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ABSTRACT We present the BrainScaleS-2 mobile system as a compact analog inference engine based
on the BrainScaleS-2 ASIC and demonstrate its capabilities at classifying a medical electrocardiogram
dataset. The analog network core of the ASIC is utilized to perform the multiply-accumulate operations of
a convolutional deep neural network. At a system power consumption of 5.6 W, we measure a total energy
consumption of 192 uJ for the ASIC and achieve a classification time of 276 us per electrocardiographic
patient sample. Patients with atrial fibrillation are correctly identified with a detection rate of (93.7 & 0.7) %
at (14.0 £ 1.0) % false positives. The system is directly applicable to edge inference applications due
to its small size, power envelope, and flexible I/O capabilities. It has enabled the BrainScaleS-2 ASIC
to be operated reliably outside a specialized lab setting. In future applications, the system allows for a
combination of conventional machine learning layers with online learning in spiking neural networks on
a single neuromorphic platform.

INDEX TERMS Accelerator, analog computing, convolutional deep neural networks, electrocardiography,

inference, low-power, medical, neuromorphic.

. INTRODUCTION

RTIFICIAL neural networks have become an important

tool for a broad variety of tasks — from datacen-
ter to edge applications. Striving for energy-efficient and
fast computation of these networks, a multitude of novel
computing architectures have been developed. Specialized
processors either accelerate the processing of artificial con-
volutional deep neural networks (CDNNs) or — in the
field of event-based neuromorphic computing — follow
a neuroscience-oriented approach and implement spiking
neural networks (SNNs).

Accelerators for vector-matrix multiplication (VMM)-
based CDNN models mostly rely on computational units
in the digital domain [1], [2], [3], [4], although recent ana-
log approaches show very promising performance [5], [6].

In agreement with their biological example, event-based
neuromorphic systems traditionally utilize analog compu-
tational paradigms [7], [8], [9], the general availability of
modern CMOS process nodes has however boosted the pop-
ularity of digital solutions in this field as well [10], [11],
[12], [13], [14], [15], [16], [17]. Most recently, research of
VMM, as well as SNN accelerators has been augmented by
the introduction of post-CMOS technologies based on novel
materials [18], [19], [20].

In contrast to aforementioned single-purpose approaches,
the BrainScaleS neuromorphic architecture combines analog
VMM with the event-based emulation of SNNs. BrainScaleS-2
(BSS-2) therefore provides a highly configurable compu-
tational substrate for research in the combined fields of
computer- and neuroscience [21], [22] and has been shown
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FIGURE 1. Photo of the BrainScaleS-2 mobile system (from bottom to top):
FPGA-based system controller, ASIC adapter PCB, ASIC carrier board with the latest
BSS-2 ASIC directly wire-bonded to the PCB. The system has the mechanical footprint
of a credit card (84 mm x 55 mm) at a height of approximately 40 mm. It weighs roughly
155 g with and 70 g without the FPGA's heatsink respectively.

to achieve beyond-state-of-the-art energy efficiency and
classification latency [23]. Combining potential energy effi-
ciency benefits and online learning capabilities of SNNs
with the high computational power of CDNNs on a sin-
gle application-specific integrated circuit (ASIC) opens up
unique opportunities for adaptive inference applications on
the edge. The only other neuromorphic architectures simul-
taneously supporting rate- and spike-based models are the
digital Tianjic [24] and MONETA [25] systems, both however
do not enable freely programmable on-chip learning rules.

We now present a highly integrated mobile demonstrator
system for the BSS-2 architecture (Figs. 1 and 2) and show-
case the system’s capabilities and energy efficiency at the
example of electrocardiogram (ECG) anomaly classification.
While both, the computation of CDNNSs and the emulation of
SNNs on BSS-2 have already been shown in controlled lab
environments [23], [26], we can now provide a system that is
physically small, has a low power envelope and flexible I/O
capabilities. These previous experiments designed for BSS-2
are compatible with the presented mobile platform, the herein
presented ECG classifier extends the set of applications by
a task tailored to edge scenarios.

The design constraints for this system as well as the
chosen classification task were motivated by the participa-
tion in the independently judged Pilotinnovationswettbewerb
., Energieeffizientes KI-System* by the German Federal
Ministry of Education and Research (BMBF), where it has
proven to operate reliably outside controlled lab environ-
ments. This competition posed a challenge to classify atrial
fibrillation (A-fib) in batches of medical ECG recordings
with stand-alone edge computing accelerators. The provided
dataset consists of 16 000 traces from the same patient group
and has been recorded with two channels only, mimicking
the signal quality to be expected from consumer-grade medi-
cal wearables.! The classification of anomalies in ECG time

1. Since the dataset contains sensitive patient information it is not publicly
available.
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FIGURE 2. Overview of the BrainScaleS-2 mobile system (from left to right):
FPGA-based controller, ASIC adapter PCB and the BSS-2 ASIC.

series data is an active field of research where both, classical
time series analysis and machine learning-based algorithms
compete [27].

Il. THE BRAINSCALES-2 MOBILE SYSTEM
The BSS-2 mobile system features a combination of a
commercially available FPGA module and the most recent
BrainScaleS-2 ASIC. The FPGA contains an embedded CPU
which is used for standalone experiment control and I/O. The
logic fabric in the FPGA acts as a memory interface and
data format converter for the ASIC.

Fig. 2 depicts the three main components of the system:

« the BrainScaleS-2 ASIC directly bonded to a carrier
board (right),

o a custom ASIC adapter PCB, interfacing the FPGA
board to this ASIC carrier board (center),

« the system controller, consisting of a low-power FPGA
with an embedded quad-core microprocessor [28] and
2GiB of LPDDR4 DRAM, USB 3.0 (device & host),
SDXC, 802.11b/g/n Wi-Fi as well as Bluetooth 4.2
(BLE) communication circuits (left).

The described system is the result of a tightly coupled
interdisciplinary work ranging from chip design to software
engineering and machine learning. The following sections
describe different aspects of the BSS-2 mobile system from
the perspective of the different technological areas.

A. NEUROMORPHIC ASIC

The BSS-2 neuromorphic ASIC? [21] is the key component
of the presented system. It is a mixed-signal implemen-
tation comprised of analog and digital building blocks
(Fig. 2) that simultaneously supports the processing of
VMM operations and the emulation of SNNs in the analog
domain. Embedded single instruction, multiple data central

2. The ASIC has been manufactured in a standard 65nm CMOS tech-
nology. It was conceived and designed at Heidelberg University. The link
layer of the high-speed serial links has been developed in collaboration
with the TU Dresden, who also contributed the PLL. The fast ADC is a
result of a collaboration with the EPFL Lausanne.
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FIGURE 3. Left: internal structure of the BSS-2 ASIC. The analog network core consists of four quadrants, each containing 128 neurons and 128x256 synapses (red). A total of
1024 parallel ADC channels allow for readout of various analog parameters by two embedded SIMD processors (yellow). Right: position of the described functional units on a

layout drawing of the BSS-2 ASIC.

processing units (SIMD CPUs) allow for online on-chip
learning.

Analog Network Core: BSS-2 contains a total of 512 ana-
log neuron circuits, each receiving input from 256 synapses.
The neurons emulate the Adaptive Exponential Integrate-
and-Fire (AdEx) model in 1000-fold accelerated continuous
time and can be combined to represent structured neu-
rons with multiple compartments. Each synapse contains
correlation sensors enabling spike-timing dependent plas-
ticity (STDP) in SNNs and is modulated by a digital
weight with 6bit resolution. For VMMs, the neuron cir-
cuits are configured as analog accumulators, while the
synapses perform multiplications. When processing CDNNs
and SNNs, the combination of these neurons and the synapse
matrix therefore perform all computations in the analog
domain.

Event Router: The distribution of the real-time vector
inputs or spike events to and from the analog network core
is handled by a runtime configurable digital routing crossbar.

Top and Bottom SIMD CPUs: Each chip includes two cus-
tom 32bit CPUs compatible with the embedded PowerPC
instruction set architecture (ISA) [29]. They additionally fea-
ture SIMD extensions for fast vector operations, which can
make use of parallel ADCs (1024 channels, 8 bit resolution)
to process analog observables. These embedded cores are
primarily intended to support learning and plasticity algo-
rithms in SNNs. They can access most of the internal digital
resources of the ASIC and — as described in Section III —
serve as experiment controllers.

Digital Core Logic: The core control and network logic
handles all off-chip communication from the embedded pro-
cessors and the event router. In addition, it bidirectionally
converts between real-time and time-stamped event packets.
The transport layer manages secured memory access oper-
ations as well as unsecure, low-latency event streams over
high-speed serial links to the FPGA fabric.

The right side of Fig. 3 shows a layout drawing of the
ASIC. The embedded processors are highlighted by the
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yellow rectangles. The red frame depicts one of the four
identical quadrants of the analog core. The left side of the
figure illustrates the neuromorphic processing loop through
the system, together with the arrangement of neurons and
synapses within a quadrant.

In CDNN experiments, as used for the ECG classification
showcased in Section III, the dataflow is as follows: Initially,
the synapse matrix is filled with weight data and the neuron
circuits are configured as linear integrators without any long-
term internal dynamics. All neurons are reset to an initial
membrane value Vet before the arrival of the first compo-
nent of the input vector. Inference calculation starts when
the digital core logic transmits the events it has received
from the FPGA to the real-time event router. They are then
distributed to synapse drivers, which in turn transmit them
into the synapse array.

Fig. 4 illustrates the principle of analog computation used
for the VMM: To perform the analog multiplication, the
events are converted from 5bit binary coding to a pulse
length representation. Each synapse produces a current pro-
portional to its 6bit stored weights w, for the duration of
the input signal they receive from the synapse drivers Af,
thereby performing an analog multiplication. The input line
of the neuron subsequently receives the sum of all output
currents generated by the synapses within a vertical column.
A transconductance amplifier in each neuron generates a
current equivalent to the charge received from the synapses.
Each column’s current is integrated on the membrane capac-
itance of its associated neuron circuit. Each neuron has two
separate inputs for excitatory (A) and inhibitory (B) synaptic
inputs. For the inference calculation, they are used to rep-
resent positive and negative weight values. For reasons of
printing space, the column is shown horizontally in the fig-
ure. For up to 65536 signed matrix elements, this operation
is carried out in parallel within the analog core.

After an input vector has been processed in the analog
domain, the neuron voltages are digitized by the parallel
ADC with 8bit resolution. The rectified linear unit (ReLLU)
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FIGURE 4. Operation principle of CDNN processing: the bottom half depicts the main functional blocks of a synapse circuit. For the VMM calculation only the shaded area is
used. The top half shows the analog operations taking place: each synapse generates a current pulse Isyn in response to a pre-synaptic input event. During the calculation
period Tipyt they are integrated on the membrane capacitance. The final voltage Vout of a single neuron represents the result of the analog VMM calculation.

operation can be performed automatically during this conver-
sion by aligning the ADC offset with the initial membrane
value Vieser. Alternatively, the embedded SIMD CPU can
apply an activation function to the digitized analog result,
representing the output activations of a network layer. Values
that are re-used in a succeeding operation, are then converted
to 5Sbit input activations by subtracting Vieser and applying
bitwise right-shifts. The results are passed to the FPGA fab-
ric (Section II-C) and either stored in DRAM or used as
inputs for the next layer. This loop is repeatedly executed
until all layers have been processed.

Each synapse can process back-to-back activations with a
period of 8 ns, resulting in a maximum continuous input data
rate of 125MHz (Fig. 4). There are 256x512 synapses in
total, which can all simultaneously process input activations
at the full data rate. This equals a maximum of

125MHz - 256 - 512 - 20p = 32.8 TOp/s, (1)

counting multiplication and addition as individual operations.

The full integration cycle, including the necessary time
to reset the neuron membrane voltages, takes about 5 ps.
This reduces the back-to-back, maximum size VMM rate to
200kHz and the resulting speed to approximately

1
— -256-512-20p ~ 52GOp/s. 2)
Sus

For more details on the BrainScaleS-2 architecture, we
refer to [21]; for the rate-based operation mode see [26].

B. ASIC ADAPTER BOARD

The ASIC adapter PCB is required to interface an off-the-
shelve FPGA board with the BSS-2 ASIC. It provides six
power supply rails, three reference voltages, and a reference
current to the ASIC, all of which are runtime-adjustable.
The individual supply currents of the BrainScaleS ASIC
can be monitored by several shunt-based power monitor-
ing integrated circuits (ICs) [30]. The ASIC provides eight
independent bidirectional source-synchronous low-voltage
differential signaling (LVDS) data channels operated at up
to 2 Gbit/s each. Due to I/O limitations of the FPGA board,
only five are routed through the ASIC adapter PCB to the
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FPGA. Micro-SMT coaxial connectors are available for mon-
itoring the analog outputs from the BSS-2 ASIC as well as
supplies and reference voltages.

The ASIC itself is directly bonded to a carrier PCB using
a zero-insertion force small outline dual in-line memory
module (SO-DIMM) board edge connector for an optimal
combination of simplicity and reliability. Fig. 1 shows the
die bonded to the ASIC carrier PCB.

C. SYSTEM CONTROLLER

The system controller is a low-power FPGA with an embed-
ded quad-core microprocessor [28] coupled with 2 GiB of
LPDDR4 DRAM. It features USB 3.0 (device & host),
SDXC, 802.11b/g/n Wi-Fi as well as Bluetooth 4.2 (BLE)
communication circuits. Further information about the FPGA
base board can be found in [31].

Fig. 5 depicts the internal structure of the logic fabric.
Main components are the link control and physical layer
that implement the high-speed serial links to the ASIC. The
playback buffer contains a list of commands to send to the
ASIC, while the trace buffer collects events sent back from
the ASIC. Memory-mapped write and read commands can
also be issued from the ASIC to the FPGA. This allows the
SIMD CPUs to access the DRAM memory connected to the
FPGA via a memory switch.

A DMA controller reads the input data from memory,
converts it into input events, and sends them to the ASIC. For
the experiment described in Section III, this DMA controller
is programmed by the SIMD CPU on the ASIC to transfer
the raw signal data, an ECG trace composed of 12 bit values,
from memory. The ASIC requires specially formatted event
data packets encoding 5 bit input activations for the vector-
matrix multiplication. This demands a preprocessing chain
inside the FPGA, which is problem-specific to some extent.
Its function will be explained in Section III-A. After the
raw signal data is converted into 5bit values, the vector
event generator attaches an event address from a lookup
table. This event is sent to the ASIC via the serial links.
In the ASIC, the attached addresses are used to forward
the events to their target inputs of the analog neuromorphic
core. The use of a lookup table inside the FPGA allows
arbitrary mapping of input vector elements onto the synapse
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FIGURE 5. Block diagram of the major functional units of the FPGA, the part inside the logic fabric has been realized as custom RTL in SystemVerilog. The DMA controller,
preprocessing chain elements and vector event generator create the input activation events representing the vector in the vector-matrix multiplication. Some of the
preprocessing (blue) is problem-specific for the medical ECG dataset. To the right side the major blocks of the BSS-2 ASIC are shown as well to illustrate the complete
communication path from the embedded SIMD CPUs to the DRAM memory. The arrows denote the control flow direction from initiator to follower of the internal (hollow) and

external (filled) data buses shown in the figure.

matrix. During the inference process the SIMD CPU inside
the ASIC synchronizes the vector event generator inside the
FPGA using multiple handshake signals to control the timing
of the sent events.

The four 64bit ARM processor cores contained in the
FPGA usually do not participate in the inner loop of the
inference calculation and only perform system initialization
tasks. Making use of their flexible I/O, they can however be
used to form a tight, low-latency coupling between sensors,
actors and the neuromorphic ASIC.

D. SOFTWARE

Similar to other neuromorphic hardware platforms soft-
ware is an essential component to make complex hardware
systems accessible to users, e.g., GraphCore [32], Loihi [33],
[34], [35], Neurogrid [36], [37], SpiNNaker [38], [39],
[40], Tianjic [41], and TrueNorth [42]. A recent publication
covering the older BrainScaleS-1 (BSS-1) platform shortly
compares software approaches of multiple neuromorphic
systems [43].

In each phase — from hardware commissioning, to model
design, to training, to validation — users can take advantage of
a software environment that provides appropriate abstraction
levels, access to hardware debugging information as well
as robust and transparent platform operation. For the BSS-2
architecture, — and, in particular, the mobile system — we
provide software support for different system aspects:

User Interface: The PyTorch toolkit [44] is a commonly
used workhorse in the field. Particularly, it simplifies many
aspects of CDNN modeling. We developed a custom exten-
sion for PyTorch, hxtorch [45], providing support for the
BSS-2 architecture.

Training: Forward propagation is dispatched to the BSS-2
ASIC while backward propagation is performed in software.
Hence, hxtorch enables using the BrainScaleS-2 system as an
inference accelerator in PyTorch while adopting a hardware-
in-the-loop-based training approach. The trained model can
be serialized, stored to disk, and used in a standalone infer-
ence mode to increase energy efficiency. In addition, a “mock
mode” enables the simulation of certain hardware properties
in software. This facilitates migrating from the training of a
pure software model to hardware-in-the-loop-based training.
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Hardware Resources: hxtorch provides support for the exe-
cution of neural network graphs on an arbitrary number of
BSS-2 ASICs. Individual layers are partitioned into chip-
sized chunks and executed either in parallel, serially, or in
the appropriate mixture needed to fit on the available hard-
ware resources. Finally, each ASIC receives and executes a
stream of instructions and data.

Data-Flow Graph Execution: Internally, model layers in
hxtorch build up a data-flow graph. A just-in-time (JIT)
compiler traverses the graph and partitions individual layers
into chunks fitting onto the available hardware resources.
Partitioned layers are converted into configuration data and
control flow statements; both of which are transferred to
the BSS-2 hardware system and result data is read back.
Regarding control flow, the hardware execution engine sup-
ports two modes: the first mode uses the FPGA to handle
control flow; the second mode, which is also largely used in
the standalone inference mode, hands over the control flow
to the embedded SIMD CPUs of the ASIC.

Memory Management: Data input, as well as output loca-
tions, are precomputed by the BSS-2 software stack allowing
for static memory management on the system. The SIMD
CPUs use the communication link to the FPGA to program
the DMA engine inside the FPGA to automatically deliver
the input activations from DRAM to the analog processing
cores. Analog operation results are read out by the proces-
sors, either held in SRAM for temporary data, or stored back
into DRAM for output data.

Standalone Inference Mode: The BSS-2 software layers
are written in C4++ and provide faster execution speeds com-
pared to an interpreted high-level language such as Python.
To create a lightweight inference flow for the energy mea-
surements, a stand-alone version of the hxtorch hardware
graph executor was developed. This executor is implemented
as a standalone binary and builds upon the same internal
software layers and data formats as the hxtorch extension.
In contrast to the JIT-based execution flow, the standalone
inference mode requires control flow to be handled by
the embedded SIMD CPUs. The processors operate on an
instruction stream representing: data load and store oper-
ations, trigger operations for delivery of input activations
from the FPGA, reading out the neuron membrane values,
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or performing digital operations that are not supported by
the analog substrate.

Embedded System Environment: The BSS-2 mobile system
includes a Linux environment’ running on an embedded
ARMO64 processor. We take advantage of a fully container-
ized software environment based on singularity [46] and
spack [47] to provide a cross-compiler environment on the
host computer as well as on the embedded Linux system.
Standard Linux drivers (xHCI, mass storage, FAT32) are
used to read out test data from a USB mass storage device;
additionally, support for USB-based Ethernet networking
hardware is enabled to facilitate remote system usage. An
experiment execution service enables users to run Python-
based interfaces on host computers that exchange serialized
experiment configurations and result data with the mobile
system.

Details on hxtorch for rate-based hardware operation can
be found in [45]. A general overview of the software stack
for BSS-2, including spiking hardware operation, can be
found in [48].

lll. SHOWCASE: ECG CLASSIFICATION

We showcase the BSS-2 mobile system by classifying A-fib
in the medical ECG dataset introduced in Section I. This real-
world task demonstrates many of the platform’s features,
such as stand-alone operation, mobility, power efficiency
and external connectivity. We deploy a trained model on
the system, which then autonomously classifies ECG data
supplied via a USB connection.

A. MODEL

The model design is mainly governed by network size trade-
offs between high accuracy and short runtime. Networks
that exceed the size of the compute substrate pose a high
runtime and I/O penalty due to frequent reconfiguration. This
issue especially becomes relevant for non-batched operation,
while it diminishes for large batch sizes. Targeting edge
applications, we restrict the inference runs to a batch size
of one.

Evaluation of network models showed that a small network
that fits on a single chip and does not require reconfigura-
tion can achieve reasonable classification performance. The
network used in this showcase is depicted in Fig. 6. It oper-
ates on 13.5s of the 120s long ECG records, as this has
turned out to be sufficient for classification of A-fib. To the
left, the graph of the model is shown. It consists of one
convolutional and two linear layers. The small size of the
network allows it to be completely realized on the ASIC.
The calculations in its convolutional first layer can be per-
formed fully in parallel, as well as those in the second and
third layers: this mapping to the two halves of a BSS-2
ASIC is shown on the right side of the figure. The ReLLU

3. Petalinux; the build flow of the embedded Linux distribution is
provided by the FPGA manufacturer.
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and the final argmax operations are performed in the embed-
ded SIMD CPUs after digital readout of the analog neuron
membrane voltages (cf. Section II-A).

The ASIC operates on positive activations with 5 bit reso-
lution. Since the raw data samples as input for the inference
calculation are provided as 12 bit values with higher dynamic
range, some preprocessing is required. Fig. 7 illustrates the
performed steps. To avoid unnecessary data movement, the
preprocessing is done in the FPGA fabric by a custom pro-
cessing chain. In the first step of the preprocessing, a discrete
derivative of the original signal is calculated to suppress the
large baseline fluctuations of the signal. In a second step, the
data rate is reduced by calculating the difference between
the maximum and the minimum of 32 samples. The result-
ing samples are quantized to 5bit and used as inputs to
the analog vector-matrix multiplications performed within
the ASIC.

B. TRAINING

Training relies on the proven backpropagation algorithm for
CDNN s [49]. To facilitate fast prototyping when training the
network described in Section III-A, a mathematical abstrac-
tion of the hardware operations was implemented on top of
PyTorch [44] in hxtorch [45]. Incorporating hardware-related
constraints like fixed-pattern noise and limited dynamic
range, it enables the training of initial models in software and
provides gradient information for the backward-pass when
training on hardware. Final model parameters as presented
in Section IV, however, were trained on the ASIC following
a hardware-in-the-loop approach [50]: The forward pass is
evaluated on BSS-2, whereas the backward pass and parame-
ter updates are calculated on the host computer using hxtorch.

257



STRADMANN et al..: DEMONSTRATING ANALOG INFERENCE ON THE BSS-2 MOBILE SYSTEM

signal [mV]

-2 ol
0.5
0.0 MVPAAA S el M, Wy [ Ao oy -
—0.5

1

0

0 2 4 6 8 10

time [s]

FIGURE 7. Preprocessing steps performed in the FPGA fabric (from top to bottom):
The raw, i.e., unprocessed, input sample is transformed by taking a discrete derivative
to reduce baseline fluctuations. Subsequent maximum-minimum difference pooling
reduces the sample rate and provides positive activations, which form the final input
signal to the CDNN in the ASIC. Original data taken from [27].

Tensor data structures are seamlessly converted to hardware
resolution and back. Data partitioning and experiment control
is handled by both on-chip SIMD CPUs (see Section II-D).
To the user, the training procedure is completely embed-
ded within PyTorch. To increase robustness and decrease
sensitivity to hardware variations, we replace the average
pooling in the last layer by a max pooling operation during
training. We employ early stopping whenever no substantial
improvement is observed between training epochs.

IV. RESULTS

The performance of the presented system has been evaluated
by assigning a set of ECG traces to two classes: patients
with sinus rhythm and patients showing atrial fibrillation
(Section I). Mimicking the expected workload in a low-
energy edge application, all data has been processed with a
batch size of one. To increase the accuracy of all measure-
ments, data was processed in blocks of 500 traces. For each
block, runtime and energy consumption have been measured
using the sensors described in Section II-B and afterwards
averaged down to a single inference. The power consumption
was measured with a sampling rate of 294 Hz for sensors on
the system controller and 4.4 kHz for sensors on the ASIC
adapter PCB.

Classification accuracy has been evaluated by selecting
randomized test sets of 500 records prior to training. Metrics
of such a training course on the presented system are shown
in Fig. 8. With the shown combination of model, software
and hardware, this system classified A-fib with a detection
rate of (93.7+£0.7) % at (14.0 £ 1.0) % false positives.
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FIGURE 8. Training and validation metrics of the model presented in Fig. 6
performed with the BSS-2 ASIC. The test set of 500 records was split from the
provided ECG dataset prior to training.

TABLE 1. Measured results for the classification of a single ECG trace. To increase
measurement precision, data has been acquired as a block of 500 traces, which were
classified in direct succession with batch size one. Unless noted otherwise, the given
number represents the mean value from this set. The tested records have been
excluded from training.

quantity value  unit
time per inference 276 10°% s
power consumption (system) 5.6 w
power consumption (BSS-2 ASIC) 0.69 w
energy (total) 156 107 ]
energy (system controller, total) 07 1073 J
energy (system controller, ARM CPU) 034 102 J
energy (system controller, FPGA) 021 1073 7T
energy (system controller, DRAM) 0.12 1073 7T
energy (ASIC, total) 0.19 1073 ]
energy (ASIC, 10) 0.07 1073 J
energy (ASIC, analog) 0.07 1073 7T
energy (ASIC, digital) 0.07 1073 7T
total operations in CDNN 132 103 Op
BSS-2 ASIC processing speed (mult./acc.) 477 10° Opf/s
BSS-2 ASIC energy efficiency (mult./acc.) 689 100 Op/]
BSS-2 ASIC energy efficiency (inferences) 525 10° 1/
classification accuracy
detection rate 937£07 %
false positives 14010 %

Each block of 500 input traces was found to be processed
in 138 ms; starting with raw ECG data in the system con-
troller DRAM and ending with binary classification results
ibidem. Table 1 gives an overview over the achieved results:
During the inference phase, the system achieved 477 MOp/s
with a mean power consumption of 5.6 W. In its current state,
classification on the BSS-2 mobile system takes 276 us and
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consumes a total of 1.56 mJ per ECG trace, of which 192 uJ
were consumed by the BSS-2 ASIC.

V. DISCUSSION AND CONCLUSION

We have presented the BSS-2 mobile system as an ana-
log inference platform and demonstrated medical ECG data
classification as one possible application.

The small system is mobile by design and has proven
to operate reliably under various environmental conditions.
Despite its early prototype stage, it is therefore directly appli-
cable to inference tasks on the edge: The results we have
achieved demonstrate that the presented system is sufficiently
energy-efficient to run on battery while monitoring the health
of a patient. Based on the energy consumption presented
in Table 1, a common CR2032 lithium button battery with
an approximated energy content of 200mAh would power
the inference calculations for detecting atrial fibrillation in
two-minute intervals for five years. At the cost of runtime
and thus energy efficiency, we can utilize larger networks
to increase the classification accuracy. On the BSS-2 ASIC,
we have achieved accuracies of up to 95.5 % for A-fib with
8.0 % false positives.

The achieved detection rates on the BSS-2 mobile system
are on par with other state-of-the-art solutions: [51] report
atrial fibrillation detection rates for machine-learning-based
solvers from 80.0% to 100.0% with a median of 96.3 %
(1.09 % to 26.4 % false positives, median: 6.9 %). Solvers
based on classical time series analysis reach 74.2 % to 99.6 %
with a median of 97.1% (1.7 % to 10.2 % false positives,
median: 3.2 %), as presented by [52]. Most of these solu-
tions, however, do not target the low power envelope required
for edge applications. In contrast, [53], [54] use the off-
the-shelve Intel Galileo and Nvidia Jetson Nano platforms
to classify ECG anomalies with an energy consumption of
220 mJ and 7.4 mJ per inference.* With a similar system con-
troller and power consumption, the presented BSS-2 mobile
system only consumes 1.56 mJ per classification. Designed
as a generic computational substrate for a multitude of
applications, it can however not compete with ASICs specif-
ically built for low-power A-fib classification: [55] present
a classifier that achieves a comparable detection rate of
94.9 % (4.7 % false positives) with a power envelope of only
334nW.

In addition to the presented multiply-accumulate function-
ality, BSS-2 is designed to operate as an analog emulator
for SNNs. Cramer et al. [23] present classifiers on multiple
common datasets that make use of this mode to achieve
beyond state-of-the-art classification latency and energy effi-
ciency on BSS-2. To the best of our knowledge, it is the
first and only available system to accelerate both, multiply-
accumulate operations and SNNs in the analog domain. Due
to the stateful nature of the necessary time-continuous oper-
ations, multiplexing of analog resources is seldom possible

4. We assume a power consumption of 2.2'W for the Intel Galileo and
5.0W for the Nvidia Jetson Nano system and use the published inference
runtimes to estimate the energy per inference.
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in SNN accelerators, therefore limiting the maximum model
size to the available hardware resources. In contrast, rate-
based stateless operation using our analog neuromorphic core
as a parallel vector-matrix multiplier allows for multiplexing
hardware resources in time and therefore has the advantage
of supporting arbitrarily large model sizes. Such networks
are only limited by the available memory. Most models that
are capable of performing real-world tasks, like video anal-
ysis or speech translation, need model sizes in the order of
107 to 10° parameters [56]. These network sizes are feasible
with the presented system, as neither the hardware platform
nor the hxtorch software environment impose size limitations
on the model in use.

The combination of spiking and convolutional neural
networks on a single substrate therefore greatly widens
the application of SNNs in edge applications: it allows
features to be extracted by conventional high dimensional
CDNN layers on multiplexed hardware resources, while
sparse spiking layers can simultaneously be used for their
final classification. Using the embedded SIMD CPUs, BSS-2
can utilize online learning for the SNN layers [21] and
thereby improve classification performance and adapt to
environmental changes in the field.

Given its early prototyping stage, the system as well as the
BSS-2 chip itself contain a large potential for optimization.
Currently, the FPGA is primarily used as a memory con-
troller for the ASIC — functionality that could be incorporated
into the chip’s digital core. This would remove the power
consumption of the FPGA from the system’s energy bal-
ance and would increase the bandwidth between memory
and analog core.

The main motivation during the development of the BSS-2
ASIC was to enable flexible on-chip online learning in SNNs.
Thus, the speed of the analog CDNN calculation has not yet
been optimized. While the synapse arrays that perform the
multiply-accumulate operation already support 32.8 TOp/s,
see (1), the usage of the spike-based neurons for the inte-
gration of the summation currents limits the actual speed to
approximately 52 GOp/s, see (2).

The current area efficiency of the analog MAC in the
synapse arrays can be calculated as

32.8 TOp/s
256-512-8um - 12pum

As a conservative approximation based on the current
die size of 32mm?, we target an area efficiency above
1 TOp/(s mm?) for the full chip. State-of-the-art implemen-
tations using similar technologies and architectures reach up
to 0.32TOp/(s mm?) based on full die size [6], [25].
Multiple approaches have to be taken to make use of
the aforementioned processing speed of the synapse array:
First, specialized circuits for the integration of the synapses’
output currents in the non-spiking operation mode of the
ASIC have to be integrated. These specialized accumulators
could be combined with revised parallel ADCs that are —
in contrast to the currently implemented design — capable

= 2.6 TOp/(s mm?). (3)
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of sufficient conversion speed. The increased data rate will
require higher I/O bandwidth that could be achieved by the
aforementioned integration of an on-chip memory controller.

In its current state, the BrainScaleS-2 system is avail-
able to the scientific community via the EBRAINS project.’
Example applications using SNNs as well as the built-in
multiply-accumulate functionality are available and can be
executed online through a browser-based interface. Hardware
access to the BSS-2 (mobile) system is available upon
request.
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