time formulation
and allow for heterogeneous droop curves at the inverters.
We begin by presenting a decentralized controller to control
the reactive power injection (or absorption) at each node as a
function of the local voltage. As in the case of most existing
techniques, ensuring stability with such a controller requires
the knowledge of the reactance matrix to design the droop
curves. Our main result is to utilize the structure of this con-
troller to design an adaptive controller that does not require
this knowledge for the case when the reactance matrix is
unknown and possibly time-varying. The adaptive controller
requires a small dither signal to probe the network in order

to ensure that the controller converges to a neighborhood of
the desired value, thus resulting in a small steady-state error.
We provide tuning rules to decrease the steady-state error
while maintaining stability of the overall network. Some of
the results in this paper were presented in an initial form
in [31]. As compared to that paper, we present a proof of the
convergence of the proposed adaptive controller, analyze the
steady-state error introduced by the controller, and present
more detailed simulation studies including on an 8500-node
system.

We begin by presenting the system model in Section II.
We first present an initial dissipativity-based design of the
controller. For the case when the reactance matrix is unknown
and time-varying, we then present an adaptive extremum-
seeking approach to converge to the correct controller. Some
numerical case studies are presented in Section IV.

II. SYSTEM MODEL
Consider a radial distribution network with n + 1 buses
numbered as 0, 1, · · · , n. Without loss of generality, bus 0
is the substation bus assumed to be at a fixed voltage. Define
the set of buses byN ≜ {0, 1, . . . , n} . Denote the set of lines
connecting the buses by L with the line (i, j) ∈ L connecting
buses i and j. For each bus i ∈ N , denote the magnitude of
the voltage at this bus by vi, the real power injection by pi and
the reactive power injection by qi (with injection denoted by
a positive value and absorption by a negative sign). Denote
the stacked vectors of these quantities at all the buses by v for
the voltage magnitudes, p for the real power injections, and q
for the reactive power injections.

In a distribution grid, the voltage magnitude v can be
observed and the reactive power injections q can be con-
trolled. We are interested in decentralized control, so that
the reactive power injections at each node must be con-
trolled locally. We follow the development of [27] to describe
the dynamics of the system. For simplicity, we consider
a single-phase grid although the basic idea presented here
can be extended to three-phase systems. We assume that
the dynamics of the grid are considered in a discrete-time
fashion with the discretization time Ts that is sufficiently
large so that the power system dynamics (grid, load, and
inverter dynamics) reach a steady state between the discrete-
time steps. Thus, if the reactive power injections q(k) are
specified at time step k , then the actual injections will reach
these values at time step k + 1. Further, the corresponding
voltages (given by the power flow equations) will also reach
a steady state at time step k + 1. We assume that the voltages
are obtained through a linearization of the nonlinear power
flow equations at 1 pu.

If we denote the prescribed values of the reactive power
injections at iteration k by the control input u(k), and assume
that the voltages v(k) can be observed, then the above discus-
sion can be summarized in a system model of the form

6l : q(k + 1) = u(k)

y(k) = v(k), (1)
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with the voltage v(k) and reactive power q(k) satisfying
v(k) = Xq(k) + ṽ, where X is a positive definite matrix that
characterizes the reactance of the network and ṽ is a vector
that depends on the real power injections and the resistances
in the network and is not controllable. This linearized model
is widely accepted, see, e.g., [27], [29], [32], [33], and [34].
While it is usually assumed for convenience that X is a con-
stant matrix, its value depends on factors such as the power
injected through the DERs, the power consumed by the loads
at each node, and the topology of the distributions system.
Especially as DER penetration increases, the validity of this
assumption quickly degrades. In this paper, we seek to relax
this assumption, so that we denote the value of the matrix at
time k by X (k). We assume that X (k) is chosen from a set
X . Further, the precise value of X (k) is often unknown since
distributions networks are usually under-monitored.

We aim to design the control input u(k) as a causal function
of the output y(0), · · · , y(k), so that the voltage v(k) locally
asymptotically stabilizes to a desired setpoint v⋆. Further,
it should be a local controller in the sense that each input
ui(k) depends only on the local outputs (or voltages) at bus i.
Finally, the control input u(k) must satisfy the physical limits
of the reactive power that can be supplied or absorbed by the
inverter, so that u(k) ∈ [qmin, qmax]. For ease of notation,
we assume that the saturation limits qmin and qmax are fixed
and constant for every inverter, although our arguments below
can be generalized.

Let the voltage setpoint of the system 6l be denoted as
v⋆. For a given matrix X , the corresponding reactive power
setpoint is given by v⋆ = Xq⋆

+ ṽ, with q⋆
∈ [qmin, qmax].

Denote the set of all feasible operating points by

C =
{
(q, v) ∈ Rn

× Rn
|v = Xq+ ṽ

}
. (2)

Finally, denote the incremental quantities1q(k) = q(k)−q⋆,
1u(k) = u(k) − u⋆, and 1v(k) = v(k) − v⋆.

III. PROPOSED CONTROLLER DESIGN
Our controller builds on two basic ideas. In Section III-A,
we begin by designing a controller that ensures convergence
to the correct setpoint if the reactance matrix were perfectly
known. We achieve this through the notion of dissipativity.
Then, in Section III-B, we extend this design to present an
adaptive controller that achieves convergence to the setpoint
even when the reactance matrix is not known.We achieve this
through an extremum-seeking controller.

We begin with the first part now. As mentioned above,
our controller design is based on the system-theoretic notion
of dissipativity. For a detailed treatment of dissipativity,
we refer the reader to books such as [35]; a brief overview
is provided in Appendix A. Beginning from energy dissi-
pation through resistors in electrical circuits, the notion of
dissipativity formalizes the notion of energy being dissipated
in a system that is being supplied energy from external
inputs. A dissipativity-ensuring controller ensures that the
closed-loop system dissipates energy by imposing that the
energy supplied externally (measured using a supply rate) is

FIGURE 1. Sample volt/VAr droop control characteristic.

more than the energy stored by the system (measured using
a storage function). Such a property naturally ensures that
the system is stable. By considering the error system with
respect to a setpoint, we can easily translate such stability to
convergence to a desired setpoint. Dissipativity-based control
has been extensively used, including in power grids.

We begin by presenting a dissipativity property for
the linearized system 6l . Using that, we design a new
dissipativity-based controller to ensure that the voltage set
point is asymptotically stable. The dissipativity analysis of
the system6l is slightly complicated by the fact that the input
u(k) is related to q(k + 1) and hence the output y(k + 1) at
time k + 1. We use the well-known tool of scattering trans-
formations used in the theory of dissipativity of time-delay
systems [36]. Specifically, we use the scattering transform
defined by

ν(k) = 1v(k) + X (k + 1)1u(k), (3a)

ω(k) = −1v(k) + X (k + 1)1u(k). (3b)

We can then prove the following result.
Lemma 1: The system 6l is dissipative with respect to

the input ν(k) and output ω(k) irrespective of how u(k) is
designed.

Proof: Consider the storage function S(k) =

∥X (k)1q(k)∥22. Then, we can write

S(k + 1) − S(k)

= ∥X (k + 1)1q(k + 1)∥22 − ∥X (k)1q(k)∥22

= ∥X (k + 1)1u(k)∥22 − ∥1v(k)∥22

= (1v(k) + X (k + 1)1u(k))⊤ (−1v(k) + X (k + 1)1u(k))

= ν(k)⊤ω(k),

which concludes the proof.
We emphasize that the dissipativity above has been proven
with respect to a ‘dummy’ input ν(k) and output ω(k) and
holds irrespective of the controller used to design u(k).

A. CONTROL Design
We now show that the dissipativity property proved above can
be utilized to design a controller that stabilizes the system
around the desired setpoint. Specifically, consider the follow-
ing controller inspired by the popular droop controllers and
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shown in Fig. 1:

u(k) =


qmax v(k) < vl

u⋆
− K

(
v(k) − v⋆

)
vl ≤ v(k) ≤ vh

qmin v(k) > vh,

(4)

where qmax and qmin denote the maximum and the minimum
allowed reactive power injections andK ∈ Rn×n is a diagonal
matrix representing the slope of the droop curve. Further, for
the system not to have a trivial equilibrium in the saturated
regime, we assume that the parameters vl ∈ Rn and vh ∈ Rn

are chosen to satisfy

vh ≥ X (k)qmax + ṽ ≥ vl (5)

vl ≤ X (k)qmin + ṽ ≤ vh, (6)

for all allowed matrix values X (k) ∈ X . These relations can
be interpreted as imposing constraints on the allowed voltage
range as a function of the reactive power capacity of the DERs
so that stability can still be guaranteed.

The following result is proven in Appendix B.
Theorem 1: Consider the system 6l with the con-

troller (4). Let K be a diagonal matrix that satisfies the
condition

K (k) := (I + X (k)K )−1 (
X (k)K − I

)
< 0 (7)

such that K (k)+KT (k) is negative-definite for all X (k) ∈ X .
Then:
(i) The closed loop system is dissipative with respect to the

supply-rate w(ω) := ω⊤(k)K (k)ω(k).
(ii) Assume further that X (k) asymptotically converges to

a value X . Then the closed loop system is asymptot-
ically stabilized to the desired operating point (q⋆, v⋆)
corresponding to the voltage set point v⋆ and the corre-
sponding reactive power given by v⋆ = Xq⋆

+ ṽ, with
q⋆

∈ [qmin, qmax].
Theorem 1 proves the stability of a controller inspired by

the droop controller, under some conditions on the range of
the linear portion of the controller (given by (5) and (6)) and
restrictions on the slope of the linear portion of the controller
with respect to the matrix X of the distribution grid. Note
that the dissipativity result (part (i)) holds even if the matrix
X is time varying. For asymptotic stability to hold in part
(ii), we naturally require the dynamic system to become time
invariant and thus the reactance matrix has to eventually
converge.

B. ADAPTIVE CONTROLLER
Although the controller (4) is sufficient to stabilize the system
6l , it requires the knowledge of the desired setpoint u⋆,
which, in turn, requires the value of the matrix X . Obtaining
the values of this matrix accurately in a distribution grid is
often not possible in practice. To overcome this limitation,
we now propose an adaptive controller that does not require
any knowledge of u⋆. We continue to assume that the condi-
tion limk→∞ X (k) = X holds.

FIGURE 2. Proposed algorithm for identifying û⋆(k).

Following the theory of extremum-seeking controllers
(ESCs) [37] the controller at time k is of the form:

u(k) = û⋆(k) − K
(
v(k) − v⋆

)
, (8)

where û⋆(k) ∈ Rn denotes the current estimate of the
unknown desired reactive power u⋆. Note that this controller
is of the same form as the proposed controller in (4) with
the (unknown) term u⋆ replaced by its current estimate û⋆(k).
To update û⋆(k), we follow the design in Fig. 2. Since u⋆

corresponds to the desired setpoint q⋆ of the reactive power,
we define a cost function J (û⋆(k)) associated with any choice
of û⋆(k) as

J (û⋆(k)) = ∥Xu(k) + ṽ− v⋆∥22. (9)

This cost function is zero precisely when û⋆(k) equals u⋆.
The ESC theory updates the term û⋆(k) in a manner such
that asymptotically, the cost function is driven to zero. More
specifically, as proposed in [37], we update the estimate as

û⋆
i (k + 1) = θ̂i(k + 1) + ai cos(2παi(k + 1)) (10)

θ̂i(k + 1) = θ̂i(k)

− γiai cos(2παik)
(
J (û⋆(k)) − (1 + h)ζ (k)

)
(11)

ζ (k) = −hζ (k − 1) + J (û⋆(k − 1)), (12)

where ζ (k) is a scalar and the subscript i indicates the i-th
vector entry. The signal ai cos(ωik) is a dither signal with a
small amplitude ai and frequency αi =

ωi
2π , with 0 < αi < 1.

γi is the adaptation gain chosen such that
γia2i
2

< 1. The

high-pass filter z−1
z+h is designed with 0 < h < 1 and a cutoff

frequency well below 2παi. The ESC is a gradient-based con-
troller and thus any convergence result is necessarily local.
Thus, we assume that the the system 6l remains in the linear
range of the controller (4). We can then show the following
result proven in Appendix C.
Theorem 2: Consider the system 6l in closed loop with

the controller of the form (8) such that vl ≤ v(k) ≤ vh at
every step. Let the parameter û⋆(k) in the controller be chosen
according to the equations (10)-(12). Then, it holds that the
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parameter û⋆(k) locally exponentially converges to an O(ai)
neighborhood of the correct value u⋆.
The above result proves exponential convergence of the

parameter û⋆(k) to a value u that is in a neighborhood of u⋆.
Thus, for the case of a time-varying matrix X that may change
suddenly and potentially large amounts; however remains
constant for sufficiently long intervals to allow the adaptive
controller to converge, the extremum-seeking controller can
be utilized to ensure that the system remains in a small
neighborhood of the desired set point.

C. STEADY-STATE ERROR
The choice of the parameter K has not yet been fixed beyond
the condition imposed in (7). Theorem 2 indicates that the
parameter û⋆(k) used in the proposed controller (4) converges
to a value uwhich is in a neighborhood of u⋆. Thus, while the
controller may be stabilizing (following Theorem 1), there
may be a steady-state error in the values of the voltages being
tracked. The choice of K can be utilized to minimize this
steady-state error as discussed below.

The reason for this steady-state error can be understood by
utilizing the controller (4) with the parameter u from the ESC
in the system 6l . The closed-loop system is written as

q(k + 1) = u− K
(
v(k) − v⋆

)
v(k + 1) = X̄q(k + 1) + ṽ

= Xu⋆
+ ṽ− XK

(
v(k) − v⋆

)
+ X (u− u⋆).

At steady state, we have that v(k+1) = v(k) = v that may not
necessarily be the desired setpoint v⋆. In fact, the steady-state
error is given by

vess = ∥v⋆ − v∥2 = ∥(I + XK )−1X (u⋆
− u)∥2, (13)

where ∥ · ∥2 denotes the 2-norm of a vector. To mitigate this
error, we can utilize the parameter K . From (13), the reason
for the steady-state error is that there is a mismatch between
the terms u and u⋆. Thus, we define the sensitivity S of the
system 6l with respect to the controller gain K , when the
controller (4) with the ESC described above is used as

S = max
K ,∥X (u⋆−u)∥2=1

vess
∥X (u⋆ − u)∥2

. (14)

If a is the smallest singular value of I + XK , then a >

0 and
1
a
is the largest singular value of (I + XK )−1. Thus,

by definition, the sensitivity S is given by

S = max
K ,∥X (u⋆−u)∥2=1

∥(I + XK )−1X (u⋆
− u)∥2 =

1
a
.

Thus, for small steady-state error, we should choose K such
that the smallest singular value of XK is as large as possible
(while ensuring stability with (7)). If the matrix K is symmet-
ric, we can also see that from Theorem 1, every eigenvalue
λ of K is negative. Further, if XK is symmetric, its singluar
values are the same as its eigenvalues. Thus, every eigenvalue

FIGURE 3. Numerical illustration of sensitivity of the IEEE 13-bus
test feeder example with ESS at Buses 680 and 675 as a
function of the smallest eigenvalue of the matrix XK for
different choices of K .

TABLE 1. Summary of test systems used in case studies.

1+λ
1−λ

of XK is in the interval (−1, 1). Therefore, in this case,
for a small steady-state error we should choose the matrix
K such that the smallest eigenvalue of XK approaches 1.
A numerical illustration is provided for the IEEE 13-bus test
feeder example discussed further in Section IV in Figure 3,
where the sensitivity of the system is plotted as a function of
the smallest eigenvalue of the matrix XK for different choices
of K . The figure confirms that the sensitivity is the lowest
when the smallest eigenvalue of XK approaches unity.

IV. CASE STUDIES
This section provides case studies to demonstrate the effec-
tiveness of the proposed method. The first case study uses a
modified version of the IEEE 13-bus test feeder to compare
three voltage control systems: i) traditional voltage regula-
tion devices, i.e., capacitor banks and on-load tap changers
(OLTCs), ii) droop control of ESS is added to i), and iii) the
proposed controller modulates the power injection of ESS
in combination with i). A second case study is implemented
using the much larger IEEE 8500-Node Distribution system
to demonstrate that the proposed controller is effective on
a larger-scale problem. All numerical studies are simulated
using OpenDSS [38]. Relevant features of the case studies
are summarized in Table 1.

A. CASE: IEEE 13-BUS TEST FEEDER
The first test case considers a simulation with a time step of
1 second over 24 hours. A 3 MW three-phase solar array was
added to bus 671 to represent a utility-scale solar PV array.
The power injection profile was derived from the high vari-
ability solar irradiation dataset from the Alderville site [39].
Two three-phase 600 kVAESSswere added to the unbalanced
IEEE 13-bus test feeder’s buses 680 and 675, as shown in
Fig. 4. The inverters have a circular capability curve. At
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FIGURE 4. IEEE 13-bus test feeder. Buses 680 and 675 have ESS.

FIGURE 5. Control system 1: Voltage profile measured by ESS 1
(V1) and ESS 2 (V2).

FIGURE 6. Control system 1: Operation of capacitor banks (CB)
and step-voltage regulators (VT).

7:26 PM a system reconfiguration occurs, where SW1 opens
and SW2 closes. The ESS and PV can provide volt/VAr
regulation to the feeder to mitigate the voltage fluctuations
caused by time-varying loads, reconfiguration of feeder, and
solar generation. We consider three scenarios.

1) VOLTAGE CONTROL SYSTEM 1 (TRADITIONAL
VOLTAGE REGULATORS)
This voltage control system considers that the voltage is reg-
ulated exclusively by two capacitor banks at buses 675 (CB 1,
three-phase) and 611 (CB 2, single-phase), and three single-
phase step-voltage regulators situated between buses 650 and
632. In this case, the ESS are inactive. Fig. 5 and Fig. 6 present
the resulting voltage profiles and the switching pattern used
by capacitor banks and voltage regulators. While the average
voltage across the three phases is within 5% of 1 [p.u.],
there are undesirable fast voltage variations and switching in
capacitor banks and step-voltage regulators in the periods of
fast reduction in solar generation due to clouding (between

FIGURE 7. Control system 2: Voltage oscillation introduced by
the volt/VAr droop controller.

FIGURE 8. Control system 2: Reactive power injection oscillation
introduced by the volt/VAr droop controller.

9 and 10 AM). Note that, while capacitor banks and step-
voltage regulators do provide voltage control, their frequent
operation is undesirable due to additional maintenance costs
and decreased equipment life.

2) VOLTAGE CONTROL SYSTEM 2 (TRADITIONAL
VOLTAGE REGULATORS PLUS ESS USING
DROOP-BASED VOLT/VAR)
In the second voltage control system, the volt/VAR droop
control capabilities of both the ESS and the PV are used.
The voltage-reactive power controller settings were chosen
within the range of allowable settings of standard IEEE 1547-
2018 type A. Similarly to what is shown in the motivational
example of [27], oscillations in the voltage and output of the
volt/VAR droop controller is found when solar PV output
increases, as shown in Figs. 7 and 8. The controllers saturate
at every time step and introduce an oscillation in power flows
and voltage of the distribution feeder. The detail plot in Fig. 8
provides a clearer idea of how those oscillations occur.

3) VOLTAGE CONTROL SYSTEM 3 (TRADITIONAL
VOLTAGE REGULATORS PLUS PROPOSED ESS
CONTROLLER)
In the third scenario, the proposed controller is used.
The proposed controller (18) was designed using K =
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FIGURE 9. Control system 3: Voltage profile with proposed
controller.

FIGURE 10. Control system 3: Power injections obtained with the
proposed controller. The sharp changes at t = 10,17 h
correspond to the switching capacitor bank actions shown in
Fig 11.

FIGURE 11. Scenario 3: Switching in Capacitor-Banks (CB) and
Step-Voltage Transformers (VT) with ESC.

diag{10000, 1000}, which resulted in a negative definite K
and which was determined through some trial and error to
achieve a reasonable average voltage error. The parameters
of the adaptive controller were chosen as ai = 0.1, ωi =

π/2, γi = 0.027, h = 0.99. The controller stabilizes the
voltages, as shown in Fig. 9 with the power injections shown
in Fig. 10.

The ESC provides the desired controller outputs, u⋆ shown
in Fig. 10. Following a brief transient, when these controllers
obtain a stable u⋆, which provides the first term at the right
hand side of (18). When added to the second term of the same
equation, we obtain the controller outputs û⋆. We notice that
those act to counter the voltage fluctuations in the feeder,
providing good voltage regulation by maintaining voltage
very close to the target of 1 p.u. It is also important to

FIGURE 12. The highlighted buses of the IEEE 8500 system have
ESS.

FIGURE 13. Voltage profile with proposed controller.

FIGURE 14. Power injections obtained with the proposed
controller.

highlight that the parameters chosen plus the actuation of the
adaptive controller avoid saturation of the actuator, i.e., the
reactive power absorption capability of the two ESS units.
Finally, Fig. 11 depicts the behaviour of the step-voltage
regulators and capacitor banks. When compared to the first
scenario (Fig. 6) we see that the number of switching events
is considerably reduced.

B. CASE: IEEE 8500-NODE DISTRIBUTION SYSTEM
The voltage controller was validated in a simulation with a
time step of 5 seconds over 15 minutes. 6 three-phase 300 kW
ESS, namely A, B, C, D, E, F, and G, were added to the
IEEE 8500-node distribution system, as shown in Fig. 12. The
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FIGURE 15. u⋆ estimated by the ESC for IEEE 8500 system.

volt/VAr control settings were chosen in the limits in IEEE
1547-2018 for Type A inverter. Similarly to the previous
case, oscillations are detected due to the interactions of all
volt/VAR controllers. implemented by ESS.

The proposed controller (18) was implemented with the
proportional gain K = 500 × diag{1, 1, 1, 1, 1, 1}. The term
u⋆ in (18) is estimated using the ESC (10)-(12), where the
parameters of the ESC were chosen as ai = 0.1, γi = 0.1,
h = 0.1 and ωi = π/5. As shown in Figs. 13 and 14,
the proposed controller is able to eliminate the oscillations
of volt/VAR controllers, providing a flat voltage and reactive
power profiles. Furthermore, the controller is able to maintain
the voltages reasonably close to 1 p.u.

V. CONCLUSION
We provided a dissipativity-based adaptive controller for
decentralized control of reactive power from DERs in
the distribution grid. Importantly, we explicitly allow the
reactance matrix of the grid to be unknown and even
time-varying. We also provided analytical expressions to
evaluate and reduce the steady-state error of voltages with
the proposed controller. The controller was demonstrated
through simulations in two IEEE test distribution sys-
tems modified to represent scenarios of high-penetration
of DERs.

A. DISSIPATIVITY
Consider the discrete time nonlinear system

x(k + 1) = f (x(k), u(k))

y(k) = h(x(k), u(k)), (15)

where x(k) ∈ Rn is the system state and u(k) ∈ Rm is
the system input. Let f and h be real analytic about (x =

0, u = 0). Without loss of generality we assume that the
pair (x = 0, u = 0) is an equilibrium for (15). Then,
the system (15) is said to be dissipative with respective to
the supply rate w(u(k), y(k)), if there exists a nonnegative
function S(x), called the storage function, satisfying S(0) = 0
such that

S(x(k + 1)) − S(x(k)) ≤ w(u(k), y(k)). (16)

In particular, if (16) holds with strict inequality then (15)
is strictly dissipative. Furthermore, (15) is called (Q, S,R)−
dissipative if (16) holds forw(u, y) = u⊤Ru+2y⊤Su+y⊤Qy,
where Q = Q⊤, S and R = R⊤ are matrices with appropriate
dimensions.

The following result is from [40, Corollary 1]. Consider
the discrete time system (15) and its linearized model around
equilibrium (x = 0, u = 0). Assume that the linearizedmodel
is stricitly (Q, S,R)− dissipative with a storage function
S(z) = (1/2)z⊤Pz. If

R+ S⊤D+ D⊤S + D⊤QD− B⊤PB > 0 (17)

then system (15) is locally strictly (Q, S,R)− dissipative.

B. PROOF of THEOREM 1
If the initial condition v(0) satisfies v(0) < vl , then the
controller (4) implies that u(0) = qmax. The state q(1) =

u(0) = qmax, which, in turn, implies from (5) that vl ≤

v(1) ≤ vh. Similarly, if v(0) > vh, vl ≤ v(1) ≤ vh. Thus, for
asymptotic behavior of the system, we can assume without
loss of generality that the initial condition of the system
satisfies vl ≤ v(0) ≤ vh and the control input is given by

u(k) = u⋆
− K

(
v(k) − v⋆

)
. (18)

To prove part (i), we begin by simplifying (3) using the
controller (18) to write

ν(k) = (I − X (k + 1)K )1v(k)

ω(k) = −(I + X (k + 1)K )1v(k). (19)

Further, from the definition of K in (7), we can write

X (k + 1)K = (I + K (k))(I − K (k))−1. (20)

We can use (20) to rewrite (19) as

ν(k) = K (k)ω(k). (21)

Using Lemma 1 and (21), we have

S(k + 1) − S(k) = ν(k)⊤ω(k) = ω(k)⊤K (k)ω(k). (22)

This concludes the proof of part (i).
For part (ii), we note that since limk→∞ X (k) = X , K (k)

also converges to some matrix K < 0 as k → ∞. Then, (22)
implies the following:

• If w(ω) = 0, then ω(k) = 0. From (21), we then obtain
ν(k) = 0. Thus, the relation (3) yields v(k) = v⋆ and
consequently q(k) = q⋆.

• If w(ω) ̸= 0, then S(k + 1) < S(k). Since X (k) > 0,
S(k) ≥ 0, with S(k) = 0 if and only if 1q(k) = 0, or in
other words, q(k) = q⋆ and v(k) = v⋆.

These two observations imply that the system 6l with (4) is
asymptotically stabilized to the operating point (q⋆, v⋆).
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C. PROOF of THEOREM 2
Note that for the system with J (û⋆

i ) as the input and θ̂i as the
output, the transfer function is given by

−γ

z− 1
[ai cos(wik)]

z− 1
z+ h

,

where a transfer function in front of a bracketed time function,
such as G(z)[u(k)], means a time-domain signal obtained as
an output of G(z) driven by u(k). From [41, Lemma B.5], this
transfer function is exponentially stable. This implies that the
state-space form of this transfer function, as given by (11)-
(12), is adequate for the application of the two-time scale
averaging theory [42].

Now, we write the closed loop dynamics in terms of aver-
age signals. To this end, for a signal κi(k), denote the average

signal of κi(k), over a time-period T , by κi,a :=
1
T

∑T
l=0 κi(l).

Further, denote by ũ⋆
i(k) the tracking error θ̂i(k)− u⋆

i in θ̂i(k)
with respect to u⋆

i . Finally, denote

φi(ũ⋆
i(k)) = Ji(ũ⋆

i + u⋆
i + ai cos(2παik)). (23)

Note that φi(.) is a convex function and has a minimum at
ũ⋆
i = 0. A Taylor series expansion thus yields

J (û⋆
i ) = φ(ũ⋆

i + ai cos(wik)) (24)

= φ(ũ⋆) + ∇u⋆φ(ũ⋆)ai cos(wik). (25)

Using (25) and the fact that 0 < αi < 1, we can compute

1
T

T∑
l=0

Ji(û⋆(l)) = φi,a(ũ⋆
i,a), (26)

1
T

T∑
l=0

cos(2παil)J (û⋆(l)) =
ai
2

∇u⋆
i
φi,a( ˜u⋆

i,a). (27)

Using (26) and (27), the averaging dynamics in (10)-(12) are
simplified to

û⋆
i,a(k + 1) = θ̂i,a(k + 1) (28)

θ̂i,a(k + 1) = θ̂i,a(k) −
γia2i
2

∇u⋆
i
φi,a( ˜u⋆

i,a) (29)

ζi,a(k + 1) = −hζi,a(k) + φi,a(ũ⋆
i,a). (30)

From (24) and (28), we obtain that ∇u⋆
i
φi,a( ˜u⋆

i,a) =

∇u⋆
i
Ji,a(θ̂i,a). This implies that (29) represents the gradient

descent dynamics on the cost-function Ji,a(û⋆
i,a), which is

convex and has a minimum at u⋆
i,a. Since

γia2i
2

< 1, we have

θ̂i,a → u⋆
i,a, and φi,a(ũ⋆

i,a) = 0. From (30), noting that 0 <

h < 1 we have ζi,a(k) → 0. Convergence of each component
û⋆
i (k) to a value ui that is in an O(ai) neighbourhood of u⋆

i is
thus guaranteed [37], [41].
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