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ABSTRACT This paper provides a review of the most recent advances in artificial intelligence (AI) as
applied to computational electromagnetics (CEM) to address challenges and unlock opportunities in power
system applications. It is intended to provide readers and practitioners in electromagnetics (EM) and related
applicable fields with valuable perspectives on the efficiency and capabilities of machine learning (ML)
techniques used with CEM tools, offering unparalleled computational advantage. The discussion begins
with an overview of traditional computational methods in EM, highlighting their strengths and limitations.
The paper then delves into the integration of AI techniques, including ML, deep learning, and optimization
algorithms, into CEM frameworks. Emphasis is placed on how AI enhances the accuracy and efficiency of
EM simulations, enabling rapid analysis and optimization of power system components and configurations.
Case studies and examples illustrate the successful application of AI-based CEM in solving practical
challenges in electrical machine modeling, condition monitoring, and design optimizations in power systems.
This paper conducts a comprehensive assessment of AI-based CEM techniques, critically evaluating their
merits, addressing open issues, and examining the technical implementations within the context of power
system applications.

INDEX TERMS Artificial neural networks (ANN), deep learning, finite difference time domain (FDTD),
finite elementmethod (FEM),machine learning (ML),method ofmoments (MoM), partial element equivalent
circuit (PEEC), power system equipment modeling, power system simulation, transmission line modeling
(TLM).

I. INTRODUCTION

RCENT research conducted by integrating computational
electromagnetics (CEM) and artificial intelligence (AI)

has witnessed significant advancements and promising out-
comes. CEM can be defined as a branch of electromagnetics
(EM) that relies on a digital computer to derive numerical
outcomes. There are various traditional CEM techniques such
as the finite difference time domain (FDTD) method, the
finite element method (FEM), the transmission line modeling
(TLM), the method of moments (MoM), and the partial ele-
ment equivalent circuit (PEEC) method which significantly

contribute to the understanding and analysis of EM phenom-
ena. However, the inherent complexity and computational
demands of the EM problems and the inherent limitations
of the above techniques to overcome these barriers have
prompted researchers to explore new approaches.

The development of AI has witnessed rapid progress and
a transformative impact across various domains, including
CEM [1]. AI has evolved from its beginning to encompass
a diverse range of techniques and algorithms that mimic
human intelligence. The synergy between increased comput-
ing power and the availability of large datasets has fueled
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the successful implementation of these technologies across
various domains. There are three main machine learning
algorithms (MLA), such as supervised learning (SL), unsu-
pervised learning (UL), and reinforcement learning (RL),
which have become increasingly popular [2]. SL algorithms
learn from labeled data sets to make predictions or classify
new data. UL algorithms, on the other hand, uncover hidden
patterns and structures within unlabeled data. RL algorithms
interact with an environment, receiving feedback in the form
of rewards or penalties to optimize decision-making and
behavior [3].
This comprehensive review provides details of the recent

advancements in AI-based CEM techniques with the aid of
recent publications. It discusses the principles of different
AI algorithms and their applicability for solving specific
electromagnetic problems in power system applications. Fur-
thermore, this review highlights the advantages of AI-based
CEM techniques over conventional methods, such as reduced
computational cost, faster convergence, and the ability to
handle large-scale problems. It also highlights the limitations
associated with the adoption of AI in CEM, including the
data requirements, model interpretability, and generalization
capabilities.

This survey will serve as a comprehensive guide to the
latest AI-based CEM techniques, offering a foundation for
researchers to explore and harness the potential of AI in
advancing the field of CEM. Section II provides an overview
of the traditional CEM techniques, stating their methodol-
ogy, merits, and demerits. Some AI techniques are briefly
discussed in Section III while Section IV provides an
overview of the AI-based CEM applications reviewing recent
publications.

II. COMPUTATIONAL ELECTROMAGNETICS-AN
OVERVIEW
Over the years, various techniques have been utilized for
simulating power system apparatus, incorporating both dif-
ferential and integral methods. Differential techniques, such
as FDTD, FEM and TLM are applied in the modeling of
power systems, with FEM playing a major role due to its
ability to handle complex geometries and ensure higher accu-
racy. Integral methods such as MoM and PEEC have gained
prominence in solving electromagnetic problems due to their
ability to solve the domain effectively by addressing only
the discretization of magnetizable regions. These methods
have been combined with AI for various applications, and the
subsequent sections will provide a comprehensive overview
of these methods, including their detailed techniques and
latest developments.

A. FDTD
The FDTD method was introduced in 1966 to solve
electromagnetic boundary value problems numerically [4].
It approximates partial derivative terms in Maxwell’s equa-
tions using a set of finite difference equations while operating
on a mesh called the Yee grid, where electric and magnetic

field components are discretized. Initially, the method was
applied to wave propagation applications [5], and later it
was extended to various classes of electromagnetic domains,
including antenna design, optical devices, medical devices,
digital circuits, and power systems.The FDTD method
approximates the continuous derivatives in the governing
equation of the system by employing discrete finite difference
formulas in both the spatial and time domains, and they
are accurate up to O(h2) (where h is the grid size), and
even higher-order accuracy can be achieved by increasing the
nodes in the finite difference formula. Among the power sys-
tem applications, the FDTDmethod has been widely used for
static geometry-based applications, such as transformers and
transmission lines, with transmission line modeling being the
most common application. This theory has been successfully
employed in the transient analysis of lightning surges [6], the
modeling of lossy transmission lines [7], and the investigation
of transient phenomena in underground cables [8].

B. FEM
FEM is a differential equation-based numerical modeling
technique, and it has widely been utilized due to its capability
to describe the geometry of the given problem with higher
flexibility. FEM employs triangular elements to create a finer
mesh of the geometry and assigns a global basis function to
each node. The Galerkin’s FEM method [9] is then applied,
integrating the system’s governing equations to construct a
global matrix system for solving the problem. FEM solu-
tions can be expressed in both the frequency-domain and the
time-domain based on the solution requirements [10]. Time-
domain solutions are primarily employed in power system
simulations to analyze transient behavior. FEM has been cou-
pled with the FDTDmethod [11] and the TLMmethod [12] to
provide accurate and efficient time-domain solutions. Despite
the method’s complexity, the matrix solution can be mas-
sively parallelized using the TLM method [13]. FEM has
been particularly valuable in the analysis of shielded under-
ground cables [14], transient modeling of transformers [13],
modeling of induction motors [15], and the study of eddy
current losses in wind generators [16]. The primary advantage
of the FEM is its ability to derive comprehensive models,
including power loss calculations, thermal analysis, and field
distributions. As illustrated in Fig. 1, FEM has dominated the
number of publications over the past two decades, displaying
a consistent increase in publications each year.

C. TLM
The TLM method [17] was originally developed to address
wave propagation problems, and it utilizes the connection
between network laws and Maxwell’s equations to derive
a lumped circuit model, which can be numerically approx-
imated using loss-less transmission lines [18]. Ultimately,
the inductors and capacitors in the circuit represent energy
storage in magnetic and electric fields. Though frequency-
domain solution is available [19], TLM is widely used for
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FIGURE 1. Number of journal publications in IEEE Xplore
from 2003 to 2023 having index terms ‘‘FDTD’’, ‘‘FEM’’, ‘‘TLM’’,
‘‘MoM’’ and ‘‘PEEC’’.

solving time-domain electromagnetic problems. The TLM
model is typically solved in the time domain using scatter-
ing and gathering phenomena in transmission lines. At the
initial time-step, incident voltage pulses will be assumed and
reflected voltage pulses will be calculated using reflection
coefficients of each transmission line. The reflected volt-
age pulses then serve as the incident voltage pulses for the
respective neighboring nodes at the next time-step. The TLM
method has been used to facilitate real-time FEM simulations
by enabling parallelized calculations within the emulation
time-step [12]. The time-stepped eddy current analysis of
induction motors conducted using the TLM method is more
efficient compared to traditional approaches [20]. Hence, the
TLM method represents an efficient approach for addressing
electromagnetic problems and can be easily integrated with
other methodologies to further enhance its efficiency.

D. MoM
The MoM has been proven to be a powerful integral-based
numerical method for the computation of electromagnetic
fields in various applications. The MoM was developed
decades ago [21], and different variations can be obtained by
using different basis functions, weighting functions, and dis-
cretization procedures. Themost frequently used procedure is
based on surface current approximation. In this approach, the
electromagnetic problem is discretized using either triangular
or rectangular elements, and unknown electrical currents or
magnetic currents are defined for each element using basis
functions. The governing integral equation is approximated
using Green’s functions, and a matrix system is formulated
to obtain the unknown currents. In antenna analysis and scat-
tering problems, accurately modeling the current distribution
on the surfaces of the structure is essential. MoM provides a
natural way to model this current distribution and is widely
used in antenna and scattering problems. The MoM offers
a more accurate approximation for the DC distribution in

AC power systems [22], the electric field induced by power
lines [23], and the analysis of lightning-induced voltage in
overhead lines [24].

E. PEEC
The PEEC method is considered an emerging integral-based
numerical approach for solving electromagnetic problems
by converting field variables into the circuit domain. The
PEEC method was initially introduced for conductor sys-
tems, and the equivalent circuit was solved using circuit
solvers [25]. PEEC models for dielectric materials were
introduced, and later they were extended to include linear
magnetic materials [26]. Recently, the PEEC method has
been further developed for non-linear magnetic materials,
introducing non-linear magnetization effects into the circuit
model [27]. The domain will be discretized, including con-
ductor, dielectric, and magnetic regions. Partial inductance,
capacitance, and resistance will be introduced for each ele-
ment in the domain to formulate the equivalent circuit. The
equivalent circuit model can be solved using a circuit solver
technique in either the time-domain or the frequency-domain.
The PEEC method has been employed in various areas, such
as the analysis of lightning arrestors for power transform-
ers [28], the analysis of air-core reactors for a wider frequency
range [29], and the calculation of static leakage inductance
in high-frequency transformers [30]. The PEEC method is
an efficient approach for solving power systems, particularly
when considering air regions or boundary conditions is not
necessary. As depicted in Fig. 1, PEEC method demonstrates
a continuous growth in the number of research outcomes per
year in the last two decades.

III. AN OVERVIEW OF AI TECHNIQUES AND THEIR
APPLICATIONS
In the current information technology (IT) industry revolu-
tion, AI techniques are rapidly involved in applications in
research, engineering, and various industrial sectors [3]. AI is
used in the design of computers, robots, and software appli-
cations as it possesses the capability to exhibit intelligence
on par with human cognitive abilities. Outlined below are
some commonly utilized AI methodologies in power system
applications [2]:

1) MLA: This can be described as the application of a
set of mathematical algorithms to enhance the per-
formance of a specific task over time [31]. It utilizes
training datasets as input and uses them as a guide to
make predictions without requiring explicit program-
ming for each specific task. MLA primarily can be
classified into three main groups as follows [2].

• SL: A labeled data set that is used in mapping
inputs and outputs through a function.

• UL: An unlabeled data set, patterns are identified
to classify the data set.

• RL: Recognize the method of executing a
task through interaction with the surrounding
environment.
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2) Hybrid methods: Various machine learning (ML) tech-
niques are integrated to address limitations and enhance
the outcomes of the application.

Fig. 2 illustrates different types of MLA commonly found
in industrial applications. The forthcoming sections will
explore several well-known ML methodologies and their
applications with CEM in power system applications.

FIGURE 2. Classification of MLA.

A. ARTIFICIAL NEURAL NETWORKS
Artificial neural networks (ANNs) are powerful AI algo-
rithms with the ability to discover optimal solutions for a
wide variety of complex, non-linear problems. The inherent
nonlinearity of ANNs equips them with powerful interpola-
tion capabilities, enabling them to effectively approximate
complex nonlinear conductivity distributions [32].

There are internal layers in ANNs, which are called the
hidden layers, and the last layer is referred to as the output
layer. ANNs with several hidden layers are called deep learn-
ing ANNs, and those with only one hidden layer are known
as shallow ANNs [3]. The weighting of the interconnections
between neurons is determined in the training process of
ANNs [33], [34]. This weighting is a crucial aspect of an
ANN’s architecture and is chosen through the learning pro-
cess using a provided dataset. The computed output is then
compared to the desired or target output from the dataset,
resulting in an error value. The error quantifies the discrep-
ancy between the predicted output and the expected output.
To minimize this error, the weights of the interconnections
are adjusted using optimization techniques such as back-
propagation, or gradient descent [34]. This process allows
the ANNs to learn the underlying patterns, relationships, and
dependencies present in the data, enabling them to make
accurate predictions or decisions when presented with new,
unseen inputs.

To ensure accurate results from ANNs, it is essential to
have an adequate and sufficiently diverse training set. Hav-
ing a larger training set often helps the ANNs in capturing
the underlying trends, reducing the risk of over-fitting and

improving their generalization capability to handle unseen
inputs effectively [35]. ANNs are frequently employed in
the construction of surrogate models and the optimization
of pre-existing models for electrical machines. Fig. 3 illus-
trates an ANN-based inductor model as described in [3]. This
model utilizes the classification and regression capabilities of
ANNs.

FIGURE 3. Application of ANN for inductor optimization from [3].

B. SUPPORT VECTOR MACHINES
Support vector machines (SVMs) are a prominent supervised
ML technique used for analyzing data for both classification
and regression analysis. They were originally introduced over
two decades ago, these techniques have undergone thorough
research and analysis since their inception [37]. SVMs are
renowned for their robust theoretical foundations, exceptional
generalization capabilities, and adeptness in managing high-
dimensional data.

The goal of SVMs is to identify a hyperplane, characterized
as a linear decision function, that maximizes the margin
between vectors belonging to two distinct classes. SVMs are
effectively utilized in [38] and prove valuable for efficiently
classifying large datasets into relevant categories within a
practical timeframe. The data points that closely align with
the optimal hyperplane are referred to as support vectors [37].
This method of classification makes SVMs more appropriate
for several applications compared to other ML techniques.
SVMs are used in constructing surrogate models based on
FEM data in power system applications such as modeling and
design optimization in electrical equipment.

C. DEEP LEARNING - BASED ON CONVOLUTIONAL
NEURAL NETWORKS
Recent research has employed deep learning to address
certain challenges posed by other AI methods in CEM
applications [39]. Deep learning methods like Convolutional
neural networks (CNNs) demonstrate effectiveness in han-
dling large datasets and they have opened up opportunities for
utilizing topological details including the geometric shapes
and spatial distribution of various materials within a specific
domain, as input data [40]. The CNNs excel in captur-
ing complex patterns and representations from the data,
which allows them to generate more accurate and visually
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pleasing high-resolution outputs compared to conventional
techniques.

FIGURE 4. A Deep learning model used for KPI prediction in [36].

FIGURE 5. Comparison of traditional ML and deep learning
methods.

Deep learning is applied in a wide range of applications,
including design optimization, where its effectiveness lies
in minimizing computational expenses [41]. In [36], a deep
learning-based model is employed for key performance indi-
cator (KPI) prediction in electrical machines. The model’s
representation is illustrated in Fig. 4, where input data under-
goes processing through multiple layers to generate the final
outputs. Although ANNs have proven effective in modeling
and optimizing parameters for electric machines, the process
of selecting appropriate image features to construct the input
data for the ANNs can be often challenging. In contrast, when
employing deep learning for image processing, the image
is directly input into the system without the requirement
of explicit feature design. This is due to CNN’s capability
to autonomously learn and extract relevant features directly
from the row image data. Fig. 5 demonstrates a comparison
between traditional ML methods and deep learning models.

D. REINFORCEMENT LEARNING
RL stands out as a primary ML model capable of inter-
acting with the environment to predict output data. In the
context of an RL system, there are four fundamental com-
ponents: the agent, environment, reward, and action. The
decision-making entity within this framework is referred to as
the agent, while everything external to the agent is termed the

environment [42]. Some of the most widely recognized RL
algorithms are Q-learning, state-action-reward-state-action
(SARSA), and deep Q Network (DQN) [43].

In [44], Q learning was used to identify the optimal cou-
pling coefficient among transmitting (Tx) and receiving (Rx)
coils of a wireless power transfer (WPT) system. The draw-
backs of using SLmethods include the requirement for amore
extensive training dataset and increased computational time.
RL methods are incorporated into CEM for power-related
purposes, including tasks like topology optimization (TO)
and electrical component designs.

E. HYBRID METHODS
Hybrid methods are the integration of two or more AI tech-
niques in order to take advantage of the unique characteristics
that each method possesses. When referring to the papers
published after 2020, it becomes apparent that the common
practice of employing various AI techniques within a single
application has increased compared to research conducted
in earlier years. In 2021, a method to enhance torque per-
formance in a permanent magnet arc motor (PMAM) was
introduced by combining anMLA, extreme gradient boosting
(XGBoost) with the non-dominated sorting genetic algorithm
(NSGA) [45]. The two methods provided the best results
for the application by efficiently combining optimization
objectives, structural parameters, and motor performance.
The results were validated using FEM, and the developed
model demonstrated enhanced torque performance compared
to the original motor design.

In [46], an efficient approach is introduced for creat-
ing an optimal model of an interior permanent magnet
synchronous motor (IPMSM) using generative adversarial
networks (GAN) and CNNs. The utilization of CNNs enables
the training of the developed model with a more extensive
dataset, and GAN contributes to generating a larger dataset
with fewer FEM simulations.

IV. ANALYTICAL COMPARISON OF AI-BASED CEM
TECHNIQUES IN POWER SYSTEMS APPLICATIONS
The integration of AI with CEM in power system applications
holds the promise of significantly enhancing computational
efficiency. Fig.6 illustrates the number of journal publications
from 1993-2023 for various AI-based CEM implementations.
Some of these applications in power systems can be listed as
follows.

1) Electrical machine modeling and design optimizations.
2) Topology optimizations.
3) Fault diagnosis and condition monitoring.
4) Electrical impedance tomography.
The forthcoming sections will provide a comprehensive

discussion and comparison of some of the most popular
applications of AI-based CEM in power systems. Different
AI techniques can be compared based on parameters such as
accuracy, algorithmic complexity, and the data set require-
ments. In some applications, several surrogate models are
taken into consideration and compared to identify the optimal
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FIGURE 6. Approximate publication popularity of AI-based CEM
applications from 1993-2023 (IEEE Xplore).

model that delivers the best performance. The broad classifi-
cation of popular AI-based CEM includes various techniques
such as ANN, SVM, deep learning, MLA, genetic algorithms
(GA), recurrent neural networks (RNN), k-nearest neighbors
(KNN), and hybrid methods.

In [47], four classes of regression models, namely linear
regression (LR), regression tree (RT), SVM, and Gaussian
process (GP) are explored for predicting the acoustic noise of
electric motors. The comparative analysis of the constructed
surrogatemodels involves evaluating their performance based
on metrics such as the size of the root mean square error
(RMSE), training time, and sample evaluation speed. How-
ever, a larger training set enhances result accuracy, and it
concurrently raises the cost associated with training.

A. ELECTRICAL MACHINE MODELING AND DESIGN
OPTIMIZATION
The modeling and optimization of designs for electrical
machines are crucial, given their pivotal role in power sys-
tem applications. Conventionalmachinemodeling techniques
can be categorized into two groups: analytical methods and
numerical methods. Analytical methods rely onmathematical
equations, offering speed but sacrificing accuracy. In contrast,
numerical methods use parameters derived from numerical
field simulations, providing accuracy at the expense of high
computational costs [48]. To maintain a balance between
accuracy and computational efficiency, MLAs have been
incorporated alongside these modeling approaches.

Recent publications highlight some distinct and successful
strategies aimed at overcoming the limitations associated
with existing methods. The initial attempt to identify syn-
chronous motor parameters was undertaken in [35], employ-
ing FEMandANN.A comparable approachwas then adopted
in [49] for an induction motor, utilizing a self-organized
distributed network (SODN). The primary function of an
electrical machine design model is to establish a mapping
between the design space and the performance space. In the
context of magnetic components, the design possibilities span

a wide range, covering various configurations and parame-
ters. However, the performance space, which represents the
outcomes and characteristics of these designs, is relatively
narrow. In [3], an inductormodel has been developed utilizing
ANN. In this approach, the first ANN is employed to fore-
cast magnetic properties like inductance, magnetic flux, and
magnetic field. Concurrently, a second ANN is employed to
predict the thermal behavior of the inductor. This dual-ANN
setup allows for a comprehensive modeling approach that
accounts for both magnetic and thermal aspects of the induc-
tor’s performance. Fig. 7 illustrates the workflow involved in
developing a data-driven surrogate model.

FIGURE 7. Workflow of developing a data-driven surrogate model.

ANNs are frequently utilized in the modeling of electri-
cal devices, including generators, inductors, and industrial
motors. This is achieved by using a dataset derived from a
traditional method for both training and testing the developed
model. Because of the minimal errors observed during model
testing, researchers concluded that the developed models
have the potential to accurately predict machine parameters
based on the provided initial conditions. The primary focal
point of consideration revolved around obtaining precise
results in a more expedient manner compared to classical
methods like FEM. In [35], the authors conducted a compar-
ison between the utilization of ANN and gradient boosting
decision trees (GBDT) for modeling the torque characteris-
tics of a permanent magnet synchronous motor (PMSM). The
comparison revealed that while the surrogate model employ-
ing GBDT exhibited a faster computational speed than the
model relying on ANN, it displayed a relatively lower level
of accuracy.

The utilization of AI techniques for the design optimization
of electrical machines has gained increased popularity in
recent years. This trend is driven by the demand for more
optimized machines to deliver superior performance across
various applications. The optimization can be applied to an
analytical model or to a numerical model to enhance its per-
formance in both accuracy and efficiency. Results from FEM
simulations are frequently employed to determine intermedi-
ate measures, including iron losses, electromagnetic torque,
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TABLE 1. Recent Comparative Studies of AI-Based CEM Implementations (↓ - decrease and ↑ -increase).

136 VOLUME 11, 2024



Gamage et al.: Application of AI Techniques on CEM for Power System Apparatus: An Overview

TABLE 1. (Continued.) Recent Comparative Studies of AI-Based CEM Implementations (↓ - decrease and ↑ -increase).

and flux rates, at various operating points of an electrical
machine model [70].

As of the publications available until March 2023, various
AI techniques have been employed to optimize different types
of electrical machines, including commonly used induction
motors in industrial applications. A significant portion of
the literature focuses on optimizing PMSMs, switched reluc-
tance motors (SRMs), and interior permanent magnet motors
(IPMs) using ML algorithms. These algorithms include SL
methods, deep learning, KNN, and RL [31], [40], [44], [56],
[60], [61], [66], [71], [74]. The findings of the above research
are summarized in Table 1.
In 2022, a hybrid model was introduced to enhance the

thrust performance of a permanent magnet synchronous lin-
ear motor (PMSLM). This model incorporated deep adaptive
ridge regression and an analytical mapping function. The
suggested approach demonstrates superior accuracy com-
pared to existing methods, such as extreme learning machines
(ELM). FEM was employed to construct a database that
captures the mapping relationship from structural parame-
ters to thrust performance. The optimized model exhibited a
28.4 % increase in average thrust compared to the unopti-
mized initial PMSLM, and the thrust fluctuation was reduced
by 78 % [64].

In [61], an optimal design is introduced to address the chal-
lenge of choosing a PMSM model that achieves both higher
torque density and lower torque ripple. Existing methods,
often relying heavily on FEM, are noted for their prolonged
computation times.

B. TOPOLOGY OPTIMIZATION
TO is a computer-aided design process used to create efficient
designs determining optimal material distribution to sat-
isfy predefined performance objectives and constraints [57].
When optimizing electrical machines, such as electric
motors, it is essential to take into account various properties.
This includes objectives such as minimizing torque ripple,

maximizing average torque, and controlling losses and forces.
These considerations are crucial for achieving the optimal
and efficient performance of the electric machine. TO using
FEM may need to be replaced with more advanced tech-
niques owing to the elevated computational costs associated
with FEM simulations. Certain techniques, like the response
surface method and the kriging method, have been explored
to mitigate computational time. However, their effectiveness
is notable mainly when the degree of freedom (DoF) within
the design space is less than ten [41]. In general, DoF in
many real-world images is higher, rendering the aforemen-
tioned methods inadequate. Recognizing these drawbacks,
research has been conducted to apply ML techniques in TO
applications.

Considering the prior publications, ML techniques were
integrated with TO after the year 2019, starting with ANN
techniques and progressing to deep learning techniques.
There are merits and demerits of employing SL techniques
like ANN compared to deep learning techniques in TO.
ANNs can operate with raw data but are hindered by a lim-
itation in generalizability. On the other hand, deep learning
techniques possess the capability to automatically extract
features from input data. However, the models generated may
have inaccuracies when applied to new geometries. In [58],
the author discusses significant drawbacks associated with
the use of SL methods in TO of a synchronous reluctance
motor (SynRM) and suggests an RL-based approach. This
new method aims to achieve independence from existing
optimal designs. While the training time requirement may be
relatively high, once trained, the computational cost of the
proposed method becomes very low. Additionally, it provides
an optimal solution compared to traditional methods.

C. FAULT DIAGNOSIS
Fault detection and condition monitoring in electrical appa-
ratus is a vital requirement for the reliable operation of
power systems. FEM is regarded as more applicable in fault
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diagnosis because it has the capability to address below
drawbacks present in traditional methods, such as current
analysis [75].

1) Unavailability of detailed data sets on the field mea-
surements.

2) Inability to observe the severity of the fault.
Hence, it is comprehensible that the integration of AI

and FEM is a recommended approach for fault detection.
AI addresses the limitations of FEM, enhancing overall
computational efficiency in the process. In [72], the focus
is on the PMSM, which is widely acknowledged in the
industry. The investigation in this study centers around the
identification and classification of demagnetization faults in
the PMSM. ELM has been introduced as the classifier in
fault feature analysis for the classification of fault positions,
sides, and severity types to derive unique fault type labels.
A comparison of the performance of probabilistic neural
networks (PNNs), backpropagation neural network (BPNNs),
and ELM indicates that ELM outperforms in terms of accu-
racy and efficiency indexes. Turbine generators play a pivotal
role in power generation. Hence, regular condition moni-
toring is crucial to ensure the ongoing smooth operation of
turbine generators. For large turbine generators, eddy current
analysis is often necessary. In [51], a method for predicting
eddy current loss is introduced, employing deep Gaussian
process regression (DGPR) and relying on FEM data. The
outcomes of the tests demonstrated the effectiveness of the
DGPR method in accurately predicting eddy current losses.
The research initiated in this stream is relatively limited
compared to the extensive literature available on other imple-
mentations of AI-based CEM.

D. OTHER APPLICATIONS
There are also less popular applications in power systems.
Some examples are electrical impedance tomography (EIT),
surface current estimations, and model order reductions. The
above-mentioned research areas have limited literature avail-
able, indicating that these are emerging within the domain
of AI-based CEM in power systems. It suggests the potential
opportunities for further research and development in these
specific areas.

In [59], an investigation was conducted to implement a
tactile sensor based on EIT as it was recognized as a valu-
able solution for constructing flexible and comfortable tactile
sensors. Based on the results, it is evident that the recon-
struction using ANN has enhanced the sensing performance
compared to commonly used reconstruction methods such as
L2 regularization and Newton’s one-step error reconstructor
(NOSER).

PMSM is known in the industry for its high performance
in power density and efficiency. In [68], a reduced-order
model using ANN is developed and presented to capture the
essential dynamics of the PMSM. Here, two ANNs were
developed for current and torque prediction, demonstrating
an enhanced capacity to fit the data extracted from FEM in
accordance with the applied data reduction methods.

V. CONCLUSION
This article represents a review of the AI-based computa-
tional electromagnetic (CEM) simulations for power system
applications. The initial part of the article provides a dis-
cussion on the significance of CEM techniques and their
key characteristics. These approaches are employed for pre-
cise modeling of electrical machines and the optimization
of their design procedures. However, a drawback associated
with these methods is the extended computational time they
require. Consequently, efforts were initiated to explore alter-
natives and address the limitations associated with traditional
approaches. Then, a brief overview of common AI tech-
niques was presented stating their major functions. These
AI methods possess their own advantages and disadvantages,
which are thoroughly discussed within the context of their
respective applications. Next, the applications of AI-based
CEM in power system applications were discussed. The
literature review shows that the use of AI models for dif-
ferent CEM approaches in the power sector is increasing
due to their advantages compared to conventional methods.
The outcomes of the introduced models demonstrate similar
accuracy and superior efficiency when compared with the
existing methods. The research findings have been succinctly
summarized in Table 1, outlining the applications and the
corresponding techniques employed. It is expected that this
overview will motivate further research and new knowledge
generation in the exciting field of AI-enhanced CEM for
various application domains.
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