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ABSTRACT The routing congestion over a QC-LDPC decoder with a large circular permutation matrix
(CPM) size has long been an obstacle to high throughput designs. This paper presents a large-CPM
congestion-free decoder for (18396, 16416) quasi-cyclic Euclidean geometry low-density parity-check
(QC-EG-LDPC) code in NAND flash application. Considering area efficiency in scheduling schemes
and the array dispersion structure, the Array-Disperse Based Dual Variable Node Unit (VNU) Cluster
Architecture fully leverages the code structure to support at least two physical channels of the Open NAND
Flash Interface 5.0 (ONFI 5.0). In addition, the proposed congestion-aware analysis and implementation
method achieve a highly parallel decoder at a 70% utilization ratio. Implemented in TSMC 28nm process,
the presented decoder provides 38.64 Gbps throughput at RBER=1.456% Bi-AWGN channel with an
area of 2.97 mm2.

INDEX TERMS LDPC, decoder, NAND, SSD.

I. INTRODUCTION

SOLID-STATE DRIVE (SSD), a fast-growing nonvolatile
storage device, progressively becomes an essential com-

ponent in versatile applications such as data centers, family
entertainment systems, and autonomous vehicles. To achieve
high throughput while maintaining data reliability, an error
correction code (ECC) plays a significant role in a NAND
flash controller.
As time goes by, NAND flash manufacturers apply process

scaling, multi-level cell, and 3D NAND structure to meet the
growing demand for storage capacity and affordable prices.
The reduction of data retention time [1], degrading endurance
of program-erase cycle count [2], [3], and the layer-to-layer
process variation [4] in high-density 3D-NAND structure
drive the NAND a more reliable ECC in flash controllers.
Consequently, the SSD system adopts the LDPC code [5]
as a mainstream coding scheme and sets the raw bit error
rate (RBER) to 1% as the ECC correctability threshold in
the latest 3D TLC or QLC NANDs [6].
Featuring its soft-decision iterative decoding capability, the

LDPC code design for the NAND flash application possesses

its domain-specific consideration in code length, code rate,
error floor, and decoding speed. On account of the smallest
sector size as 512B supported by the file system, the user
data ranges from 1KB, 2KB, and even 4KB in the corre-
sponding LDPC codes. Considering the finite page size of
the NAND flash, the parity size would be limited to the
remaining space of each page, which constraints the code
rate of the LDPC code. For example, given the TLC NAND
flash page size in [7], the code rate should be at least 0.88 to
accommodate 16KB of user data in one flash page. In addi-
tion, the error floor phenomenon [8], which stops improving
error correction performance as expected in better channel
conditions, is another concern in the LDPC code. References
[9] and [10] propose a practical code construction method for
the storage system to avoid trapping sets with short cycles
and achieve uncorrectable bit error rate (UBER) < 10−10

without an error floor.
Fig. 1 shows the general SSD controller’s system architec-

ture, which utilizes multiple independent physical channels
to communicate individually with the NAND flash package.
To comply with the UBER requirement for the lifetime of the
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FIGURE 1. System Architecture of the SSD Controller.

SSD device in JEDEC-218 [11], a system designer applies
flash signal processing, ECC, CRC check, and RAID recov-
ery in the SSD controller. In the early stage of NAND Flash,
the low complexity decoder engines in the hard-decision
channel [12], [13], [14] are employed for high-speed and
low-power concerns. When the channel condition degrades,
the Min-Sum decoders are mainly activated for more robust
error recovery. Moreover, the successfully decoded code-
words are further streamed to CRC checker for data integrity.
If the CRC-check fails or decode fails, the SoC applies flash
signal processing such as retry read [15], [16] and Vth track-
ing [17], [18] to adjust the channel condition to re-decode.
Finally, RAID recovery would be the final resort if all the
combinations of mechanisms fail to recover the data.
In addition to the reliability issues mentioned earlier, the

throughput requirement is the other primary concern for
ECC engines nowadays. Considering interconnect network
complexity among multiple engines to support different com-
binations of decoding flow while exploiting the parallelism
of the NAND interface, a general SSD controller requires
each min sum decoder engine to support at least two physical
channels.
Accompanied by the increasing demand for high-

throughput NAND flash devices, the Open NAND Flash
Interface Working Group moves the Open NAND Flash
Interface (ONFI) standard into the latest 5.0 [19] with a max-
imum speed of over 2400 MB/s per channel (i.e., the quali-
fied two-channel decoder throughput should support at least
4800 MB/s). The high-speed LDPC min-sum decoder would
become the design challenge over the early aging NAND
channel and the increasing transmission rate. Although sev-
eral publications address the high-speed decoder architecture,
such as un-folding fully parallel architecture [20], [21] and
frame-interleaving pipeline architecture [22], [23], the large
code length and high code rate structure in NAND flash
applications lead to formidable implementation costs.
Over the years, several publications have applied different

optimization methods to the specific LDPC code to meet
the NAND flash constraints. Reference [24] uses differ-
ent saturation values and non-uniform quantization methods
to implement a layer decoder. Reference [25] proposes
the top-down approach to optimize the small sub-matrix

size Array Dispersion LDPC (AD-LDPC) decoder with
hybrid-storage architecture to meet the ONFI 2.3 interface
throughput requirement. Reference [26] uses the graph-
coloring method and linear programming method to achieve
the low-area and minimized-stall pipeline block-parallel
layer decoder. Reference [27] exploits the highly struc-
tured Dispersed Array LDPC code (DA-LDPC) to implement
the column-based shuffle decoder without a barrel shifter.
Reference [28] adopts the adaptive voltage frequency scal-
ing scheme in the decoder architecture implemented in the
28nm process.
Although most of the literature on quasi-cyclic LDPC (QC-

LDPC) decoders adopts a small circular permutation matrix
(CPM) size in concern of routing congestion, we intend
to leverage large CPM in quasi-cyclic Euclidean geometry
LDPC (QC-EG-LDPC) code and evaluate the feasibility in
decoder design for nowadays NAND flash applications. The
contributions of this paper are listed as follows:

1) This paper provides a detailed quantitative analysis of
two decoding scheduling methods to evaluate a suitable
architecture for the target LDPC code.

2) An Array-Disperse Based Dual Variable Node Unit
(VNU) Cluster Architecture is adopted for a higher
parallelism level. It reveals the merit of scalability over
the array dispersion method [29], [30] from a hardware
perspective.

3) A congestion analysis would guide better floor plan-
ning and contribute to a congestion-free physical
implementation over QC-LDPC code with a large CPM
size.

The remainder of this paper is organized as follows.
Section II introduces the background knowledge in this
paper. Section III focuses on the decoding scheduling
schemes and the quantitative analysis of the decoders. The
proposed architecture and the congestion-aware physical
implementation are addressed in Sections IV and V. Finally,
Sections VI and VII present the implementation results and
conclusion.

II. BACKGROUND
This section presents an overview of LDPC code and normal-
ized min-sum algorithm (NMSA). Then, we briefly introduce
the target QC-EG-LDPC code. The notation adopted in this
paper is summarized in Table 1.

A. REVIEW OF LOW-DENSITY PARITY-CHECK CODE
An M × N sparse parity check matrix H defines an LDPC
code, which resides in the null space of H. Visualized in
the bipartite graph (also known as Tanner graph), the ones
in the parity check matrix can be interpreted as the connect-
ing networks between M check nodes (CNs) in rows and
N variable nodes (VNs) in columns. A cycle in a Tanner
graph is deemed as a finite set of connected edges that
starts and ends at the same node. A well-constructed LDPC
code should avoid the cycle four structure, which limits the
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TABLE 1. Notation table.

FIGURE 2. QC-LDPC Matrix & Tanner Graph.

information exchange between two sets of nodes. This rule is
also known as the Row-Column constraint (RC-constraint).
Column degree (dv) and row degree (dc) represent the num-
ber of edges in one column and row. If all row degree and
column degree are fixed with constant dc and dv, we view
these H matrices as regular LDPC and the other as irregular
LDPC.
A QC-LDPC code introduces the quasi-cycle structure and

divides the LDPC code into BM×BN of circular permutation
matrices with size Z. It allows the decoder to operate a
cluster of VNs or CNs with a size of Z as a unit for higher
parallelism. The example in Fig. 2 shows a regular QC-
LDPC code with CPM of size 3, dc = 3, and dv = 2.

B. REVIEW OF NORMALIZED MIN-SUM DECODING
ALGORITHM
Since the normalized min-sum algorithm (NMSA) is one
of the well-known approximate belief-propagation decoding
algorithms for hardware implementation, the detail of NMSA
is shown in algorithm 1.

Algorithm 1 Normalized Min Sum Algorithm
Initialize

1: All Lch(ri) = log(
Pr(xi=0|ri)
Pr(xi=1|ri) ) and L−1

c2v(j, i) = 0
2: for t= 0 to TMax − 1 do
3: for i = 0 to N − 1 do //Variable Node Process
4: Ltpost(i) = Lch(rn) + ∑

j′∈Nv(i) L
t−1
c2v (j′, i)

5: if Ltpost(i) >= 0 then
6: xi = 0
7: else
8: xi = 1
9: for j ∈ Nv(i) do

10: Ltv2c(i, j) = Ltpost(i) − Lt−1
c2v (j, i)

11: for j = 0 to M − 1 do //Check Node Process
12: min1(j), min2(j) = min({|Ltv2c(i, j)||i ∈ Nc(j)})
13: min1-index(j) = argmin({|Ltv2c(i, j)||i ∈ Nc(j)})
14: global sign (j) = ∏

j′∈Nc(j) sign(L
t
v2c(i, j

′))
15: for i ∈ Nc(j) do
16: if i == min1-index(j) then
17: Mag = α × min2(j)
18: else
19: Mag = α × min1(j)

20: Sign = global sign(j) × sign(Ltv2c(i, j))
21: Ltc2v(j, i) = Mag× Sign

22: for j = 0 to M-1 do //Syndrome Calculation
23: sj = ⊕

v∈N(cj) xv

24: if s == 0 then //Early Termination
25: break

The decoding algorithm interprets the VNs and CNs as
repetition code decoders and parity check code decoders,
respectively. These two sets of distributed sub-decoders
exchange soft information and achieve reliable performance
in the iterative decoding process.
In the variable node process, the Lpost combines the extrin-

sic Lc2v from connected CNs and an intrinsic Lch message to
determine the estimated code bit (x) from lines 3 to 8. Then,
VNs generate the corresponding extrinsic Lv2c messages for
each connected CN by excluding the incident Lc2v on line
10. In the check node process, the extrinsic Lc2v generation
is separated into magnitude and sign operation from lines 12
to 20. The magnitude operation preserves the two minimum
values (min1, min2) and the minimum index (min1-index)
among connected Lv2c messages so that it could pick the
smallest value excluding the incident Lv2c to represent the
reliability of Lc2v. The global sign on line 14 is also preserved
to implement the sign operation, which represents the Lc2v’s
inclination, by excluding the incident sign of Lv2c as stated
on line 20. In the end, the latest syndrome is updated and
checked for early termination.

C. 2K QC-EG-LDPC CODES FOR NAND
FLASH MEMORIES
With the advancement of the NAND technology, LDPC code
construction becomes more challenging to support a large
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FIGURE 3. Construction of target 2KB QC-EG-LDPC Code.

user data size (2KB), high code rate (above 0.88), and a low
UBER requirement. This subsection narrates the QC-EG-
LDPC code with a large CPM size applied in this paper.
Among several code construction methods [31], [32],

[33], [34], [35], Euclidean geometry-LDPC code is one
of the algebraic LDPC codes with a low error floor. As
a result, we adopt the approach in [34], [35] to con-
struct a 1 × 9 array of eight-circulant permutation matrices
as a prototype matrix (N=4599, M=511, K=4227, dv=8,
dc=72, and CPM size=511) at the top of Fig. 3. The
constructed QC-EG-LDPC code can be extended by decom-
posing [35] each eight-circulant permutation matrix into
a 2 × 2 array of dual-circulant permutation matrices. The
intermediate LDPC matrix (N=9198, M=1022, K=8178,
dv=4, dc=36, and CPM size=511) is shown in the middle
of Fig. 3.
Since the payload of the constructed code is still not large

enough for 2KB user data encoding, we apply the array dis-
persion method in our previous works [29], [30] to further
extend the code length twice larger. The resultant QC-EG-
LDPC matrix, shown at the bottom of Fig. 3, consists of a
4×36 array of dual-circulant matrices with CPM size=511.
Each row block comprises 18 dual circulant sub-matrices and
18 zero sub-matrices; each column block is composed of two
dual-circulant sub-matrices and two zero sub-matrices. The
extended code structure is arranged with the specific regular
array pattern so that the extended QC-EG-LDPC could be
viewed as the intertwining of two replicated intermediate
LDPC matrices - one is dispersed in the first and fourth
row blocks, and the other in the second and third row
blocks.

FIGURE 4. Block Parallel Layer Scheduling. The circle denotes storage element, and
the square denotes combinational logic blocks.

In NAND flash applications, the payload is typically
2KB of user data with an additional 4 bytes for CRC
(K=16384+32=16416). Since the null space of H gives
a (18396, 16352) LDPC code, we need to purge the last 60
rows to construct the final (18396, 16416) QC-EG-LDPC
code to satisfy our data size demand.

III. DECODING SCHEDULING AND ANALYSIS
The hardware architecture and decoder efficiency depends on
the LDPC scheduling scheme. In this section, we introduce
two well-known scheduling schemes and do the decoder
evaluation with similar hardware complexity for the target
QC-EG-LDPC code.

A. DECODING SCHEDULING SCHEME
The row-based layer scheduling scheme divides the LDPC
matrix into four row layers. Each row layer’s information
exchange is referred to as the decoder’s sub-task. For high
code rate and long code length LDPC code, the block parallel
layer decoder is an area-efficient design choice in row-based
layer scheduling. The block parallel layer scheduling and the
related block diagram are shown in Fig. 4, which illustrate
an example of processing the sub-matrix with row index=0
and column index=0 in the red dash block.
In the QC-EG-LDPC code, the block-parallel decoder

needs to access two blocks’ prerequisite information (one
from the non-zero CPM blocks in the previous dependent
row and the other is the CPM block in the targeting row) to
accomplish one block’s information update for each cycle.
Since only one block of information is exchanged, the block
parallel layer decoder spends 18 cycles for each layer and
72 cycles for one iteration. Due to the data independence
over the circulant blocks for each layer, the pipeline archi-
tecture becomes its advantage in achieving a high throughput
design.
In the block parallel layer decoder, the first pipeline

stage recovers the latest Lpost from the previous dependent
non-zero CPM block (the sub-matrix with previous layer
index=2 and column index=0 in the blue dash block). The
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FIGURE 5. Shuffle Scheduling. The circle denotes storage element, and the square
denotes combinational logic blocks.

block parallel decoder modifies the equation on line 10 in
Algorithm 1 as

Lpost = Preq.Lpost + Lc2v (1)

where the Preq.Lpost is redefined from Lv2c as the prerequi-
site information for Lpost, and the Lc2v is generated from the
prerequisite magnitude (Preq. Mag.) and sign (Preq. Sign)
in the previous dependent layer. In the second stage, the
decoder applies the same method to generate a block of
Lc2v at layer index=0 and column index=0 in the red dash
block. Then the previous stage’s Lpost is subtracted from
the Lc2v to produce the latest Lv2c value, which corresponds
to line 10 in Algorithm 1. The Lpost also helps to estimate
the code bits and update the intermediate syndrome values.
In the last pipeline stage, the decoder consumes the latest
Lv2c and exports the intermediate values (min1, min2, min1-
index, and the global sign) to the temporary buffer. At the
end of the row, these temporary values update the prereq-
uisite magnitude and sign to finish the magnitude operation
(Mag. Op.) and sign operation (Sign Op.) on lines 12-14 in
Algorithm 1.
The column-based shuffle scheduling scheme divides the

LDPC matrix into 36 column blocks. Each column block’s
information exchange is referred to as the decoder’s sub-
task. The shuffle scheduling and the corresponding block
diagram are shown in Fig. 5 as an example of processing
the column block with column index=0.
Similar to the block-parallel layer decoder, the shuffle

decoder also accesses two blocks’ prerequisite information
to generate the Lc2v. Since the shuffle scheduling updates two
blocks of information at a time, the shuffle decoder spends
one cycle for each column and 36 cycles for one iteration.
In the variable node process, the decoder sums up all the
connected Lc2v with Lch to generate the latest Lpost. Then,
the Lpost is used to estimate the code bit (x) and update the

TABLE 2. Decoder composition.

TABLE 3. Synthesis result of the TSMC 28nm.

syndrome for an early termination check. Meanwhile, the lat-
est Lv2c is immediately produced by subtracting the incident
Lc2v from the Lpost to accomplish line 10 in Algorithm 1. The
resultant Lv2c is separated into the sign part and magnitude
part to fulfill the corresponding operation on lines 12-14 in
Algorithm 1. Unlike the layer decoder, the shuffle decoder
immediately updates the prerequisite magnitudes and signs
in the storage for the next column’s decoding process.

B. QUANTITATIVE ANALYSIS OVER THE DECODER
ARCHITECTURE
In addition to the scheduling scheme, the number of read
levels in decoder inputs, size of the fixed-point message
between nodes (Lv2c and Lc2v), and scaling factors (α) [36]
also contribute to the decoding performance and hardware
implementation cost. From a system point of view, since the
multi-bit soft information would degrade the system through-
put due to the NAND interface’s limited bandwidth, our
design adopts 2-bit soft values as decoder inputs. Based
on the bit-true simulation model over the Bi-AWGN chan-
nel, our Monte-Carlo search suggests that α = 0.75 and
4-bit message quantization in Lv2c and Lc2v provide the low-
est marginal cost for decoding performances. Following the
above configurations, we implement both architectures for
quantitative analysis. Tables 2 and 3 list the decoder com-
position and the synthesis result in TSMC’s 28nm HPM
process.
Although the total area is close, the compositions of both

decoder architectures are quite different. With respect to
the non-combinational logic area, both architectures utilize
an array of flip flops to store the prerequisite magnitude,
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FIGURE 6. Throughput Comparison @TSMC 28nm Synthesis and Average Iteration
Counts over RBER Throughput = (Code Length × Clock Rate)/(Avg. Iter. × Cycle per
Iteration) Cycle per iteration is 36 for shuffle decoder, and 72 for layer decoder. The
average iteration counts are collected from the 10000 frames over the Bi-AWGN
channel in the bit-true simulation.

global sign, and syndromes to avoid memory macros with
extremely wide bit width and small word counts. Since
the shuffle decoder requires an additional min2-index in
the check node’s magnitude operation (detailed in the next
section), it consumes more area in prerequisite magnitude.
However, the block parallel scheduling requires additional
temporary buffers for intermediate values. Moreover, the
pipeline registers in Lpost and Lv2c contribute additional
area overhead. As a result, the block parallel layer decoder
requires more non-combinational logic than the shuffle
decoder.
Due to the long code length property of the 2K LDPC

code, the V2C signs are stored in register file macros in
both architectures. The shuffle decoder requires the regis-
ter file for channel value and estimated code word. The
layer decoder stores all the Preq.Lpost values in the register
file. The Preq.Lpost’s storage capacity leads to larger block
macros area than those in the shuffle decoder.
Regarding the combinational logics, both decoders access

two blocks of prerequisite information to recover the Lpost
in variable node units, and the compositions for Lc2v-related
logics are the same. Because the shuffle decoder simulta-
neously processes all the non-zero CPM blocks for each
column, it requires twice computation units in Lv2c genera-
tion, barrel shifters, magnitude operation, and sign operation.
As a result, the shuffle decoder consumes more area in
combinational logics.
The column-base shuffle decoder runs at 454 MHz to

complete one iteration of message exchanges for 36 cycles.
The block parallel layer decoder can reach a clock rate of
833 MHz by pipeline architecture at the cost of 72 cycles
for one iteration. The estimated throughput of both decoders
in Fig. 6 shows that the shuffle decoder’s small cycle count
provides more competitiveness than the block-parallel layer
decoder’s high clock rate.

Based on the previous analysis of throughput and area, the
column shuffle scheduling becomes the better choice for our
2K-QC-EG-LDPC code. However, the estimated throughput
would be too optimistic in the lack of the wire load model in
the 28nm synthesis library. In addition, the timing correlation
issue between the synthesis and post-layout would be further
enlarged in a high gate count design. As a result, the shuffle
decoder requires more parallelism to support two ONFI 5.0
channels at RBER=1%.

IV. PROPOSED DECODER ARCHITECTURE
The overall architecture of our LDPC decoder design is
shown in Fig.7, where the memories and logic blocks are
colored for different types of configurations and usage. In the
following subsections, we overview the decoder architecture
and detail each submodule’s design consideration.

A. THE ARRAY-DISPERSE BASED DUAL VNU CLUSTER
ARCHITECTURE
The QC-EG-LDPC’s array-dispersion pattern in Fig. 3 sug-
gests that every two consecutive column blocks have inde-
pendent dispersed CPM blocks in the matrix. This property
not only allows the shuffle decoder to double the paral-
lelism level but also simplifies the address control complexity
without sacrificing the decoding performance. Therefore, we
deploy dual variable unit (VNU) clusters in our architecture,
where each cluster is in charge of 511 VNs’ Lpost recovery
and Lv2c generation. The corresponding scheduling is shown
in Fig. 8.
The storage for channel values and the estimated code

word is also partitioned into two sets. Due to the dual-
circulant structure in each CPM block, the proposed architec-
ture requires eight barrel shifters and inverse barrel shifters
for the variable node to check node (V2C) network and the
check node to variable node (C2V) network. Each shifter
is dynamically adjusted in each sub-iteration. Since all the
check node units (CNU) should update the prerequisite
information for Lc2v in each sub-iteration, we need to arrange
1983 CNUs in our decoder architecture. To use the inher-
ent structure-property of QC-LDPC, we partition 1983 CNUs
into four sets (Cluster A, B, C, and D) to fit into our shifting
networks.

B. MEMORY & DATA PATH CONTROL
In the proposed architecture, each memory type is carefully-
selected for the signal behavior. As mentioned in the previous
section, the syndrome values, global signs, min1 and min2,
and the corresponding indexes are all stored in the distributed
registers (yellow block in Fig. 7). In the column shuffle
decoding scheme, the channel values (CV) are pre-stored
to compute the Lpost for each column block. Therefore, we
deploy single-port register files (red block in Fig. 7), which
are only written in the first iteration. The register array is
implemented as channel value LLR buffers to divide the
timing path from the external circuit’s delay. In order to
accomplish the global sign update in (2), it requires both
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FIGURE 7. Hardware Architecture.

the previous iteration’s V2C sign and the latest V2C sign
on the data path.

global signt(j) = global signt−1(j) ⊕
sign

(
Lt−1
v2c (i, j)

)
⊕ sign

(
Ltv2c(i, j)

)
(2)

Since the latest V2C sign must be written to the memory for
the next iteration, the decoder requires two-port register files
(green block in Fig. 7) to support reading and writing simul-
taneously. Similarly, the syndrome update process in (3) also
requires two-port register files to read the previous codeword
and write the current codeword in one cycle.

st(j) = st−1(j) ⊕ xt−1(i) ⊕ xt(i) (3)

Fig. 9 shows the state transition and memory control over
the proposed decoder. At the initial state (INIT_DEC), both
sets of channel values go through the VNU cluster and V2C
shifter and overwrite the V2C sign and syndrome with the
early termination disable. After all the channel value has
been loaded into the decoder, the decoder transits to a normal
decoding state (DEC), and the syndrome check is activated
for early termination. In the meantime, both the V2C sign
and codeword memory simultaneously read and write to
update global signs and syndromes, respectively. If the early
termination signal is triggered, the decoder will transfer the
codeword read control from decoding state control logic to
the output state control logic. Because the codeword two-port

FIGURE 8. Dual VNU Scheduling.

register files’ read and write ports are currently controlled
by the two distinct control logics, the decoder could simul-
taneously load the next frame’s channel value and output the
decoded codeword to maximize the throughput.

C. SHIFTING NETWORK & SYNDROME CHECK
Due to the target QC-LDPC code’s structure, the V2C
and C2V shifting network are implemented using a cluster
of multiplexers. The proposed decoder architecture con-
sumes eight sets of independent multiplexer-based shifting
networks, which dynamically route the Lv2c and Lc2v in
each sub-iteration. According to (3), the code words in each
column block must be aligned to the corresponding rows.
As a result, the syndrome check circuit consists of a 1-bit
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FIGURE 9. Data Flow Control.

FIGURE 10. VNU Circuit Architecture: (a) Two-Stage High Speed Structure
(b) Three-Stage Routing-Efficient Structure SM: sign-magnitude form, 2C: two’s
complement form.

V2C shifting network, two-port codeword register files, and
syndrome registers, as shown in Fig. 7.

D. VARIABLE NODE UNIT
Fig. 10 presents different VNU circuit structures for Lpost
and Lv2c computation. The first stage is the sign-magnitude to
two’s complement converter, which combines sign and mag-
nitude values to fulfill line 21 in Algorithm 1. The last stage
is the two’s complement to the sign-magnitude converter to
separate Lv2c. The saturation circuit is deployed to keep the
magnitude of LLR within 3-bit width. From the perspective
of place and route, the routing-efficient structure [37] con-
tributes less wire signal detour inside the VNU. However,
all the internal connections are packed as a unit, and all
VNUs are widely distributed over the design. Regardless

FIGURE 11. Magnitude Operation (Mag. Op.) Unit.

of the selected structure, the Lv2c and Lc2v message’s bit-
length and the number of connected check nodes are the
two dominant factors in routing congestion. As a result, we
adopt a two-stage high-speed structure [38] as our VNU for
a high-throughput design.

E. CHECK NODE UNIT’S MAGNITUDE OPERATION
Fig. 11 shows the magnitude operation unit in the check
node process. In the column shuffling scheduling scheme,
the min1-and-min2 update mechanism differs from the con-
ventional software simulation. Given that the decoder is
currently at the i-th iteration and the k-th sub-iteration,
the min1 and min2 of the Lv2c message are the temporary
results from the k-th sub-iteration in the previous iteration
to the current (k-1)-th sub-iteration. Suppose the current k-
th sub-iteration V2C message is larger than the temporary
min1 and min2, which also happens to be the same value
in the previous k-th sub-iteration. In that case, the min1,
min2, and min indices would not be changed, leading to
performance degradation. Hence, we adopt the force-refresh
logic to discard the corresponding min1 or min2, followed
by the selection logic for the latest prerequisite magnitude
update. In the case that the min1 is forced to refresh, the
engagement of the min2 and min2 index could alleviate the
performance loss.
Moreover, the upper part of the circuit shows the Lc2v

generation logic, where the scaling factor (α) is implemented
with the compact shift and add unit. All the Lc2v generation
logic’s outputs depend on the signals from the storage, such as
min1, min2, min1 index, min2 index, and sub-iteration count.
This configuration cleverly separates the data path into two
independent cycles and avoids the combinational loop.

V. CONGESTION-AWARE PHYSICAL IMPLEMENTATION
In this section, an analytical method over the synthesis
netlist is applied, and the observation helps us regulate a
routing-oriented floor plan to achieve the congestion-free
LDPC decoder design implemented in the TSMC-28nm
technology process.
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FIGURE 12. Bipartite Graph of Dual VNU Shuffle Scheduling.

TABLE 4. Pin density & congestion metrics.

A. CONGESTION ANALYSIS ON TOP LEVEL DESIGN
The bipartite graph of the adopted VNU scheduling in
Fig. 12 and the congestion-oriented analysis in Table 4 pro-
vide a clear view of the top-level design. The corresponding
observations are listed as follows:

• The VNU cluster is the largest connected top-level
module. The location of the two VNU clusters would
significantly affect the neighboring instances’ routing
resources.

• Due to the array-dispersion pattern scheduling, the
connections between VNU and CNU cluster A/B are
more complicated than the other CNU clusters. As a
result, the congestion metrics of the corresponding V2C
network and C2V network are significantly higher than
the others.

• In the merit of the decoder architecture in Fig. 7, the
sign and magnitude operations are purposely divided
into two separate blocks. This configuration allows sign
operation units distributed close to sign register files,
with no bound to the magnitude operation logic.

• The pin-density of the sign operation modules and syn-
drome check module is relatively higher than others,
which would cause the detour for the fly-over nets.

Based on the above information, a well-considered floor
planning of hard macros and top-level instances is applied,
and the placement result is shown in Fig. 13(a).

B. CONGESTION-FREE FLOOR PLANNING
Considering that the VNU acquires the largest area and wire
connection, we preserve most of the central region for VNU
clusters. Because there is no direct connection between the
VNUs, the VNU clusters are arranged in a diagonal format
so that the limited horizontal and vertical routing wires are

evenly utilized. Since both VNUs share the CNU operations
of clusters A and B, we intentionally place the memory
macros in the middle of the upper and right edges and leave
the upper right corner as the reserved regions for the inter-
leaving barrel shifters and the magnitude operation units. On
the other hand, the last two row blocks (clusters C and D) are
connected with the fixed VNU cluster, so the related shifters
and storage units are deployed in the upper left and lower
right corners. As shown in Fig. 7, the syndrome registers
split the delay path between hard-decision logic and early
termination. Since it provides more timing budgets for syn-
drome check operation, we can place the early termination
logic and codeword register file in the lower-left corner of
the floorplan to avoid contending routing resources. As for
CNU magnitude operation, the low congestion metric (CM)
in Table 4 suggests that these logic cells can be scattered
all around the floorplan (green) and significantly diminishes
the risk of congestion.
In addition to the guidance applied over the initial place-

ment, we apply the following methods to alleviate the routing
congestion further.
1) back-to-back macro placement: Due to the bandwidth

of the register files being limited to 144 bits, the design
consists of 52 memory macros over the physical layout.
To save more area near the memory macros, we adopt
the back-to-back placement of the V2C sign macros
and leave enough space for sign operation units.

2) partial placement blockage under constraint: The ded-
icated partial placement blockage, which limits the
utilization rate of logic inside the region, is set over
the memory spacing to avoid the channel congestion
issues between the macros.

3) power ground network alignment: Since the LDPC
decoder is a power-consuming engine, the well-
designed power ground network could also relieve the
routing resources among layers of metals. This work
aligns the power stripes in all layers to ensure all
power vias in the upper layers can punch through the
bottom layers without detouring. Because the number
of power vias is reduced, that would leave more space
for the signal routing and clock tree synthesis.

With previous approaches, the congestion map suggests no
congestion issue under a 70% cell utilization ratio. Fig. 13(b)
shows the layout view of the decoder with a 2.972 mm2 core
area.

VI. EXPERIMENT RESULTS
Our bit-true model’s ECC performance over the AWGN
channel in Fig. 14 shows that the proposed decoder outper-
forms the previous works and provides an ECC performance
at UBER=10−5 under RBER=1.456% channel condition.
In addition, the proposed decoder’s UBER can reach nearly
1.178 × 10−10 without an error floor at RBER=1.245%.
According to [6] and [9], the storage system based on the
latest 3D TLC and QLC generally views RBER= 1% as their
end of life, and the practical LDPC code’s UBER is down
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FIGURE 13. Physical Implementation: (a) Placement Result (b) Final Layout.

TABLE 5. Comparison table.

to 10−10 without an error floor. As a result, the proposed
ECC performance is qualified for the reliability criterion in
NAND flash applications.
Table 5 presents the implementation results of the

proposed (18396,16416) QC-EG-LDPC decoder and the
state-of-the-art works aiming at NAND flash applications.
Under the ss corner (125◦C, 0.81V), the proposed decoder
can operate at 277.7 MHz. The critical path starts with
min1’s Flip-Flop’s data output. After passing through CNU’s
Lc2v generation logic, C2V routing networks, VNU, V2C
routing networks, and the CNU’s magnitude operation unit,
the critical path finally ends with the min1 index Flip-
Flop’s data input. At RBER = 1.456%, the proposed decoder
takes 7.342 iterations on average to complete the decoding
process and achieves a data rate of 34.5 Gbps (equivalent

to 38.64 Gbps in throughput). The decoder’s 1115.6 mW
power is measured by the Synopsys Prime Power with testing
vectors under the same channel condition in the ff cor-
ner (−40◦C, 0.99V). The proposed utilization ratio is 0.7,
which is higher than most candidates with a small CPM
size except [27], featuring barrel shifter free based on array
disperse code construction method.
To select suitable ECC engines for a storage system,

a system architect would compare all the decoder’s data
rates in the same channel conditions (e.g., RBER). After re-
implementing our design in the 90nm process, we recompute
our design’s data rates at the aligned channel condi-
tions. The area efficiency comparison in Fig. 15 suggests
that our decoder provides higher area efficiency than the
others.

VOLUME 3, 2022 189



LIU et al.: 38.64-Gb/s LARGE-CPM 2-KB LDPC DECODER IMPLEMENTATION FOR NAND FLASH MEMORIES

FIGURE 14. ECC performance plot (UBER vs RBER). 1) The waterfall of TCAS I’17 is
transformed from SNR to RBER. 2) The code rate effect is compensated in the AWGN

channel of our bit true simulation with variance = (2R
Eb
N0

)
−1

.

FIGURE 15. Area Efficiency Comparison Area Efficiency = Data Rate (Gbps)/Area
(mm2) *Since there is no information to derive the channel condition in TCAS-II’18, we
assume it operates at RBER=1.0% from Fig. 14.

FIGURE 16. Throughput over RBER. Throughput = (Code Length=18396 × Clock
Rate=277.77) / (Average Iteration × Cycle Count=18). The average iteration counts are
collected from the 10000 frames over the Bi-AWGN channel in the bit-true simulation
in each channel conditions.

Since the NAND Flash interface’s speed contains the
entire codeword inbound to the decoder, we provide the
throughput-to-RBER chart over the Bi-AWGN channels in
Fig. 16 to verify our implementation. The proposed decoder
could reach 38.64 Gbps at RBER=1.456%, which implies

that the decoder not only supports at least two ONFI 5.0
physical channels but also provides an additional 83 error bit
capability (0.456%×18396) from NAND’s end of life. This
additional error capability can act as the reliability margin
to compensate for the discrepancy between AWGN and the
real NAND channels.

VII. CONCLUSION
This paper presents the feasibility of the large CPM QC-
EG-LDPC code for the severe channel condition and the
demanding high throughput requirement. After consider-
ing decoding performance, scheduling schemes, hardware
complexity, and target throughput, we adopt the Array-
Disperse Based Dual VNU Cluster architecture to achieve a
high throughput design with the column-shuffle scheduling
scheme. Furthermore, in collaboration with the congestion
analysis on top-level design and the congestion-free floor
planning, the proposed decoder’s physical implementation
could reach a 0.7 utilization ratio. Implemented in TSMC
28nm process, the proposed decoder occupies a 2.97 mm2

core area with 38.64 Gbps throughput under RBER=1.456%
channel condition. It supports at least two physical channels
of ONFI 5.0 with an additional 82-bit reliability margin.
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