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ABSTRACT The adoption of autonomous electric vehicles (AEVs) offers an opportunity to decarbonize
the transportation sector while eliminating the human errors in driving accidents. However, adopting AEVs
may impose challenges to the operation of power distribution systems to ensure the availability of power
for charging a growing number of AEVs at different times and locations. This paper takes an opportunistic
look at this problem and develops a rolling horizon model for coordinating the operation of electric
autonomous ride-hailing systems with power distribution systems. The proposed model incorporates the most
recent real-time information and the future expected value of energy level, spatial and temporal location
of AEV fleet, traffic data, and passenger demand. Using this data, the proposed model adopts a rolling
horizon approach to optimize the routing of AEVs to serve spatio-temporal passenger demand across the
transportation network, while optimizing the time and location of AEVs charging to ensure the availability
of energy to serve the passenger demand, and satisfying the operational constraints of the power distribution
system. The proposed model is implemented on a test transportation system, coupled with the IEEE 33-bus
test power distribution system. The numerical results demonstrate the capability of the proposed model in
ensuring the reliability and quality of service for both electric autonomous ride-hailing and power distribution
systems.

INDEX TERMS Autonomous electric vehicle, ride-hailing services, power distribution system, vehicle
charging and routing.

I. INTRODUCTION
A. BACKGROUND ON ELECTRIC AUTONOMOUS
RIDE-HAILING

AVIABLE pathway to mitigate the impacts of fossil-fuel
based transportation systems and associated environ-

mental challenges is transportation electrification. According
to [1], the transportation sector accounts for 24% of CO2
emissions globally. In response, nations around the world
have passed legislation in support of transportation electri-
fication that has resulted in a global number of 5.1 million
electric vehicles (EVs) in 2019, a 61% expansion over the
previous year [1]. The emergence of transportation network
platforms, e.g., Lyft and Uber, have expanded the transit
landscape to offer personalized, on-demand mobility from a

ride-hailing service where public transit options are limited.
Ride-hailing platforms offer a management and communica-
tion system through which transportation electrification can
be expanded by the increased adoption of EVs. In order
to achieve this, ride-hailing platforms have started multiple
electrification initiatives to increase EVs in their fleet [2].
Ride-hailing connects passengers to potential drivers

through web-based platforms [3]. Traditionally, drivers act
independently in their pursuit of profit through passen-
ger selection, driving hours, and charging location, which
leads to ride-hailing platforms falling short in capturing the
opportunities for service improvement through vehicles and
operators’ cooperation. However, recent advancements in the
technology of self-driving EVs, also known as autonomous
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electric vehicles (AEVs), offer opportunities for coordi-
nated ride-hailing dispatch that would mitigate spurious
vehicle trips and provide a higher quality of ride-hailing
services. Moreover, high penetration of AEVs enables mit-
igating human error, which is responsible for 94% of all
crashes in 2016 according to the National Highway Traffic
Safety Administration [4]. The upcoming shift from human-
operated fossil-fuel-based cars to AEVs is anticipated to
reduce the operation cost of a vehicle by two to four times [5].
The adoption of electric autonomous ride-hailing plat-

forms challenges the operating regimes of both ride-hailing
systems and power distribution system (PDS). Robust opera-
tion of AEV fleet in a ride-hailing platform is achieved by a
meticulous vehicle charging and routing strategy. However,
the AEVs charging requirement may cause congestion in
power distribution lines, and increase the line losses and bus
voltage swings if proper coordination is not adopted [6].
To this end, the ride-hailing platform must have adequate
insight on both ride-hailing and PDS states, i.e., the real-time
traffic data, spatio-temporal status of AEVs, state of charge
(SOC) of batteries, available charging stations, voltage level,
and current flow magnitude.

B. LITERATURE REVIEW
In contrast to electron flow in a power distribution system,
the vehicles in a transportation system cannot travel instan-
taneously from one point to another. Instead, a relatively
long time is required for a vehicle to traverse a road which
varies with the road’s maximum capacity and time of day.
Thus, the traffic flow at each road and each time interval is
the accumulation of newly arriving AEVs and the existing
AEVs and other vehicles on that road from previous time
intervals. Connecting passengers to drivers in a ride-hailing
platform is a specific instance of the vehicle routing problem
(VRP), where the total traveled distance of a vehicle fleet
with respect to customer satisfaction is minimized. Different
variations of VRP are studied in the literature, such as pick
up and delivery problems in [7], [8], [9], and [10], the VRP
with time window where the customer must be visited within
a given time window in [11], [12], and [13], and dynamic
multi-commodity flow in [14], [15], and [16]. The VRP, often
viewed as a network flow problem, is a dynamic problem
in the real world, where static network flows fall short in
capturing the spatio-temporal variations of the problem. In [9]
and [10], routing of electric autonomous on-demand mobility
considering the charging requirement is investigated; how-
ever, the interdependency of the transportation and power
distribution systems is not considered. Also, in [9], the impact
of traffic and the maximum capacity of roadways in the
transportation network modeling is neglected, and in [10],
it is assumed that there is a charging station at each node with
no congestion constraints, which is incongruous with existing
charging infrastructure conditions.

The impact of EV charging requirements on the power
system operation is investigated in [17], [18], [19], and [20].

In [17], a two-stage model is proposed to manage the total
charging requirement of EVs and curtail the load such that
the reliable operation of the PDS is maintained. The pro-
posed model alters the charging requirements of the EVs
without considering the transportation system constraints
and interdependent structure of the power and transporta-
tion systems. In [18], a stochastic security-constrained unit
commitment coupled with a transportation system is pro-
posed to determine the aggregated charging and discharging
schedule of EVs such that power system operation cost is
reduced and traffic congestion is alleviated. In [19], a multi-
community user equilibrium model is presented to capture
the interdependency of the power and traffic flow taking into
account the marginal electricity price, fast charging stations
location, and rational route selection of EVs while consid-
ering a generating unit at each bus of the power system.
In [20], a planning model to determine the siting and siz-
ing of EV charging stations considering the load expansion,
power distribution, and transportation network constraints is
proposed. In [21], a routing model for autonomous mobility
on demand considering the charging constraints of AEVs is
proposed, however, the proposed model does not consider
the power distribution constraints and deliverability of the
energy. In [22], the authors model the charging and routing
of autonomous on-demand mobility considering the trans-
portation and power transmission system constraints. The
proposed economic dispatch model integrates the upper-level
power transmission system constraints and does not take into
account the implications of electric autonomous mobility
charging requirements on the connected PDS in real-time
operation. In [23], the authors investigate re-balancing and
charging of autonomous mobility on demand considering the
power distribution system. The model in [23], however, is for
day-ahead operation that considers fixed routes for picking up
and dropping off passengers, and does not integrate real-time
traffic data, spatio-temporal passenger demand and power
distribution load for charging and routing of AEVs.

Traditional ride-hailing systems aim at minimizing fuel,
maintenance, and depreciation cost while maximizing the
revenue received by dropping off passengers. However,
recent advancement in AEVs, which are driven without a
driver, is changing the ride-hailing paradigm by removing
drivers’ preference in the route and charging station selec-
tion. The electric autonomous ride-hailing (EAR) systems
are considered customers of power distribution systems that
demand energy to charge AEVs batteries. Therefore, the
availability of energy to cater to the charging demand of
AEVs and consequently adequacy of AEVs SOC to operate
in a reliable manner is crucial. Although the proposed models
in the literature tackle different aspects of EV integration
in power system operation, the challenges imposed by the
penetration of AEVs in ride-hailing systems and existing
opportunities to provide energy flexibility spatially and tem-
porally by proposing different optimization engines are not
studied. More specifically, a clear gap remains in under-
standing the implications of the paradigm shift to electric

VOLUME 11, 2024 95



FIGURE 1. The real-time coordinated charging and routing model
for AEVs.

autonomous mobility in the ride-hailing platforms on the
real-time operation of power distribution systems. Moreover,
there is a need to develop models to take the interdependent
structure of power distribution and transportation systems
into account and investigate the impact of high charging
requirements of AEVs considering the mobility of AEVs to
meet the charging demand spatially and temporally while
respecting PDS constraints [24]. In this context, this paper
aims at studying the real-time coordinated AEV charging and
routing problem considering the operational constraints of
both transportation and power distribution systems using an
optimization-based framework.

C. CONTRIBUTION AND PAPER STRUCTURE
This paper proposes a rolling horizon approach for
real-time charging and routing of AEVs in EAR systems
co-optimized with power distribution system operation. The
proposed model exchanges information between the passen-
ger demand, AEV fleet, and the power distribution system,
as illustrated in Fig. 1. The proposed model captures the
interdependecies between the power distribution and electric
autonomous ride-hailing systems, where the AEVs drive
and re-balance across the transportation system to pick up
passengers and charge the batteries at charging stations sup-
plied by the power distribution system. Re-balancing AEVs
refers to changing the location from one place to another
in the ERA system for different purposes, i.e., meeting the
future passenger demand, or charging. The proposed model
utilizes the AEVs mobility to provide energy flexibility at
different locations and times to the power distribution system
while serving the passengers of the EAR system. In this con-
text, the proposed coordinated charging and routing model
re-balances the AEVs throughout the transportation system
based on the real-time data on traffic and available charging
flexibility at different stations to charge AEVs and guarantee
the availability of energy to serve the passenger demand.

The proposed model, formulated as a relaxed mixed-
integer second-order cone program (MISOCP), adopts a
rolling horizon framework that receives and incorporates the
most recent real-time information and the future expected
value of energy level, spatial and temporal location of the
AEV fleet, as well as the traffic data to determine the optimal

charging and routing of AEVs. By considering a finite rolling
horizon at each time step, the model can make decisions for
the current time interval considering the variability of other
parameters of the system in the future, e.g., traffic informa-
tion, spatio-temporal passenger demand, and availability of
plugs at charging stations. Therefore, at each rolling horizon
the optimization engine reaches the optimal solution for the
current interval, the binding interval, while considering the
future predictions in the model. Although the decision of
advisory intervals at each rolling horizon is not used directly,
considering a rolling horizon enables the optimization engine
to determine the binding interval solution such that the feasi-
bility of the model for advisory intervals is ensured.

The rest of the paper is organized as follows: the modeling
approach for the EAR infrastructure and the structure of the
proposed rolling-horizon operation model are discussed in
Section II. The EAR charging and routing problem formu-
lation is presented in Section III. The simulation setup and
numerical results are delineated in Section IV and conclu-
sions are drawn in Section V.

II. REAL-TIME ELECTRIC AUTONOMOUS RIDE-HAILING
This section presents the proposed model for an interde-
pendent EAR system and power distribution system. The
transportation system is modeled by a directed graph GT =

(N ,LT ), whereN and LT are sets of nodes and roads in the
transportation system. The charging infrastructure is located
on a subset of the nodes in the transportation system, N s

⊂

N . A set of AEVs, shown by E , supply the spatio-temporal
passenger demand of EAR system throughout the city. The
passengers of the ride-hailing system are spatially and tem-
porally distributed across the city with access to ride-hailing
applications and the internet. The passenger demand varies
by the time of day and spatial pattern of major access points
throughout the transportation system, where commute needs
from and to these locations are high. The spatio-temporal
passenger demand is defined as the pick-up location i ∈ N ,
and drop-off location d ∈ N , respectively referred to as
origin and destination in the model.

The PDS is also modeled by a graph GP = (B,LP),
where B and LP are the sets of buses and lines in the power
distribution system. The PDS caters to inflexible and flexible
(spatio-temporal charging requirement of AEVs) loads in
different buses of the power distribution system. The trans-
portation nodes equipped with charging infrastructure are
connected to adjacent buses in the power distribution system.
In the AEV transportation system, AEVs travel across dif-
ferent nodes in which only a few of them are equipped with
charging infrastructure. Thus, the charging opportunities of
the AEVs are confined by parking in those nodes when they
are not carrying passengers or re-balancing in the system.

The proposed model considers the future development of
the passenger demand and power distribution load profiles
by adopting the rolling horizon optimization approach. This
approach opportunistically schedules the charging and rout-
ing of AEVs at each time considering the future passenger
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FIGURE 2. The proposed rolling horizon optimization approach
for real-time coordinated charging and routing of electric
autonomous ride-hailing systems.

demand in the transportation system and the corresponding
spatio-temporal charging requirement in the power distribu-
tion system. Figure 2 illustrates an overview of the proposed
rolling horizon optimization approach and the required input
data. Each rolling scheduling horizon is divided to n seg-
ments, T = [τ1, τ2, . . . , τn]. The initial spatio-temporal
passenger demand, AEVs locations, on-road AEVs, SOC of
AEVs, and updated traffic and PDS data are fed into each
rolling scheduling horizon, [t, t + T ], to co-optimize the
charging and routing of AEVs. The first interval of each
rolling horizon solution, τ1 in Fig. 2, is the binding optimal
decision variable while the rest, τ2 to τn in Fig. 2, are advisory
schedules. The binding decision variables of each rolling
horizon are fed into the next scheduling horizon as the initial
value of the parameters. Concatenating the binding decision
variables of different rolling scheduling horizons generates
the optimal real-time trajectories of variables during the
scheduling horizon. The formulation of the proposed model
is presented in Section III.

III. ELECTRIC AUTONOMOUS RIDE-HAILING
CHARGING AND ROUTING CO-OPTIMIZATION MODEL
The proposed model for co-optimizing the charging and rout-
ing of electric autonomous ride-hailing considering the power
distribution system is formulated in (1)-(29). The objective
function of the proposed model is presented as follows:

min
∑
e,t

(Ee−Ee,t )λ
pe
t −

∑
e,id,d,t

Zpe,id,d,tλ
in

+

∑
e,ij,d,t

Zpe,ij,d,tLij,t (λ
r
+λm)+

∑
e,ij,t

Z re,ij,tLij,t (λ
p
+λm).

(1)

The first term in (1) penalizes the deviation of AEVs’
SOC from the maximum energy capacity by a factor λ

pe
t

to ensure that there would be adequate energy stored in the
AEV batteries to serve the transportation demand. This term
correlates with the energy price to encourage AEVs to charge
their batteries when the electricity price is low. The SOC of
the AEVs is directly impacted by the amount of energy that
AEVs request from the PDS to charge their batteries. Thus,
by considering the SOC of batteries at each time interval

in (1), the EAR system and PDS are coupled together. The
second term in (1) calculates the revenue received by EAR
system from dropping off the passengers, where the binary
variable Zpe,id,d,t indicates the occupancy statu of AEV on
road id towards destination d , and λin is the corresponding
incentive coefficient. The third and fourth terms in the second
line of (1) minimize the energy and maintenance costs of
AEVs traveling the distance Lij,t on road ij at time t , where
the binary variable Z re,ij,t denote the status of AEV during re-
balancing. The terms λr and λp respectively denote the price
of consumed energy per mile for re-balancing and carrying
passengers, and λm represents the maintenance cost of AEV.
The objective function (1) is constrained by the transportation
system and traffic constraints, AEV charging constraints as
well as the power distribution constraints as discussed next.

A. TRANSPORTATION SYSTEM CONSTRAINTS
The traffic flow on road ki ∈ LT at time t is equal to
the total number of vehicles re-balancing and occupied with
passengers, respectively shown by N r

ki,t−1 and N
p
ki,t−1. In (2),

the summation of AEVs on road ki ∈ LT heading toward
node i ∈ N , either re-balancing or carrying passengers,
plus the number of AEVs parked at node i ∈ N , Ni,t−1,
at time (t − 1) is equal to the number of parked AEVs at
node i ∈ N , plus the number of AEVs leaving node i through
connecting roads either carrying a passenger or re-balancing
at time t . Equations (3) and (4) present the re-balancing and
carrying passengers flow of AEVs in line ij ∈ LT at time t ,
respectively. The binary variables Z re,ij,t and Z

p
e,ij,d,t are equal

to 1 when AEV is respectively re-balancing and carrying
a passenger from node i to node j, and are 0 otherwise.
The spatio-temporal passenger demand balance of AEVs is
ensured in (5) and (6). The initial passenger demand at node
i ∈ N for destination d ∈ N at time t is denoted by
D0
i,d,t . The assignment of an AEV to pick up a passenger is

represented by binary variableXpe,ij,d,t . The presence of traffic
in the transportation system makes the required time to travel
road ij ∈ LT time dependent, Tij,t . The second term in (6),
captures the arrival of on-road AEVs carrying passengers at
node i through connecting roads with destination d .∑
ki∈LT

(N r
ki,t−1+N

p
ki,t−1)+Ni,t−1=Ni,t+

∑
ij∈LT

(N r
ij,t+N

p
ij,t ),

(2)∑
e

Z re,ij,t = N r
ij,t , (3)∑

e,d

Zpe,ij,d,t = N p
ij,t , (4)∑

ij∈LT ,e

Xpe,ij,d,t1
= D0

i,d,t1 , (5)

∑
ij∈LT ,e

Xpe,ij,d,t = D0
i,d,t +

∑
ki∈LT ,e

Zpe,ki,d,t−1(1 − Zpe,ki,d,t ).

(6)
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Constraint (7) ensures that an AEV is either re-balancing
or occupied by a passenger on road ij ∈ LT at time t . As the
traffic and passenger demand data is updated, constraint (8)
prevents going back and forth on a road. In (9), the status of
AEV is equal to zero when AEV is at destination (i = d).
Constraint (10) prevents unnecessary stops while carrying a
passenger until the vehicle reaches the final destination node.∑

ij,d

Zpe,ij,d,t +

∑
ij

Z re,ij,t ≤ 1, (7)

Zpe,ij,d,t−1 + Zpe,ji,d,t ≤ 1, (8)

Zpe,ij,d,t = 0, i = d, (9)∑
i

Zpe,ij,d,t−1 ≤

∑
k

Zpe,jk,d,t , j ̸= d . (10)

B. TRAFFIC DATA INTEGRATION
The real-time traffic data are integrated into themodel by con-
sidering a maximum capacity and a travel time profile, Tij,t ,
for each road. The density of a road is defined as the number
of vehicles per unit length of the road in the transportation
system. In (11), the number of vehicles on road ij ∈ LT at
time t (either re-balancing or carrying a passenger) is capped
by Lijρij, where ρij and Lij are respectively the maximum
density during congestion and the length of the road ij ∈ LT .
In (12), the AEV average speed (traveled distance divided
by elapsed time) is constrained within the maximum and
minimum speed limit of road ij, shown respectively by V ij
and V ij. The total number of AEVs at charging station i ∈ N s

at time t is constrained by maximum available charging plugs
at the charging station, N

S
s,t in (13). Constraints (14) and (15)

secure the minimum on-road time of AEVs, in which an AEV
is on-road for Tij,t+1 intervals when it starts the trip, assigned
to carry a passenger or re-balance, at time t+1 from node i
toward node j. The binary variable X re,ij,t is equal to 1 when
AEV re-balances on road ij, and 0 otherwise.

0 ≤ N r
ij,t + N p

ij,t ≤ Lijρij, (11)

V ij ≤
Lij
Tij,t

≤ V ij, (12)

Ni,t ≤ N
S
s,t , ∀i ∈ N s, (13)

τ=t+1+Tij,t+1∑
τ=t+1

Zpe,ij,d,τ ≥ Tij,t+1(X
p
e,ij,d,t+1 − Xpe,ij,d,t ), (14)

τ=t+1+Tij,t+1∑
τ=t+1

Z re,ij,τ ≥ Tij,t+1(X re,ij,t+1 − X re,ij,t ). (15)

C. AEV CHARGING CONSTRAINTS
The operation of the EAR system relies on adequate charg-
ing of AEVs throughout the transportation network. In (16),
if AEV is at node i the binary variable XLe,i,t is equal to 1,
and is 0 otherwise. Equation (17) keeps track of the SOC of
AEV e ∈ E during scheduling horizon, where the battery
charging and trip efficiency factors are represented by ηch

and ηtrip, respectively. The stored energy in AEV batteries

is capped by Ee and Ee in (18), respectively minimum and
maximum capacity of the AEV batteries. Constraint (19)
guarantees that there is enough energy to drive road ij ∈ LT at
time t . The AEV charging power is limited to charging plug
power capacity if at station, and 0 otherwise, in (20). The
parameter M is a (N s

×N )-dimensional incidence matrix,
where component Ms,i is 1 when charging station s ∈ N s is
located at node i ∈ N of the transportation system, and is
0 otherwise. The non-linear constraints (6), (16), and (20) are
linearized using the method in [25].

XLe,i,t =

∑
j,d

Zpe,ji,d,t−Tji,t +

∑
j

Z re,ji,t−Tji,t

+ XLe,i,t−1(1−

∑
i,d

Zpe,ji,d,t−Tji,t −
∑
i

Z re,ik,t−Tij,t ), (16)

Ee,t+1=Ee,t+ηchPche,t+1

− η
trip
t (Zpe,ij,t+1,d + Z re,ij,t+1)Lij,t+1, (17)

Ee ≤ Ee,t ≤ Ee, (18)

Ee,t − ηtrip(Xpe,ij,t+1,d + X re,ij,t+1)Lij ≥ Ee, (19)

Pche,t≤ P
plug

Ms,i

XLe,i,t (1 −

∑
ij

Zpe,ij,d,t−Tij,t−
∑
ij

Z re,ij,t−Tij,t ). (20)

D. POWER DISTRIBUTION SYSTEM CONSTRAINTS
The operation of power distribution systems is modeled
using (21)-(29):

PGt =

∑
1y∈LP

PL1y,t + g1V
sq
1,t , (21)

QGt =

∑
1y∈LP

QL1y,t + b1V
sq
1,t , (22)

− PDw,t −

∑
e

PAe,w,t =

∑
wy∈L

PLwy,t

−

∑
zw∈LP

(PLzw,t − rzwI
sq
zw,t ) + gwV

sq
w,t , (23)

− QDw,t −

∑
e

QAe,w,t =

∑
wk∈L

QLwy,t

−

∑
zw∈LP

(QLzw,t − xzwI
sq
zw,t ) + bwV

sq
w,t , (24)

V sq
w,t−V

sq
z,t = −2(rzwPLzw,t + xzwQLzw,t )+(r

2
zw+x

2
zw)I

sq
zw, (25)

V sq
w ≤ V sq

w,t ≤ V sq
w , (26)

I sqzw,t ≤ I sqzw, (27)

V sq
w,t I

sq
zw,t ≥ P2zw,t + Q2

zw,t , ∀t, (28)

PAe,w,t =

∑
i

Pche,tX
L
e,i,tRw,i. (29)

The terms PGt and QGt in (21) and (22) denote the active
and reactive powers supplied by the upstream transmission
system. The active and reactive power balance equations are
formulated in (21)-(24), where PDw,t , Q

D
w,t , P

A
e,w,t , and Q

A
e,w,t

98 VOLUME 11, 2024



Bagherinezhad et al.: Rolling Horizon Approach for Real-Time Charging and Routing of AEVs

denote the active and reactive power distribution load, and
active and reactive charging requirement of AEV e at bus w,
respectively. The active and reactive power flow in line zw
is denoted by PLzw,t and Q

L
zw,t . The resistance and reactance

of line zw, and the connected conductance and susceptance
to bus w are respectively shown by rzw, xzw, gw, and bw.
The voltage drop in line zw is formulated in (25), and the
squared voltage V sq

w,t in (26) is confined within the squared
minimum and maximum voltage thresholds V sq

w and V sq
w .

In (27), the squared current flow I sqzw,t is constrained by the
squared maximum current flow limit, I sqzw. The non-convex
AC-OPF problem can be relaxed as a rotated second-order
cone constraint in (28), which encircles the equality in the
optimal solution [26]. In (29), the charging requirements of
AEVs at the charging station i at time t is mapped into the
associated bus in the power distribution system. The (N ×B)-
dimensional incidence matrixRmaps the power distribution
buses to the nodes of the transportation system, where Rw,i is
1 if node i ∈ N of the transportation system is connected to
bus w ∈ B of the power distribution system, and 0 otherwise.
The proposed model (1)-(29) is a MISOCP, which is a

convex optimization problem that can be solved using com-
mercial solvers, as shown next in the simulation results next.

IV. SIMULATION RESULTS
The proposed model for coordinated charging and routing of
EAR systemwith the PDS is implemented on a test real-world
transportation system and the IEEE 33-bus test PDS [27].
A portion of the transportation system of Salt Lake City, UT is
used as the test transportation system, which includes actual
routes in major interstates, state highways, important destina-
tions (i.e., University of Utah campus, Salt Lake City Airport,
etc.), and available EV charging stations. The transportation
system includes 13 nodes, N = [n1, . . . , n13], 16 roads,
and 7 charging stations, N s

⊂ N = [s1, . . . , s7]. Roadway
capacity is defined as the rate of vehicles that traverse a point
or uniform section of a roadway during a given period of time
under existing roadway conditions [28]. The roadway capaci-
ties and congestion are determined by the UtahDepartment of
Transportation average annual hourly volume dataset for the
Salt Lake City metro area [29]. The hourly values are scaled
down by 12 and linear interpolation is applied to align the
hourly data with the 5-minute operation time in the model.

The PDS caters the inflexible and flexible load (spatio-
temporal charging demand of AEVs) of the customers. The
IEEE 33-bus PDS [30] is spatially mapped to the trans-
portation system to highlight the interconnection of the two
systems. The spatial connectivity of charging stations in the
Salt Lake City metro area and associated transportation nodes
and PDS buses is shown in Table 1. Each charging station
is equipped with five 50 kW charging plugs that are used
by AEVs in ride-hailing system. The charging requirement
of conventional electric vehicles is set to zero. The real-
time load of CAISO for January 16, 2019, is scaled down to
3,715kW and 2,300kVAr for active and reactive peak power

TABLE 1. Connectivity map of the power and transportation
networks.

TABLE 2. Case study assumptions.

of the test PDS [31]. The minimum and maximum voltage
threshold are 0.9 pu and 1.1 pu in the system.

In order to investigate the impacts of traffic and PDS status
(e.g., the magnitude of inflexible power load, voltage and
current flow) on charging and routing of AEVs in interde-
pendent PDS and EAR system, two case studies each with
two scenarios are studied, as defined in Table 2. In Case 1,
the impacts of uncoordinated charging and routing of AEVs
on the PDS is investigated, in which the EAR operator only
considers the transportation system constraints without coor-
dinating with PDS. In Case 2, the coordinated charging and
routing of AEVs considering both transportation and PDS
constraints is investigated. In this case, the spatio-temporal
passenger demands and AEV charging demands are supplied
such that the constraints of EAR system and PDS are met.
The optimal charging and routing of AEVs vary based on
the traffic and PDS load. For this reason, the impacts of
off-peak PDS load and light traffic in scenario 1, and PDS
morning peak load and heavy traffic in scenario 2, are inves-
tigated. The real-time simulation study is implemented in a
30 minutes rolling horizon, every 5 minutes for 24 inter-
vals (2 hours) to depict the traffic and PDS load impacts.
The proposed model is implemented in a GAMS environ-
ment, on a desktop computer with a 3.6-GHz i7 processor
and 16 GB of RAM in which the average computational time
for each run is 27.68 and 49.36 seconds for Cases 2-1 and 2-2,
respectively.

The average 5-minute intervals required to travel a road
during scheduling horizon and AEV passenger demand are
presented in Table 6 in Appendix. The required time to
drive through different roads in the transportation system
differs upon location and time of day. The average 5-minute
interval required to travel a road in scenario 1 is less than
scenario 2 in most of the roads, indicating lighter traffic in the
transportation system. A subset of the transportation system
nodes are selected randomly as the initial location of ten
AEVs, {n1, n2, n4, n7, n10, n11} ⊂ N . The maximum energy
capacity of AEVs is 50 kWh, in which the initial SOC is
considered 50% of that. The charging efficiency of AEVs is
considered 80% and the rate of energy discharge on road is
0.32 kWh/mile [32].
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TABLE 3. Operation cost of electric autonomous ride-hailing
system.

A. COST ANALYSIS
The operation cost of the EAR system comprises the cost of
consumed energy for carrying passengers and re-balancing
in the transportation system, the cost of charging AEVs
batteries at the charging stations, and the maintenance and
deprecation cost as shown in Table 3. The maintenance and
depreciation cost of AEVs is $0.16/mile [22]. The energy and
charging costs are calculated based on the constant rate of
$0.22/kWh [33]. The light traffic creates more opportunities
for AEVs to re-balance and charge the batteries by spending
less time on-road carrying passengers. However, heavy traffic
in scenario 2, Cases 1-2 and 2-2, results in increasing the
energy cost for carrying passengers and re-balancing com-
pared to Cases 1-1 and 2-1, respectively. Further, there are
fewer charging opportunities in Case 2-2 due to PDS con-
straints and morning peak load which results in less charging
cost for AEVs compared to Case 2-1. The maintenance and
deprecation cost is calculated based on the traveled miles for
each case study, where the heavy traffic in scenario 2 results
in rerouting the AEVs and increasing the travelled miles and
consequently maintenance and deprecation cost compared to
scenario 1.

B. PERFORMANCE ANALYSIS
The proposed model is compared with random and greedy
models in Table 4. In the random model, AEVs take random
decisions to serve passengers, re-balance, and charge in pur-
suit of profit in the EAR system. However, the low percentage
of the served passengers in the random model highlights the
missed opportunities in adopting such a model to meet the
passenger demand and reduce the associated costs. In the
greedy model, the AEVs prioritize re-balancing and serving
passengers in the EAR system, and only charge when the
AEV energy hits the minimum energy threshold. Although
the greedy model meets 64% of the passenger demand, the
myopic behavior of such an algorithm increases the AEVs
energy cost. However, the proposed coordinated optimization
model fully serves the passenger demand while optimizing
the AEVs charging and considering the power distribution
system constraints. The required energy to charge AEVs in
random and greedy models is significantly lower than that
in the optimization model, which showcases the shortsighted
behavior of these models.

C. CHARGING REQUIREMENT OF THE EAR SYSTEM
The total charging requirement of the AEVs in charging
stations is shown in Fig. 3. The charging profile of AEVs and

TABLE 4. Comparison of different models.

consequently charging profile of each station is dependent on
traffic, passenger demand, location of charging stations, and
available charging capacity based on PDS status. In Cases
1-1 and 1-2, the power distribution system constraints are
not considered in the determining the optimal charging of
the AEVs, therefore the charging power profile of s2, s4,
s6, and s7 are significantly different from Cases 2-1 and
2-2, highlighting the impact of power distribution system
constraints, as shown in Fig. 3. Further, the charging profile
of s2, s4, and s7 are altered in Fig. 3-d compared to Fig. 3-
c, which highlights the impact of the power distribution load
on optimal charging of AEVs. For instance, charging station
s7 is connected to a sensitive PDS bus and the coordinated
co-optimization model tailors the charging profile of s7 in
Cases 2-1 and 2-2 such that the PDS operation constraints
and EAR system requirements are satisfied, as shown by the
black curve in Fig. 3. In Case 2-2 the inflexible morning peak
load of PDS results in less charging flexibility and a more
tailored charging profile at station s4 compared to Case 2-
1. Further, the charging profile of s4 in Cases 1-1 and 2-1 is
different fromCases 1-2 and 2-2 which highlights the impacts
of power distribution load and transportation system traffic
on AEVs charging profiles. As discussed above, the charging
profile of the AEVs is determined such that the stations are
not overloaded and power distribution constraints are not
violated.

D. EAR RESOURCE ALLOCATION AND
SPATIO-TEMPORAL STATUS OF AEVs
In the proposed real-time charging and routing problem
AEVs have four modes: carrying a passenger, re-balancing,
parking idle, and charging AEVs batteries at a charging
station, in which Table 5 showcases the average percentage
of the time allocated to each mode in all cases. The main
objectives of AEVs is to serve the passengers of EAR system
and recharge in the remaining time to ensure the quality of
service. The average time that AEVs are carrying passengers
is almost 40% of the scheduling time in all cases, which
signifies the role of coordinated scheduling of EAR system
and PDS to take advantage of the remaining 60% of the time
to ensure the operation reliability of EAR system and PDS.
Therefore, the coordinated charging and routing of AEVs in
Cases 2-1 and 2-2 re-balances and charges the batteries of
AEVs such that the average idle time of AEVs is significantly
reduced and average charging time is increased compared to
Cases 1-1 and 1-2, respectively.
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FIGURE 3. The total charging requirement of AEVs in the
transportation system in: a) Case 1-1, b) Case 1-2, c) Case 2-1,
and d) Case 2-2.

TABLE 5. EAR resource allocation percentage in case studies.

The spatio-temporal status of an AEV, e2, for Cases 2-1
and 2-2 is illustrated in Fig. 4. Initially e2 is located at
node n1 of the transportation system with a charging station,
and there exist a passenger demand to travel from n1 to
n3, as in Table 6-B in Appendix. Therefore, in Case 2-1
e2 picks up the passenger at the first interval, purple circle
at time 10 AM in Fig. 4-a, and drops off the passenger at
n3. Next, the battery of e2 is charged for 20 minutes at n3 to
satisfy the minimum energy threshold constraint of the EAR
system and then re-balanced to n1 to meet a future demand at
11.05 AM. However, in Case 2-2 in Fig. 4-b, e2 is assigned
to charge the batteries at the current location and then pick
up the spatio-temporal passenger demand with destination
n2 at 8.10 AM. In Cases 2-1 and 2-2, the same AEV is
assigned to different tasks which highlights the impacts of

FIGURE 4. The spatio-temporal status of AEV e2: a) Case 2-1 and
b) Case 2-2.

FIGURE 5. Current profile from b16 to b17 in the power
distribution system.

the transportation and PDS status on charging and routing of
AEVs in EAR operation.

E. CURRENT PROFILES OF POWER DISTRIBUTION
SYSTEM
The EAR system is dependent on the PDS to cater the charg-
ing requirements of AEVs. Figure 5 depicts the current flow
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TABLE 6. a) Average required 5-minute intervals to travel a road,
b) Spatio-temporal passenger demand of ride-hailing system.

from PDS bus b16 to b17, in which the black dashed line
represents the maximum flow capacity of the line. In Cases
1-1 and 1-2, the uncoordinated charging and routing of AEVs
results in violation of the current flow in the PDS, black and
blue curves in Fig. 5. The charging station s7 is connected
to node b16 that indicates the explicit impact of the charging
profile of this station, black curve in Fig. 3, on the current
flow. However, in Cases 2-1 and 2-2, the charging and routing
of AEVs in EAR system is altered to prevent current flow
violations, as shown in green and purple curves in Fig. 3.
Therefore, the real-time charging and routing of AEVs in
interdependent EAR system and PDS ensures the reliable
operation of PDS and consequently EAR system.

V. CONCLUSION
This paper proposed a model to devise real-time spatio-
temporal charging and routing schedule for AEVs in
the interdependent power distribution and EAR sys-
tems. The proposed rolling horizon approach meticulously
captures the twisted structure of interdependent systems
to re-balance the AEVs in order to serve the passengers
and charge AEVs considering the operational constraints
of EAR system and PDS. The proposed real-time charging
and routing model for AEVs is tested on a transportation
system coupled with IEEE 33-bus power distribution system.
The simulation results indicates that the real-time charging
and routing model ensures the quality of service in the
EAR system operation by reducing spurious trips and taking
advantage of the idle time of AEVs to re-balance and charge
the batteries. Further, the proposed model determines the
deliverable energy at each charging station spatially and
temporally based on the PDS operational constraints, while
the naive uncoordinated model violates the PDS constraints
and jeopardizes the reliable operation of both PDS and EAR
system. The simulation results demonstrate the efficiency of

the proposed rolling horizon approach in incorporating the
most recent traffic data, passenger demand, and PDS con-
straints to optimize the charging and routing profile of AEV
fleet in varying real-time EAR system and PDS condition.
The proposed real-time charging and routing model sheds
light on the existing opportunities for cooperation of PDS
and EAR system while adopting cost-effective and reliable
strategies for scheduling the AEVs.

APPENDIX
TEST SYSTEM DATA
The traffic data and spatio-temporal passenger demand of
the EAR system used in the simulations are presented here.
Table 6-A denotes the average 5-minute intervals required
to travel a road during the scheduling horizon in scenarios
1 and 2, respectively light and heavy traffic. For instance,
it takes three 5-minute intervals, 15 minutes, on average
to travel from n1 to n3 in scenario 1. The spatio-temporal
AEV passenger demand is depicted in Table 6-B. The spatio-
temporal AEV passenger demand is defined by the pick-up
and drop-off locations, respectively denoted as origin and
destination over the scheduling horizon, t1 to t24.
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