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ABSTRACT Conventional state-space-based stability assessment method of voltage-source converters
(VSCs) can be hindered by the black-box feature. Black box-based state-space model identification method
using the terminal admittance/impedance frequency responses has thus been drawing increasing research
attentions recently. However, the estimation of out-of-band modes commonly suffers from narrow bandwidth
of frequency responses. This article presents, for the first time, the potential identification of several critical
out-of-band modes of an artificially created rational function and a grid-connected VSC. This identification
is achieved through their band-limited frequency responses using the vector fitting (VF) algorithm. On its
basis, a sensitivity index of a partial fraction term is derived to explain the out-of-band modal identification
behavior of the VF. The effects of the pole, residue, and fitting frequency interval width on the sensitivity
index are further investigated and demonstrated. The numerical analysis shows that, with the help of the
proposed sensitivity index, the extrapolation behavior of the VF can be explained, and several invisible
out-of-band modes can further be identified or synthesized from a band-limited frequency response. This
extrapolation feature may strengthen the curve fitting capability of the VF, i.e., compared to the VSC’s band-
limited frequency responses, more modal information can be obtained and further used for eigenvalue-based
stability analysis.

INDEX TERMS Extrapolation, inverter, narrow-band frequency response, sensitivity index, stability, vector
fitting.

NOMENCLATURE
AFR,IFR Admittance and impedance frequency

response.
BLFR Band-limited frequency response.
EMT Electromagnetic transient.
FDNE Frequency-dependent network equivalent.
IBFR,OBFR In-band and out-of-band frequency

response.
MF,VF Matrix fitting and vector fitting.
MIMO Multiple-input-multiple-output.
PCC Point-of-common-coupling.
SISO Single-input-single-output.
SRF-PLL Synchronous-reference-frame phase-

locked loop.

SSM State-space model.
VSC Voltage-source converter.

I. INTRODUCTION

RECENTLY, conventional synchronous generators have
been gradually replaced by inverter-based resources,

e.g., wind and solar power [1]. The new paradigm leads to
an increasing penetration of power electronic devices [2].
Different from the synchronous generators, various control
loops of the inverters are commonly decoupled, and their
bandwidths are commonly distributed at different time scales,
which exposes the modern power systems to the risk of
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wide-band low stability margin, resonance, or even instability
under weak grid conditions [3].

The conventional eigenvalue-based stability analysis
method, used to study these problems, builds the system
state-space model (SSM) based on the detailed informa-
tion on system structure and parameters [4], [5]. On its
basis, the poorly-damped and unstable eigenvalues can be
identified, and their participation factor analysis can further
be performed in order to locate the root cause. Although
mature and powerful, the state-space method can be hin-
dered by the devices’ black/gray-box feature [6], [7]. Since
the admittance/impedance model is in essence the transfer
function (matrix) reformulation of the SSM with appropriate
input and output variables defined, the matrix fitting (MF)
and vector fitting (VF) were recently applied as the inverse
solving algorithms in order to identify the SSM from the
admittance/impedance frequency responses (AFRs/IFRs) of
the inverter-based power systems [8], [9], [10], [11]. With
the help of the MF and VF, a virtual-eigenvalue-based partic-
ipation factor analysis can for instance be performed on the
black-box power systems.

The VF initially published in [12] aims to model the
black-boxed power system apparatus, and has been conceived
with mainly detailed time-domain electromagnetic transient
(EMT)-type simulations in mind. As a routine, the VF aims
to find a rational function approximation for a set of discrete
frequency responses with the optimization objective being the
minimized root-mean-square error over the fitting frequency
range. It identifies the poles and residues by iteratively relo-
cating an initial pole set which can be either real or complex
conjugate pairs to better positions via a scaling function,
each iterative step corresponding to the solution of simple
well-conditioned linear systems. Thanks to its superior fitting
performance, as demonstrated by the findings in [13] and
[14], several engineering fields have attempted to improve the
VF since its invention, amongwhich power electronic domain
[5], [6], [7], [8], [9], [15], [16], power system domain [17],
[18], [19], [20], [21], [22], [23], [24], and electromagnetic
compatibility domain [25], [26], [27], [28] are relatively
active.

The VF fitting capability to cope with the scenarios where
several frequency ranges coexist has been improved in [17]
and [25] to relocate the poles, in [18], [19], [20], [21], and
[16] to reduce the model order, and in [22], [23], and [24]
to enhance the passivity which may be violated due to the
out-of-band fitting errors encountered in the system iden-
tification procedure. In this article, band-limited frequency
responses (BLFRs) are defined as the available AFR/IFR data
covering a limited range of frequencies. In-band frequency
responses (IBFRs) and out-of-band frequency responses
(OBFRs) respectively refer to the frequency responses within
this range, where AFRs/IFRs are available, and to those
beyond this range that are not directly available. Specifi-
cally, the hard relocating process was presented in [25] to
achieve better poles relocation able to converge more quickly

and precisely, which was alternatively achieved in [17] by
utilizing a novel mild summation requirement of the scal-
ing function instead of the original stricter high-frequency
asymptotic constraint. Consequently, [17] showed that the
modes not situated in the frequency range where the initial
poles were positioned were able to be identified based on
a few times of poles relocation. Nevertheless, no modes
of interest are beyond the available measurement frequency
range.

In addition, the overall frequency band of interest was
split in [18], [19], [20], [21], and [16] into a few narrow
intervals, and the VF was used to generate an order-reduced
model for each small frequency range. However, the effects
of these generated order-reduced models on the frequency
responses within adjacent intervals were ignored in [18]
and [16]. On the contrary, the fitting inaccuracy of the
order-reduced model generated from the low-frequency band
in the high-frequency band and the fitting inaccuracy of the
order-reducedmodel generated from the high-frequency band
at about DC point below 1 Hz were eliminated in [19], [20],
and [21], respectively. Nevertheless, the out-of-band fitting
accuracy improvement in [19], [20], and [21] supposed that
OBFRs were already available. Therefore, it is necessary to
estimate the OBFRs using solely the IBFRs.

Furthermore, several out-of-band passivity enforcement
strategies were presented in [22], [23], and [24] by disturbing
the residues, poles, or residue matrices’ eigenvalues of the
generated rational model, due to the possible passivity vio-
lation induced by the VF. Thanks to these research efforts,
the current version of the VF can be configured flexibly to
guarantee the passivity of the fitted rational approximations
and stability of the EMT simulation. However, the accurate
reproduction of the OBFRs may not be achieved by these out-
of-band passivity enforcement strategies.

Attempts to extrapolate the BLFRs using solely the IBFRs
were performed in [26], [27], [28], [29], [30], and [31].
For example, on one hand, to guarantee the causality of
the impulse responses of the low-frequency IBFRs of the
S-parameters, the Hilbert transformation was employed in
[26] and [27] to extrapolate the IBFRs to generate the OBFRs
in the high-frequency band. On the other hand, to guarantee
the delay causality of the time responses of the middle-
frequency IBFRs of the S-parameters, the Kramers-Kronig
relation was employed in [28] to extrapolate the IBFRs to
generate the OBFRs in low-and high-frequency bands simul-
taneously. However, like the out-of-band passivity enhance-
ment strategies developed in [22], [23], and [24], the out-of-
band modal identification may still not be ensured by these
causality enforcement strategies in [26], [27], and [28]. The
out-of-bandmodeswere proved in [12] tomake little effect on
the in-band fitting precision, whereas no out-of-band modal
identificationwere performed. Differently, higher order of the
denominator or numerator was assigned in [29], [30], and
[31] to eliminate the in-band fitting inaccuracy induced by the
residual influences of the partial fraction terms located within
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the out-of-band frequency band. As a result, if one more
order is assigned for the denominator, an out-of-band partial
fraction term is identified with high precision. However, the
explanation of the extrapolation behavior was not provided.

Due to the industry secrecy and intellectual property pro-
tection, the discrete AFRs of the voltage-source converters
(VSCs) tend to be delivered in the lookup table form as
shown in [8], and [6]. However, the frequency range of
the provided lookup tables may be narrow, which probably
does not satisfy the stability analysis requirement in wide
frequency range. Alternatively, if the black-box models of
the VSCs are available, the frequency sweeping either using
the commercial software (e.g., PSCAD/EMTDC and Mat-
lab/Simulink) as shown in [9] and [32] or in the laboratory as
shown in [33] and [34] can be performed. However, whether
the measurement results within different narrow frequency
ranges are accurate or not is uncertain. To cope with these
practical issues, this article, based on the authors’ previous
work in [35] and [36] which focused on the selective iden-
tifications of dominant poles and residues of the artificially
created rational functions with the help of the VF/MF, intends
to apply the frequency-domain extrapolation capability of
the VF/MF for black box-based stability assessment of the
VSCs. Specifically, if the AFRs of the VSCs in the form of
lookup table have narrow frequency range, the VF/MF can be
employed to predict the out-of-band AFRs by extrapolating
the available BLFRs. In addition, if the wide-band AFRs of
the VSCs are obtained by performing the frequency sweeping
on the simulation models or in the lab, the VF/MF can be
employed to cross check the accuracy of the AFRs within
different narrow frequency ranges.

The main contributions of this article can be summarized
as follows.

• A sensitivity index of each partial fraction term is devel-
oped to quantify the effect of the inaccurate identifica-
tion of the in-band and out-of-band partial fraction terms
on the in-band fitting inaccuracy.

• The internal mechanism behind the selective in-band
modal identification of the under-fitted models and
selective out-of-band modal identification of the
over-fitted models are revealed.

• The dominant out-of-band modes of grid-connected
VSCs under current and voltage control modes are syn-
thesized from the over-fitted models using the proposed
sensitivity index.

The rest of this article is organized as follows. The basic
principle of the VF, and the extrapolation behavior for a set
of single-input-single-output (SISO) BLFRs of an artificially
created rational function and for a set of multiple-input-
multiple-output (MIMO) BLFRs of a VSC are shown in
Section II. In Section III, the sensitivity index of the partial
fraction term is derived to explore the internal mechanism
of the extrapolation capability of VF. The feasibility of the
proposed sensitivity index is verified in Section IV using
the artificially created rational function. In Section V, the
proposed sensitivity index concept is further verified using

the current- and voltage-controlled VSCs to identify the dom-
inant out-of-band modes. Finally, the conclusions are drawn
in Section VI.

II. EXTRAPOLATION BEHAVIOR FOR THE BLFRs
A. BASIC PRINCIPLE OF THE VF
The VF can generate a rational function approximation f (s)
forK discrete frequency samples {H (jωk) |k = 1, 2, . . . ,K },
i.e., [12]

H (s)|s=jωk ≈ f (s) |s=jωk =

N∑
i=1

ri
s− pi

+ d, (1)

where N is the fitting order of f (s). In addition, the poles
{pi|i = 1, 2, . . . ,N } and residues {ri|i = 1, 2, . . . ,N } are
either real values or complex conjugate pairs. d is the direct
term which can be either real or optional. The VF routine
consists of three stages, i.e., poles initialization, poles identi-
fication, and residues identification.
Poles Identification: The key to the poles relocation is the

design of a scaling function σ t (s) as

σ t (s) =

∏N
i=1

(
s− ẑti

)
∏N

i=1
(
s− qti

) =

N∑
i=1

k̂ ti
s− qti

+ 1, (2)

where t denotes the iteration number. {qti |i = 1, 2, . . . ,N } is
the tth iterative estimation for {pi|i = 1, 2, . . . ,N }. {ẑti |i =

1, 2, . . . ,N } and {k̂ ti |i = 1, 2, . . . ,N } are the zeros and
residues collection, respectively, of σ t (s). The poles in the
next iteration are replaced by the zeros in current iteration,
i.e., {qt+1

i } = {ẑti }. In each iteration, σ t (s)H (s) is approx-
imated by another rational function

(
σ tH

)
fit (s) using the

same set of poles of σ t (s), i.e.,

(
σ tH

)
fit (s) =

N∑
i=1

k ti
s− qti

+ d, (3)

where {k ti |i = 1, 2, . . . ,N } is the residues collection of(
σ tH

)
fit (s). Based on (2) and (3), at a specific frequency

point sk = jωk (k ∈ [1,K ]), one can have

N∑
i=1

k ti
jωk − qti

+ d =

(
N∑
i=1

k̂ ti
jωk − qti

+ 1

)
H (jωk) , (4)

which can be reformulated as a least-square problem as

Ak
−→
X = bk , (5)

where

Ak

=

[
1

jωk − qt1
, . . . ,

1
jωk−qtN

, 1,
−H (jωk)
jωk − qt1

, . . . ,
−H (jωk)
jωk − qtN

]
,

−→
X =

[
k t1, . . . , k

t
N , d, k̂ t1, . . . , k̂

t
N

]T
, bk = H (jωk) .

(6)
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Based on the obtained residues (i.e., k̂ t1, k̂
t
2, . . . , and k̂ tN ),

the zeros (i.e., ẑt1, ẑ
t
2, . . . , and ẑ

t
N ) can further be calculated

using (2).
If the poles relocation converges, i.e., {qt+1

i |i =

1, 2, . . . ,N } = {qti |i = 1, 2, . . . ,N }, one can have from (2)
and (4) that

pi = qti = ẑti , k̂ ti = 0, ri = k ti , (7)

for i = 1, 2, . . . ,N , which indicates that the poles identifica-
tion of f (s) becomes the zeros identification of σ t (s).
Residues Identification: Although (6) and (7) already pro-

vide the solutions of the asymptotic term d and the residues
{ri|i = 1, 2, . . . ,N }, respectively, the determined poles
{pi|i = 1, 2, . . . ,N } in (7) are substituted into (1) to calculate
more accurately d and {ri|i = 1, 2, . . . ,N } through formulat-
ing another least-square problem.

The under-fitting and over-fitting behaviors of VF are
explored in this section. Under-fitting is characterized by a
fitting order that is lower than the system’s actual order, and
over-fitting occurs when the fitting order is higher than the
actual system order.

B. FIRST LOOK AT THE EXTRAPOLATION BEHAVIOR FOR
THE BLFRs
1) EXTRAPOLATION FOR AN ARTIFICIALLY CREATED
RATIONAL FUNCTION
Table 1 presents an artificially created rational function H (s)
in the form of (1) with N = 44 and d = 0.0032. This
investigated rational function does not have real zeros and
real poles, since out-of-bandmodal identification is the focus.
The imaginary parts of the poles of the 22 pairs of partial
fraction terms are distributed below 10 kHz. In addition, the
differences among the residues and the real parts of the poles
of the 22 pairs of partial fraction terms are designed as small
enough to test if the VF can identify these discrepancies.

TABLE 1. Poles and Residues of the Artificially Created Rational
Function H(s) in the Form of (1).

In order to observe the under-fitting behavior of the VF,
Fig. 1(a) shows the Bode diagrams of the under-fitting results
for the 4000 uniformly-spread frequency points of H (s)
between 3001 and 7000 Hz using initial poles uniformly
located within [3001, 7000] Hz and different fitting orders,

i.e., 2nd, 4th, and 6th. The poles of the fitted 2nd-order ratio-
nal function f2nd (s) are−1446.4±j2π7120.91, the imaginary
part of which is close to that of the #16 amplitude peak.
In addition, the poles of the fitted 4th-order rational function
f4th(s) are −734.58± j2π2980.4 and −1684.5± j2π7132.4,
the imaginary parts of which are close to those of the #7
and #16 amplitude peaks. Furthermore, the poles of the fitted
6th-order rational function f6th(s) are −714.53 ± j2π2996.3,
−355.15± j2π4942.8, and −1373.9± j2π7065.6, the imag-
inary parts of which are close to those of the #7, #11, and #16
amplitude peaks. These fitting results indicate that the VF
preferentially captures the magnitude peaks that are closest
to the boundaries of the fitting frequency range, and then
captures the in-band amplitude peaks.

FIGURE 1. Bode diagrams of the under-fitting results for the
BLFRs of H(s) based on (a) 4000 and (b) 40 frequency sampling
points within [3001, 7000] Hz.

To check the VF’s fitting performance when fewer fre-
quency sampling points are available, Fig. 1(b) shows the
Bode diagrams of the under-fitting results when the number
of the frequency sampling points is decreased from 4000 as
shown in Fig. 1(a) to 40. The poles of the fitted 2nd-order
rational function f ′

2nd (s) are −1187.5± j2π7124.5, the imag-
inary part of which is close to that of the #16 amplitude peak.
In addition, the poles of the fitted 4th-order rational function
f ′

4th(s) are −2384.1± j2π2915.8 and −2372.5± j2π7182.8,
the imaginary parts of which are close to those of the #7
and #16 amplitude peaks. Furthermore, the poles of the fitted
6th-order rational function f ′

6th(s) are −2848.2 ± j2π2906.4,
−1003.5± j2π4975.3, and −3034.1± j2π7174.2, the imag-
inary parts of which are close to those of the #7, #11, and #16
amplitude peaks. It can be seen that these fitting behaviors
are similar to those shown in Fig. 1(a).
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In order to observe the over-fitting behaviors of the VF,
Fig. 2(a) shows the Bode diagrams of the extrapolation results
for the 6000 uniformly-spread frequency points of H (s)
between 2001 and 8000 Hz using initial poles evenly situated
within [2001, 8000] Hz and different fitting orders, i.e., 32th,
38th, 44th, and 50th. Fig. 2(a) shows that the IBFRs can be
identified by all of the four fitted rational functions with high
precision. In addition, the fitted 32th-order rational function
f32th(s) has two amplitude peaks that are located outside
the fitting frequency interval and poorly capture the original
two amplitude peaks, i.e., the #4 and #18 magnitude peaks.
Differently, the fitted 38th-order rational function f38th(s) can
accurately capture the two out-of-band amplitude peaks that
are closest to the boundaries of the fitting frequency interval.
Furthermore, the fitted 44th-order rational function f44th(s)
and 50th-order rational function f50th(s) can capture all the
nine out-of-band amplitude peaks, i.e., the #1-#4 and #18-#22
magnitude peaks. These fitting results indicate that the VF
preferentially captures the amplitude peaks that are closest
to the boundaries of the fitting frequency interval, and the
extrapolation capability of the VF can be improved if the
fitting order is increased. These observations are confirmed
by the poles distribution in Fig. 2(b) and residues distribution
in Fig. 2(c), where P(·) denotes the poles operator and R(·)
denotes the residues operator. Note that only positive imagi-
nary parts of the poles and residues are plotted for simplicity.
Compared to the fitted 44th-order rational function f44th(s),
it can be seen from Fig. 2(c) that the fitted 50th-order rational
function f50th(s) has additional six residues located at the
origin, which explains why f44th(s) and f50th(s) share the same
frequency responses as shown in Fig. 2(a).

2) EXTRAPOLATION FOR A GRID-CONNECTED VSC
Given that both the artificially created rational function H (s)
and its various fitted approximations (such as f2nd (s), f4th(s),
etc.) in Section II-B.1 follow the form of (1), it is expected
that satisfactory fitting results could be achieved for H (s)
with a high enough fitting order. However, this approach,
particularly the linear distribution of poles in the artificially
created rational function as per Table 1, may be an oversim-
plification when considering the complexities of real-world
systems. In real-world scenarios, especially in systems like
grid-connected VSCs, poles are often distributed logarithmi-
cally rather than linearly. Recognizing this discrepancy, the
latter part of this section transitions to explore the applica-
tion of the VF method to non-linear VSCs characterized by
logarithmically distributed poles.

Fig. 3 shows the single-line diagram of the grid-following
VSC system under study. The high-frequency switching
harmonics are filtered by the LCL filter composed of
converter-side inductance Lf 1 with parasitic resistance Rf 1,
grid-side inductance Lf 2 with parasitic resistance Rf 2, and
capacitance Cf . The current controller Gi(s) is based on the
standard PI controller. The superscript c denotes that the vari-
ables are represented in the controller dq reference frame. The
synchronous-reference-frame phase-locked loop (SRF-PLL)

FIGURE 2. Over-fitting results for the BLFRs of H(s) within
[2001,8000] Hz. (a) Bode plots, (b) poles distribution, and
(c) residues distribution.

is used to align the phase angle of the injected current with
that of point-of-common-coupling (PCC) voltage. The digital
and computational time delay is denoted as Td = 1.5/fs,
where fs is the sampling frequency. The circuit and controller
parameters are listed in Table 9 of Appendix. Since the sam-
pling frequency fs is chosen as 5 kHz, the Nyquist frequency
which is equal to half of the sampling frequency (i.e., 2.5 kHz)
is selected as the high-frequency limit for the VSC under
analysis.

The average model of the VSC is employed in this article
without considering the switching phenomenon effect. Based
on the small-signal linearization, the dq-domain admittance
model of the VSC (i.e., Yvsc) can be derived. Different from
the artificially created rational functionH (s) listed in Table 1,
the Yvsc is in the form of the polynomial transfer function,
which hinders the explicit separation of the in-band and out-
of-band eigenvalues pairs. To this end, the partial fraction
expansion is employed to split Yvsc into eight pairs of partial
fraction terms (i.e., A1,2, B1,2,. . . , and H1,2), of which the
poles and resides are listed in Table 2.
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FIGURE 3. The studied grid-connected VSC system.

TABLE 2. Poles and Residues of the DQ-Domain Admittance
Transfer Function Matrix Yvsc of the VSC.

In order to observe the under-fitting behavior of the MF,
Fig. 4(a) plots the Bode diagrams of the fitted 4th-, 6th-, and
10th-order rational function approximations (i.e., Y low_freqvsc_4th ,

Y low_freqvsc_6th , and Y low_freqvsc_10th ) for the dq-domain AFRs of the VSC
(i.e., Yvsc) within low-frequency range [1, 100] Hz. It can be
seen that Y low_freqvsc_4th poorly captures the qq-axis AFRs close
to 1 Hz, which can instead be accurately reproduced by
Y low_freqvsc_6th and Y low_freqvsc_10th . Figs. 4(b) and 4(c) plot the poles
distribution and qq-axis residues distribution, respectively,
of the VSC AFRs and the three rational function approxi-
mations. It can be seen that all the three rational function
approximations can reproduce the in-band eigenvalue pairs
P(A1,2) and P(B1,2). However, Y

low_freq
vsc_4th cannot capture the

in-band eigenvalue pair P(C1,2), which can instead be accu-
rately reproduced by Y low_freqvsc_6th and Y low_freqvsc_10th .
In order to observe the over-fitting behavior of the MF,

Fig. 5(a) plots the Bode diagrams of the fitted 6th-, 10th-, and
16th-order rational function approximations (i.e., Y high_freqvsc_6th ,

Y high_freqvsc_10th , and Y high_freqvsc_16th ) for the dq-domain AFRs of the VSC
(i.e., Yvsc) within high-frequency range [101, 2500] Hz. It can
be seen that the three rational function approximations can
achieve almost the same in-band fitting capability. Figs. 5(b)
and 5(c) plot the poles distribution and qq-axis residues distri-
bution, respectively, of the VSC AFRs and the three rational
function approximations. It can be seen that all the three
rational function approximations can reproduce the in-band
eigenvalue pairs (i.e., P(D1,2) and P(E1,2)) and the out-
of-band eigenvalue pair P(A1,2). However, Y

high_freq
vsc_6th cannot

FIGURE 4. (a) Bode plots, (b) poles distribution, and (c) qq-axis
residues distribution of the fitted 4th-, 6th-, and 10th-order
rational function approximations for the dq-domain AFRs of the
VSC within [1, 100] Hz.

capture the out-of-band eigenvalue pair P(B1,2), which can
instead be accurately reproduced by Y high_freqvsc_10th and Y high_freqvsc_16th .

As the best fitting scenario, Y high_freqvsc_16th can capture all the
in-band eigenvalue pairs (i.e., P(D1,2), P(E1,2), P(F1,2), and
P(G1,2)) and the out-of-band eigenvalue pairs (i.e., P(A1,2),
P(B1,2), P(C1,2), and P(H1,2)).
Compared to the extrapolation behavior of the VF on the

artificially created rational function H (s) in Fig. 2, it can
be seen that the extrapolation behavior of the MF on the
dq-domain AFRs of the VSC (i.e., Yvsc) in Figs. 4 and 5
presents more interesting features. For example, as for the
low-frequency fitting results in Fig. 4, Y low_freqvsc_10th can capture
the out-of-band eigenvalue pairP(D1,2) instead of the in-band
eigenvalue pair P(H1,2). As for the high-frequency fitting
results in Fig. 5, Y high_freqvsc_6th can capture the out-of-band eigen-
value pair P(A1,2) instead of the in-band eigenvalue pairs
P(F1,2) and P(G1,2), while Y

high_freq
vsc_10th can capture the out-

of-band eigenvalue pairs P(A1,2) and P(B1,2) instead of the
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FIGURE 5. (a) Bode plots, (b) poles distribution, and (c) qq-axis
residues distribution of the fitted 6th-, 10th-, and 16th-order
rational function approximations for the dq-domain AFRs of the
VSC within [101, 2500] Hz.

in-band eigenvalue pairs P(F1,2) and P(G1,2). These selective
identification of the out-of-band eigenvalue pairs instead of
the in-band eigenvalue pairs will further be investigated.

C. CLOSE LOOK AT THE EXTRAPOLATION BEHAVIOR
FOR THE BLFRs
1) EXTRAPOLATION FOR THE ARTIFICIALLY CREATED
FREQUENCY RESPONSE
If the fitting frequency interval is [2001, 8000] Hz, the arti-
ficially created rational function H (s) in the form of (1) can
be regarded as the summation of an in-band rational function
Ha(s) and an out-of-band rational function Hb(s), i.e.,

H (s) = Ha (s) + Hb (s) , (8)

where

Ha (s) =

34∑
i=9

ri
s− pi

+ d,

Hb (s) =

8∑
i=1

ri
s− pi

+

44∑
i=35

ri
s− pi

, (9)

where the pole and residue pair (pi, ri) are listed in Table 1.
Fig. 6(a) plots the Bode diagrams of H (s) in (1), Ha(s) in (9),
and Hb(s) in (9). It can be seen that Ha(s) can capture all the
13 (i.e., #5-#17) in-band amplitude peaks, while its out-of-
band frequency response is smooth. On the contrary, Hb(s)
can capture all the 9 (i.e., #1-#4 and #18-#22) out-of-band
amplitude peaks, while its in-band frequency response is
smooth.

FIGURE 6. Close look at the extrapolation behavior for the
BLFRs of H(s) within [2001, 8000] Hz. (a) Bode plots of H(s),
Ha(s), and Hb(s). (b) Bode plots of the fitted 6th-, 10th-, 14th-,
and 18th-order rational function approximations (i.e., fb6(s),
fb10(s), fb14(s), and fb18(s)) for

{
Hb

(
jωk

)
|ωk ∈ 2π [2001,8000]

}
.

When the frequency response {H (jωk )|ωk ∈ 2π [2001,
8000]} is fitted by the VF, the 26 partial fraction terms of
Ha(s) are preferentially identified, as shown in Fig. 2. If
a high enough fitting order (e.g., 32th, 38th, and 44th in
Fig. 2) is used, all the 26 partial fraction terms of Ha(s)
are captured and a few out-of-band partial fraction terms
will be ‘‘guessed’’ to approximate the smoothed in-band
fitting error {Hb (jωk) |ωk ∈ 2π [2001, 8000]}. Assume that
{Hb (jωk) |ωk ∈ 2π [2001, 8000]} is fitted by a N1th-order
rational function approximation fb(s), i.e.,

fb(s)|s=jωk =

N1∑
i=1

r ′
i

s− p′
i
≈ Hb (jωk) , (10)

where p′
i and r ′

i are the ith pole and residue pair of
fb(s). Fig. 6(b) plots the Bode diagrams of the fit-
ted 6th-, 10th-, 14th-, and 18th-order rational function
approximations (i.e., fb6(s), fb10(s), fb14(s), and fb18(s)) for
{Hb (jωk) |ωk ∈ 2π [2001, 8000]}, which indicates that both
the low-frequency and high-frequency extrapolation perfor-
mances improve if the fitting order N1 is increased from 6th
to 18th. Specifically, fb18(s) successfully identifies the nine
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out-of-band partial fraction terms from the smoothed IBFRs
of {Hb (jωk) |ωk ∈ 2π [2001, 8000]}, which explains why the
44th-order (44 = 26 + 18) rational function approximation
in Fig. 2 can reproduce the nine out-of-band partial fraction
terms.

FIGURE 7. Close look at the extrapolation behavior for the
BLFRs of Yqqvsc(s) within [101, 2500] Hz. (a) Bode plots of Yqqvsc(s),
Yqqvsca(s), and Yqqvscb(s). (b) Bode plots of the fitted 2th-, 6th-, and
12th-order rational function approximations (i.e., Yqqvscb_2nd (s),

Yqqvscb_6th(s), and Yqqvscb_12th(s)) for {Yqqvscb
(
jωk

)
|ωk ∈

2π [101,2500]}.

2) EXTRAPOLATION FOR THE GRID-CONNECTED VSC
SYSTEM
Based on the poles and residues of the dq-domain admittance
model Yvsc in Table 2, if the fitting frequency interval is [101,
2500] Hz, the qq-axis admittance model of the VSC can be
regarded as the summation of an in-band rational function
Y qqvsca(s) and an out-of-band rational function Y qqvscb(s), i.e.,

Y qqvsc(s) = Y qqvsca(s) + Y qqvscb(s), (11)

where

Y qqvsca(s) =
Rqq

(
D1,2

)
s− P

(
D1,2

) +
Rqq

(
E1,2

)
s− P

(
E1,2

)
+

Rqq
(
F1,2

)
s− P

(
F1,2

) +
Rqq

(
G1,2

)
s− P

(
G1,2

) ,
Y qqvscb(s) =

Rqq
(
A1,2

)
s− P

(
A1,2

) +
Rqq

(
B1,2

)
s− P

(
B1,2

)
+

Rqq
(
C1,2

)
s− P

(
C1,2

) +
Rqq

(
H1,2

)
s− P

(
H1,2

) , (12)

where P(·) denotes the poles operator and Rqq(·) denotes the
qq-axis residues operator. Fig. 7(a) plots the Bode diagrams
of Y qqvsc(s), Y

qq
vsca(s) in (12), and Y

qq
vscb(s) in (12). It can be seen

that Y qqvsca(s) can capture the magnitude peaks above 101 Hz,
while its low-frequency spectrum below 101 Hz is smooth.
On the contrary, Y qqvscb(s) can capture the magnitude peaks
below 101 Hz, while its high-frequency spectrum above
101 Hz is smooth.

Fig. 7(b) plots the Bode diagrams of the fitted
2nd-, 6th-, and 12th-order rational function approxima-
tions (i.e., Y qqvscb_2nd (s), Y

qq
vscb_6th(s), and Y qqvscb_12th(s)) for{

Y qqvscb (jωk) |ωk ∈ 2π [101, 2500]
}
, which indicates that the

low-frequency extrapolation performance improves if the
fitting order is increased from 2nd to 12th. Specifically,
Y qqvscb_12th(s) successfully reproduces the low-frequencyAFRs
from the smoothed IBFRs above 101 Hz, which explains why
the 16th-order rational function approximation Y high_freqvsc_16th in
Fig. 5 can reproduce the out-of-band partial fraction terms
(i.e., A1,2, B1,2, C1,2, and H1,2).
It can be seen that similar in-band fitting errors can be

obtained by unions of different ‘‘guessed’’ out-of-band partial
fraction terms, shown as fb6(s), fb10(s), fb14(s), and fb18(s) in
Fig. 6 and Y qqvscb_2nd (s), Y

qq
vscb_6th(s), and Y

qq
vscb_12th(s) in Fig. 7.

The internal mechanism of the selective and accurate out-of-
band modal identification will be studied using the proposed
sensitivity index.

III. PROPOSED SENSITIVITY INDEX OF THE PARTIAL
FRACTION TERM
If a partial fraction term

G0(s) =
R0

s− P0
=

α0 + jβ0

s− (σ0 + jω0)
(13)

is identified as Gfit (s) = Rfit/(s− Pfit ) by using
the VF on K discrete frequency samples of G0(s)
(i.e., {G0 (jωk) |k = 1, 2, . . . ,K }), the in-band fitting error
denoted as ε

(
Pfit ,Rfit

)
can be calculated as

ε
(
Pfit ,Rfit

)
=

√√√√( K∑
k=1

(
Gfit (jωk) − G0 (jωk)

)2)
/K .

(14)

If the frequency samples number K is large enough, (14) can
be reformulated as

ε2
(
Pfit ,Rfit

)
=

1
ωu − ωl

∫ ωu

ωl

(
Gfit (jω) − G0 (jω)

)2 dω,

(15)

which can be further reformulated as

ε2
(
Pfit ,Rfit

)
=

1
ωu − ωl

∫ ωu

ωl

G2
fit (jω) − G2

0 (jω) . . .

−2G0 (jω)
(
Gfit (jω) − G0 (jω)

)
dω,

(16)
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where ωl and ωu denote the low-frequency and high-
frequency limits, respectively, of the fitting frequency
interval.

Using the first-order Taylor series expansion of Gfit (jω) at
(P0,R0) leads to

Gfit (jω) = G0 (jω) +
Rfit − R0
jω − P0

+
R0
(
Pfit − P0

)
(jω − P0)2

+ on,

(17)

where on is the higher-order infinitesimal. Since Pfit ≈

P0 and Rfit ≈ R0, one can have that

Rfit − R0
jω − P0

=
Rfit
R0

G0 (jω) − G0 (jω)

≈
Rfit
Rfit

Gfit (jω) − G0 (jω) ,

R0
(
Pfit − P0

)
(jω − P0)2

=
Pfit
R0

G2
0 (jω) −

P0
R0
G2
0 (jω)

≈
Pfit
Rfit

G2
fit (jω) −

P0
R0
G2
0 (jω) . (18)

By substituting (18) into (17), one can have that

Gfit (jω) − G0 (jω) ≈
RfitGfit (jω) + PfitG2

fit (jω)

Rfit

−
R0G0 (jω) + P0G2

0 (jω)

R0
. (19)

Substituting (19) as a whole into (16) leads to

ε2
(
Pfit ,Rfit

)
≈ ζ

(
Pfit ,Rfit

)
− ζ (P0,R0) , (20)

where

ζ
(
Pfit ,Rfit

)
=

1
ωu − ωl

∫ ωu

ωl

G2
fit (jω) − 2G0 (jω) . . .(

Gfit (jω) +
Pfit
Rfit

G2
fit (jω)

)
dω (21)

and

ζ (P0,R0) =
1

ωu − ωl

∫ ωu

ωl

G2
0 (jω) − 2G0 (jω) . . .(

G0 (jω) +
P0
R0
G2
0 (jω)

)
dω. (22)

Since G0(jω) ≈ Gfit (jω), substituting Gfit (jω) =

Rfit/(jω − Pfit ) into (21) leads to

ζ
(
Pfit ,Rfit

)
= −

R2fit
ωu − ωl

∫ ωu

ωl

jω + Pfit(
jω − Pfit

)3 dω. (23)

In addition, substituting G0(jω) = R0/(jω − P0) into (22)
leads to

ζ (P0,R0) = −
R20

ωu − ωl

∫ ωu

ωl

jω + P0
(jω − P0)3

dω. (24)

Using the first-order Taylor series expansion of ζ
(
Pfit ,Rfit

)
at (P0,R0) can reformulate (20) as

ε2
(
Pfit ,Rfit

)
≈
(
Pfit − P0

)
ζ ′
P (P0,R0)

+
(
Rfit − R0

)
ζ ′
R (P0,R0) , (25)

where

ζ ′
P (P0,R0) =

2R20
ωu − ωl

(
ωu

(jωu − P0)3
−

ωl

(jωl − P0)3

)
(26)

and

ζ ′
R (P0,R0) =

2R0
ωu − ωl

(
ωu

(jωu − P0)2
−

ωl

(jωl − P0)2

)
,

(27)

indicate how sensitive the in-band fitting error ε
(
Pfit ,Rfit

)
is to the identified pole Pfit and the identified residue Rfit ,
respectively. In other words, the two sensitivity indexes are
able to quantify the in-band fitting inaccuracy induced by
specific reproduction inaccuracy of P0 and R0.

As a supplementary tool for the conventional fitting order
selection method based on gradually increasing the fitting
order until the root-mean-square fitting error defined in (14)
is small enough, the proposed sensitivity index concept may
help confirm the fitting order by checking if the sensitivity
index of the last identified partial fraction term is obviously
smaller than the sensitivity indexes of the already identified
partial fraction terms.

Fig. 8 demonstrates the effects of P0 and R0 on∣∣ζ ′
P (P0,R0)

∣∣ shown in (26). Specifically, Fig. 8(a) plots∣∣ζ ′
P (P0,R0)

∣∣ variation as ωu = 2π8000 rad/s, ωl =

2π2001 rad/s, σ0 = -500, α0 = -10, ω0 is increased from 0 to
2π10000 rad/s, and β0 is increased from 0 to 1000. Clearly,∣∣ζ ′
P (P0,R0)

∣∣ is quickly increased if ω0 goes close to ωu or ωl .
Furthermore,

∣∣ζ ′
P (P0,R0)

∣∣ is increased if β0 goes far from 0.
A local minimal appears at about 2π4500 rad/s, indicating
that if a mode with 4500-Hz amplitude peak is mixed with
other in-band modes, this 4500-Hz mode may be not likely to
be reproduced from the IBFRs within [2001, 8000] Hz, since
the overall in-band fitting inaccuracy is not sensitive to the
reproduction precision of this 4500-Hz mode. Furthermore,
Fig. 8(b) plots

∣∣ζ ′
P (P0,R0)

∣∣ variation as ω0 = 2π8050 rad/s,
β0 = 1000, σ0 is increased from -1000 to 0, and α0 is
increased from -400 to 0. Clearly,

∣∣ζ ′
P (P0,R0)

∣∣ is increased
as σ0 approaches 0 and decreased as α0 approaches 0.

IV. VERIFICATION OF SENSITIVITY INDEX ON THE
ARTIFICIALLY CREATED RATIONAL FUNCTION
A. IN-BAND FITTING FOR THE ARTIFICIALLY CREATED
RATIONAL FUNCTIONS
1) ARTIFICIALLY CREATED RATIONAL FUNCTIONS
COMPOSED OF TWO PARTIAL FRACTION TERMS
Fig. 9(a) plots the Bode diagrams of the fitted five first-order
approximations hfitm (s) where m can be 5500, 6000, 6500,
7000, and 7500 for

hm(s) =
−10 + j1000

s− (−500 + j2π4500)
+

−10 + j1000
s− (−500 + j2πm)

,

(28)

48 VOLUME 11, 2024



Zhou and Beerten: Application of Extrapolation Capability of Vector Fitting

FIGURE 8. Variation of the sensitivity index
∣∣∣ζ ′
P

(
P0,R0

)∣∣∣ as
(a) ω0 and β0, and (b) σ0 and α0 change.

based on the frequency responses between 2001 and 8000Hz.
It can be seen that the amplitude peaks of the fitted five
first-order rational functions are situated at 5321, 5970, 6549,
7043, and 7504 Hz, respectively. Compared to the amplitude
peak of the 4500-Hz mode in (28), the reproduced five ampli-
tude peaks are clearly much closer to the five amplitude peaks
of the m-Hz modes. Specifically, the fitted hfit7500(s) nearly
completely captures the 7500-Hz amplitude peak of h7500(s),
which is due to that

∣∣ζ ′
P (P0,R0)

∣∣ sharply increases when
ω0 varies from 2π4500 rad/s to 2π7500 rad/s, as shown in
Fig. 8(a). Therefore, the feasibility of the derived sensitivity
index

∣∣ζ ′
P (P0,R0)

∣∣ in (26) is verified.
Furthermore, Fig. 9(b) plots the magnitude diagrams of the

fitted first-order approximation hfitn (s) where n is increased
from 1 to 30 with step size 1 for

hn(s) =
n(−10 + j1000)

s− (−500 + j2π5500)
+

−10 + j1000
s− (−500 + j2π7000)

,

(29)

based on the frequency responses between 2001 and 8000Hz.
Clearly, the amplitude peak of the fitted first-order rational
function hfitn (s) moves leftward if n is increased. Specifi-
cally, the identified amplitude peak is located at 7002 Hz
when n = 1 and at 5569 Hz when n = 30, which
results from that the sensitivity index of the 5500-Hz mode
is increased if n is increased, i.e.,

∣∣ζ ′
P (P0,R0)

∣∣ is increased
as |R0| increases as shown in Fig. 8. Therefore, the feasi-
bility of the derived sensitivity index

∣∣ζ ′
P (P0,R0)

∣∣ in (26) is
verified.

FIGURE 9. The fitted first-order approximation (a) hfitm (s) for hm(s)
and (b) hfitn (s) for hn(s) based on the frequency responses
between 2001 and 8000 Hz.

2) ARTIFICIALLY CREATED RATIONAL FUNCTION
COMPOSED OF MULTIPLE PARTIAL FRACTION TERMS
When the fitting frequency interval is [3001, 7000] Hz, the
sensitivity indexes of the 22 pairs of modes of H (s) shown
in Table 1 can be calculated by (26), as listed in the sec-
ond and third columns in Table 3. It can be observed that
the distribution of these sensitivity indexes agrees with that
shown in Fig. 8(a). Specifically, the #16 and #7 magnitude
peaks have the largest and the second largest sensitivity index,
respectively, which indicates that the #16 and #7 magnitude
peaks are the most and the second most likely to be identified
from the BLFRs within [3001, 7000] Hz. The sensitivity
index-based fitting behavior prediction agrees with the prac-
tical fitting results shown in Fig. 1. Therefore, the feasibility
of the derived sensitivity index is validated.

B. EXTRAPOLATION FOR THE ARTIFICIALLY CREATED
RATIONAL FUNCTIONS
1) ARTIFICIALLY CREATED RATIONAL FUNCTION
COMPOSED OF TWO PARTIAL FRACTION TERMS
Assume that the first-order approximation

hfitt (s) =
Rfitt

s− Pfitt
=

α
fit
t + jβfitt

s−

(
σ
fit
t + jωfit

t

) (30)

fits the summation of the IBFRs of

ht1 (s) =
Rt1

s− Pt1
=

αt1 + jβt1
s− (σt1 + jωt1)

(31)
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TABLE 3. Sensitivity Indexes of the Partial Fraction Terms of H(s)
Shown in Table 1.

and

ht2 (s) =
Rt2

s− Pt2
=

αt2 + jβt2
s− (σt2 + jωt2)

(32)

in the frequency interval [0, ωu]. According to (25), the
in-band fitting inaccuracy ε2

(
Pfitt ,Rfitt

)
induced by the inac-

curate reproduction of ωt1 in (31) and ωt2 in (32) can
be calculated as

ε2
(
Pfitt ,Rfitt

)
=

(
ω
fit
t − ωt1

)
ζ ′
P (Pt1,Rt1)

+

(
ω
fit
t − ωt2

)
ζ ′
P (Pt2,Rt2) . (33)

Solving ε2
(
Pfitt ,Rfitt

)
= 0 leads to

ω
fit
t =

ωt1ζ
′
P (Pt1,Rt1) + ωt2ζ

′
P (Pt2,Rt2)

ζ ′
P (Pt1,Rt1) + ζ ′

P (Pt2,Rt2)
∈ (ωt1, ωt2) ,

(34)

where three cases can be summarized in Table 4. By substi-
tuting (26) into (34), it can be derived that if

α2
t1 + β2

t1

α2
t2 + β2

t2

=

(
σ 2
t1 + (ωt1 − ωu)

2

σ 2
t2 + (ωt2 − ωu)

2

) 3
2

, (35)

case 2 in Table 4 holds, and the captured amplitude peak ω
fit
t

is situated at the midpoint of (ωt1, ωt2). Specifically, if Rt2 =

γtRt1, γt should be

γt =

(
σ 2
t2 + (ωt2 − ωu)

2

σ 2
t1 + (ωt1 − ωu)

2

) 3
4

, (36)

such that case 2 is satisfied.
Consider a case where Pt1 = −40 + j2π1200, Rt1 =

20 + j1600, Pt2 = −40 + j2π1300, Rt2 = γtRt1, and ωu =

2π1000 rad/s. Fig. 10(a) plots the Bode diagram of the fitted
rational function hfitt (s) as γt is increased from 1.0 to 3.0 with
step size 0.1. The captured amplitude peak ω

fit
t clearly moves

toward to 2π1300 Hz when γt is increased. Specifically, the
captured amplitude peak ω

fit
t is situated at 1250 Hz if γt is

nearly 2.0. Since γt calculated by (36) is 1.8, the discrepancy

between the γt obtained by the VF and (36) is small, which
verifies the feasibility of the derived sensitivity index.

TABLE 4. Location of the Identified Magnitude Peak of hfitt (s).

FIGURE 10. (a) Variation of the captured amplitude peak of hfitt (s)
when ωu is 2π1000 rad/s and γt is increased from 1.0 to 3.0 with
step size 0.1. (b) Variation of γt as ωu is increased from 0 to
2π1200 rad/s.

Furthermore, Fig. 10(b) plots γt variation calculated
by (36) as ωu increases from 0 to 2π1200 rad/s. It can be seen
that γt slowly decreases and quickly increases to 1.1276 and
62.4449 if ωu approaches 0 and 2π1200 rad/s, respectively,
which indicates that the out-of-band magnitude peak located
at the edge of the fitting frequency interval is most likely to
be identified among all the out-of-bandmagnitude peaks. The
discrepancies between the γt obtained by (36) and the VF
code below 1100 Hz are small and acceptable, which verifies
the feasibility of the derived sensitivity index.

2) ARTIFICIALLY CREATED RATIONAL FUNCTION
COMPOSED OF MULTIPLE PARTIAL FRACTION TERMS
When the fitting frequency interval is [2001, 8000] Hz, the
sensitivity indexes of the 22 pairs of partial fraction terms of
H (s) shown in Table 1 can be calculated by (26), as listed in
the fourth and fifth columns in Table 3. It can be observed that
the distribution of theses sensitivity indexes agree with that
shown in Fig. 8(a). Specifically, the #18 and #4 magnitude
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peaks have the largest and the second largest sensitivity index,
respectively. It indicates that, in the left-side out-of-band
frequency interval, the reproduction priority is #4, #3, #2, and
#1. In addition, in the right-side out-of-band frequency inter-
val, the reproduction priority is #18, #19, #20, #21, and #22.
The sensitivity index-based fitting behavior prediction agrees
with the practical fitting results shown in Fig. 2. Therefore,
the feasibility of the derived sensitivity index is validated.

V. VERIFICATION OF SENSITIVITY INDEX ON THE VSCs
A. THE CURRENT-CONTROLLED VSC
1) LOW-FREQUENCY FITTING FOR THE
CURRENT-CONTROLLED VSC WITHIN [1, 100] Hz
The sensitivity indexes of the 8 pairs of partial fraction terms
when the fitting frequency interval is [1, 100] Hz are listed in
the second and third columns in Table 5. It can be observed
that A1,2, B1,2,C1,2, andD1,2 have the largest, second largest,
third largest, and fourth largest sensitivity indexes, respec-
tively, which indicates that they are the most, second most,
third most, and fourth most likely to be identified from the
BLFRs within [1, 100] Hz. The sensitivity index-based fitting
behavior prediction agrees with the practical fitting results
shown in Fig. 4. In addition, it can be seen that although H1,2
are located within the fitting frequency interval, its sensitivity
index is smaller than that of D1,2. This explains why D1,2

instead of H1,2 are identified by Y low_freqvsc_10th in Fig. 4. The
effectiveness of the proposed sensitivity index is thus verified.

TABLE 5. Sensitivity Indexes of the Partial Fraction Terms of
Yqqvsc(s) When the Low- and High-Frequency Responses are
Fitted.

2) HIGH-FREQUENCY FITTING FOR THE
CURRENT-CONTROLLED VSC WITHIN [101, 2500] Hz
The sensitivity indexes of the 8 pairs of partial fraction terms
when the fitting frequency interval is [101, 2500] Hz are listed
in the fourth and fifth columns in Table 5. It can be observed
that A1,2, E1,2,D1,2, and B1,2 have the largest, second largest,
third largest, and fourth largest sensitivity index, respectively,
which indicates that they are the most, second most, third
most, and fourth most likely to be identified from the BLFRs
within [101, 2500] Hz. The sensitivity index-based fitting
behavior prediction agrees with the practical fitting results
shown in Fig. 5. In addition, it can be seen that although
F1,2 andG1,2 are located within the fitting frequency interval,
their sensitivity indexes are smaller than those of A1,2 and

B1,2. This explains why A1,2 and B1,2 instead of F1,2 and
G1,2 are identified by Y high_freqvsc_10th in Fig. 5. The effectiveness
of the derived sensitivity index is thus validated. Thanks
to that the proposed sensitivity index can explain why the
out-of-band modes can be preferentially captured before the
desired in-band modes are captured, the adopted fitting order
which already satisfies the fitting error requirement can be
further increased to identify more in-band modes. Therefore,
a fitting order which can simultaneously satisfy the fitting
error requirement and identify enough in-band modes can be
obtained.

3) MIDDLE-FREQUENCY FITTING FOR THE
CURRENT-CONTROLLED VSC WITHIN
DIFFERENT FREQUENCY RANGES
The sensitivity indexes of the 8 pairs of partial fraction terms
when the fitting frequency interval is [401, 700], [401, 1200],
[401, 1700], and [401, 2200] Hz are listed in Table 6. It
can be observed that, A1,2 have the largest sensitivity index,
and are most likely to be identified from the BLFRs within
[401, 700] Hz. In addition, A1,2 and D1,2 have the largest and
second largest sensitivity indexes, and are most and second
most likely to be identified from the BLFRs within [401,
1200] Hz.D1,2 have the largest sensitivity index, and aremost
likely to be identified from the BLFRs within [401, 1700] Hz.
E1,2 and D1,2 have the largest and second largest sensitivity
indexes, and are most and second most likely to be identified
from the BLFRs within [401, 2200] Hz.

TABLE 6. Sensitivity Indexes of the Partial Fraction Terms of
Yqqvsc(s) When the Middle-Frequency Responses are Fitted.

Figs. 11(a) and 11(b) plot the poles distribution and qq-axis
residues distribution, respectively, of the dq-domain AFRs of
the VSC (i.e., Yvsc) and its fitted 4th-order rational function
approximations using the AFRs within [401, 700], [401,
1200], [401, 1700], and [401, 2200] Hz (i.e., Y [401,700]

vsc_4th ,
Y [401,1200]
vsc_4th , Y [401,1700]

vsc_4th , and Y [401,2200]
vsc_4th ). It can be seen from

Fig. 11(a) that only P(A1,2) can be captured by Y [401,700]
vsc_4th .

In addition, both P(A1,2) and P(D1,2) can be captured by
Y [401,1200]
vsc_4th . Only P(D1,2) can be captured by Y

[401,1700]
vsc_4th . Both
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P(D1,2) and P(E1,2) can be captured by Y
[401,2200]
vsc_4th . The prac-

tical fitting results shown in Fig. 11 agree with the sensitivity
index-based fitting behavior prediction shown in Table 6,
which verifies the effectiveness of the derived sensitivity
index.

FIGURE 11. (a) Poles distribution and (b) qq-axis residues
distribution of the fitted 4th-order rational function
approximations for the dq-domain AFRs of the VSC within [401,
700], [401, 1200], [401, 1700], and [401, 2200] Hz.

B. THE VOLTAGE-CONTROLLED VSC
In order to verify the effectiveness of the proposed sensitivity
index, the AFRs of the voltage-controlled VSC are further
fitted by the MF. Fig. 12(a) shows the control diagram of the
outer dc-link voltage control which is responsible for gener-
ating the d-axis current reference iref2d , while Fig. 12(b) shows
the control diagram of the outer PCC voltage control which
is responsible for generating the q-axis current reference iref2q .
The voltage controller parameters are shown in Table 9 of
Appendix.

FIGURE 12. Block diagrams of (a) dc-link voltage control and
(b) PCC voltage control.

Table 7 lists the poles and residues of the dq-domain
AFRs of the voltage-controlled VSC (i.e., Yvc_vsc). Compared
to the poles and residues of the dq-domain AFRs of the

current-controlled VSC (i.e., Yvsc) in Table 2, it can be seen
that Yvc_vsc has additional partial fraction terms I1,2 and J .

TABLE 7. Poles and Residues of the DQ-Domain Admittance
Transfer Function Matrix Yvc_vsc of the Voltage-Controlled VSC.

1) SELECTIVE IDENTIFICATION OF THE CURRENT
CONTROL-RELATED MODE
The sensitivity indexes of the 19 partial fraction terms when
the fitting frequency interval is [1, 25] Hz are listed in the
second and third columns in Table 8. It can be observed that
A1,2,C1,2, B1,2, and I1,2 have the largest, second largest, third
largest, and fourth largest sensitivity indexes, respectively,
which indicates that they are the most, second most, third
most, and fourth most likely to be identified from the BLFRs
within [1, 25] Hz. Fig. 13(a) plots the poles distribution of
the VSC AFRs and the fitted 4th-, 8th-, and 10th-order ratio-
nal function approximations (i.e., Y [1,25]

vc_vsc_4th, Y
[1,25]
vc_vsc_8th, and

Y [1,25]
vc_vsc_10th). It can be seen that Y [1,25]

vc_vsc_4th can only capture
P(A1,2). However, Y

[1,25]
vc_vsc_8th can capture P(A1,2), P(C1,2),

andP(B1,2). Y
[1,25]
vc_vsc_10th can captureP(A1,2),P(C1,2),P(B1,2),

and P(I1,2) with high precision. The practical fitting results
shown in Fig. 13(a) agree with the sensitivity index-based
fitting behavior prediction shown in Table 8 which verifies
the effectiveness of the derived sensitivity index.

TABLE 8. Sensitivity Indexes of the Partial Fraction Terms of
Yqqvc_vsc(s) When the AFRs within [1, 25] Hz and [26, 50] Hz are
Fitted.

2) SELECTIVE IDENTIFICATION OF THE VOLTAGE
CONTROL-RELATED MODE
The sensitivity indexes of the 19 partial fraction terms when
the fitting frequency interval is [26, 50] Hz are listed in
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FIGURE 13. Poles distribution of the fitted rational function
approximations for the dq-domain AFRs of the
voltage-controlled VSC within (a) [1, 25] Hz and (b) [26, 50] Hz.

the third and fourth columns in Table 8. It can be observed
that I1,2, A1,2, B1,2, C1,2, and D1,2 have the largest, second
largest, third largest, fourth largest, and fifth largest sen-
sitivity indexes, respectively, which indicates that they are
the most, second most, third most, fourth most, and fifth
most likely to be identified from the BLFRs within [26,
50] Hz. Fig. 13(b) plots the poles distribution of the VSC
AFRs and the fitted 2nd-, 4th-, 8th-, 12th-, and 14th-order
rational function approximations (i.e., Y [26,50]

vc_vsc_2nd , Y
[26,50]
vc_vsc_4th,

Y [26,50]
vc_vsc_8th, Y

[26,50]
vc_vsc_12th, and Y

[26,50]
vc_vsc_14th). It can be seen that

Y [26,50]
vc_vsc_2nd can only capture P(I1,2). However, Y

[26,50]
vc_vsc_4th can

capture P(I1,2) and P(A1,2). Y
[26,50]
vc_vsc_8th can capture P(I1,2),

P(A1,2), and P(B1,2). Y
[26,50]
vc_vsc_12th can capture P(I1,2), P(A1,2),

P(B1,2), and P(C1,2). Y
[26,50]
vc_vsc_14th can capture P(I1,2), P(A1,2),

P(B1,2), P(C1,2), and P(D1,2). The practical fitting results
shown in Fig. 13(b) agree with the sensitivity index-based
fitting behavior prediction shown in Table 8 which verifies
the effectiveness of the derived sensitivity index.

VI. CONCLUSION
This article explores and further develops the extrap-
olation capability of the VF/MF algorithm to identify
the out-of-band critical dynamics from the band-limited
impedance/admittance data. The proposed extrapolation
method extracts the useful information from the band-limited
frequency responses to a large extent. This superior extrap-
olation capability is especially useful if the imaginary parts
of the modes of interest are not located in the available
frequency range of the impedance/admittance frequency

responses, which may contribute to the black box-based
state-space modeling and further eigenvalue-based stability
analysis. The effects of the practical measurement noise on
the extrapolation capability should also be investigated in
future. Furthermore, whether the proposed sensitivity index
and the corresponding extrapolation capability are applicable
for other least-squares-based curve fitting algorithms should
be further investigated.

APPENDIX. CIRCUIT AND CONTROLLER PARAMETERS
OF THE VSC
The per-unit circuit and controller parameters of the grid-
following VSC in Fig. 3 are listed in Table 9, where the
base power, base voltage, and base frequency are selected as
2.0 MVar, 575 V, and 50 Hz, respectively.

TABLE 9. Circuit and Controller Parameters of the VSC.
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