
Received 14 February 2022; revised 29 April 2022; accepted 9 May 2022. Date of publication 12 May 2022; date of current version 25 May 2022.

Digital Object Identifier 10.1109/OJCAS.2022.3174632

A Low-Rank CNN Architecture for Real-Time
Semantic Segmentation in Visual

SLAM Applications
LAURA FALASCHETTI (Member, IEEE), LORENZO MANONI (Graduate Student Member, IEEE),

AND CLAUDIO TURCHETTI (Life Member, IEEE)

Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy

This article was recommended by Associate Editor A. Akbari.

CORRESPONDING AUTHOR: L. FALASCHETTI (e-mail: l.falaschetti@univpm.it)

This work was supported by the Università Politecnica delle Marche.

ABSTRACT Real-time semantic segmentation on embedded devices has recently enjoyed significant gain
in popularity, due to the increasing interest in smart vehicles and smart robots. In particular, with the
emergence of autonomous driving, low latency and computation-intensive operations lead to new challenges
for vehicles and robots, such as excessive computing power and energy consumption. The aim of this paper
is to address semantic segmentation, one of the most critical tasks for the perception of the environment,
and its implementation in a low power core, by preserving the required performance of accuracy and low
complexity. To reach this goal a low-rank convolutional neural network (CNN) architecture for real-time
semantic segmentation is proposed. The main contributions of this paper are: i) a tensor decomposition
technique has been applied to the kernel of a generic convolutional layer, ii) three versions of an optimized
architecture, that combines UNet and ResNet models, have been derived to explore the trade-off between
model complexity and accuracy, iii) the low-rank CNN architectures have been implemented in a Raspberry
Pi 4 and NVIDIA Jetson Nano 2 GB embedded platforms, as severe benchmarks to meet the low-power,
low-cost requirements, and in the high-cost GPU NVIDIA Tesla P100 PCIe 16 GB to meet the best
performance.

INDEX TERMS Embedded systems, semantic segmentation, smart robots, smart vehicles, tensor
decomposition.

I. INTRODUCTION

SEMANTIC image segmentation (SIS) is an important
task in computer vision that separates an image into

several semantically meaningful parts and classifies them
into one of the pre-established objects [1]. Given an image,
a semantic segmentation algorithm is expected to predict
dense labels for all pixels in the image by assigning each
image pixel to a category label corresponding to an object.
In the past there has been an active interest for seman-

tic segmentation in several applications including augmented
reality [2], image editing [3], medical imaging [4] and sig-
nificant progress has been made to solve this problem in
these fields.

Recently, regarding semantic segmentation as an important
task that can help deep understanding of scene, objects and
human, a great attention has been devoted to such a task in
autonomous driving for smart vehicles and smart robots.
In this context Simultaneous Localization and Mapping

(SLAM) [5], [6] is essential for both vehicles and robots to
achieve environment detection and autonomous navigation.
The core issue of SLAM is to build-up or updating a map
in an unknown environment while simultaneously estimate
the agent’s location within it.
Two different approaches are generally used for SLAM,

namely visual SLAM [7] and laser SLAM [8] accord-
ing to the sensors used to acquire information about the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 3, 2022 115

HTTPS://ORCID.ORG/0000-0003-3183-7682
HTTPS://ORCID.ORG/0000-0001-6996-6928
HTTPS://ORCID.ORG/0000-0001-8713-9790

FALASCHETTI et al.: LOW-RANK CNN ARCHITECTURE FOR REAL-TIME SEMANTIC SEGMENTATION

environment. Visual SLAM utilizes the images captured by
a camera, while laser SLAM uses a LIDAR laser scan. Laser
SLAM is preferred owing to its higher environmental recog-
nition accuracy, however the intensive computation required,
especially for resource-constrained robots, represents a key
obstacle for the widespread deployment of such an approach.
To make autonomous driving universally adopted, the

major challenge is to simultaneously enable such computa-
tion intensive task on a low-power computing system at an
affordable price [9], thus visual SLAM is the most suitable
solution for this purpose.
Semantic segmentation, that aims at labeling categories at

the pixel level of an image, is an established task to under-
stand as much as possible the surrounding scene, and is
a fundamental task in visual SLAM since enables to esti-
mate semantic 3D map. However SIS is one of the most
critical activities in SLAM, that demands intensive com-
puting operations, thus mainly affecting the low latency
requirement in autonomous driving systems. Besides, even
though speed of SLAM is a fundamental aspect in car
navigation systems (CNS) [10]–[19], cost and low-power
restrictions are significant constraints in robot navigation
systems (RNS) [10], [20]–[30]. In order to meet those non
overlapping performance, different hardware setups are in
general adopted for SLAM implementation: GPU (possi-
ble low-power) is the right choice for CNS [15], while
low-power embedded CPU is the most appropriate solution
for RNS [23], [25], [28], [30].
Following the above motivations, this paper focuses on

real-time semantic segmentation in visual SLAM and its
implementation in low power cores, CPU for RNS and GPU
for CNS, by preserving the required performance of accuracy
and low-complexity.
A critical aspect of semantic segmentation is that it

requires combining dense pixel-level accuracy with multi-
scale contextual information. Indeed, at a local level (a few
pixels wide), two small image patches belonging to different
classes can be misclassified with the same label.
Before the unchallengeable success of convolutional

networks (CNNs), most of the semantic segmentation tech-
niques developed in the previous decade, were based
on hand-crafted features. Typically, a classifier such as
Boosting [31], [32], Random Forest [33] or Support Vector
Machines [34], was used to predict the class probabil-
ity of the center pixel in a patch. Subsequently, a richer
information from context was incorporated using many dif-
ferent techniques, e.g., second-order pooling [35], fully
connected conditional random fields (CRFs) [36], multi scale
CRFs [37], associate hierarchical CRFs [38].
Convolutional Neural Networks (CNNs), initially designed

for classification tasks, were subsequently adopted to seg-
mentation [39] by replacing fully connected layers with fully
convolutional layers, thus resulting in an encoder-decoder
architecture named fully convolutional network (FCN). After
this seminal approach, a large number of methods based on
the FCN architecture have been proposed [40]–[55].

A fully convolutional network is able to recover the spatial
information that is lost in typical classification networks due
to the fixed dimension of fully connected layers at the end
of these networks. FCN architecture is composed by two
sections: the encoder network and the decoder network. The
encoder network produces a low resolution representation of
the input image using a down-sampling technique. In general
this section is built by adapting the convolutional layers of
a typical classification network (e.g., AlexNet, VGG-16).
The decoder network may have different architectures and
is used for up-sampling the coarse feature map produced
by the last layer of the encoder. FCN architecture requires a
large number of trainable parameters in the encoder network
and a small decoder network. Thus, the overall large size of
this network makes it hard to achieve an optimal trade-off
between accuracy and computational resources in real-time
semantic segmentation.
Since the emergence of FCNs a large varieties of archi-

tectures have been proposed and the main approaches
that represent the state-of-the-art in semantic segmentation
are: U-Net [56], DeepLab [57], SegNet [41], ENet [58],
ICNet [59], ERFNet [60], BiSeNet [61], Fast-SCNN [62],
SwiftNetRN [63], FCHarDNet [64]. Some of these networks
aim at addressing the accuracy problem while others improve
the performance in terms of storage cost, computational time
and power consumption. Unfortunately none of the afore-
mentioned architectures is able to take into account the
key requirements of storage cost, accuracy, inference time
and low power for real-time semantic segmentation in a
vehicle.
The aim of this paper is to propose a low-rank CNN

architecture for real-time semantic segmentation, suitable to
be implemented in a visual SLAM framework that is able:
i) to address all those issues (storage cost, accuracy, inference
time, low power) and ii) to outperform in terms of these key
aspects all of the state-of-the-arts architectures.
The main contributions of the paper are summarized as

follows.
• A CNN compression technique based on
CANDECOMP/PARAFAC (CP) tensor decompo-
sition, has been analysed and adopted to reduce the
complexity of a convolutional layer.

• An optimized architecture which combines U-Net and
ResNet models has been proposed.

• The network has been compressed with the CP decom-
position technique to reduce the computational com-
plexity.

• The low-rank CNN architecture so derived, has been
implemented in two embedded platforms: a Raspberry
Pi 4 (CPU) and an NVIDIA Jetson Nano 2 GB (GPU).
These two platforms have been chosen in order to meet
the different performance required by autonomous robot
navigation and car navigation systems. Indeed, in the
former cost and low power are the main performance
required, while in the latter speed of SLAM algorithm
is a fundamental aspect. Additionally, to meet the best

116 VOLUME 3, 2022

performance the network has been implemented in the
high-cost GPU NVIDIA Tesla P100 PCIe 16 GB.

The rest of the paper is organized as follows. Section II
summarizes the related work and Section III describes the
proposed work. Section IV analyses and applies the CP
decomposition to a convolutional layer. Section V derives
a new low-rank CNN architecture called UNet-ResNet.
Section VI is devoted to experiments conducted in three
different platforms: Raspberry Pi 4, GPU NVIDIA Jetson
Nano 2 GB and GPU NVIDIA Tesla P100 PCIe 16 GB,
to compare the performance of LR-UNet-ResNet with the
state-of-the-art.

II. RELATED WORK
A. LITERATURE REVIEW
Semantic image segmentation is an active research
field [65]–[69] in which a large amount of methods have
been proposed over the last years to improve the performance
of this image technique in view of the extensive application
prospects. Before the advent of deep neural networks several
methods based on classifying pixel independently have been
used. In [70], semantic texton forests have been introduced
that are randomized decision forests which use only simple
pixel comparisons on local image patches, then performing
both an implicit hierarchical clustering into semantic textons
and an explicit local classification of the patch category.
An approach that integrates motion and appearance-based
features for object recognition and segmentation of road
scenes has been proposed in [71]. The motion-based features
and appearance-based features (textons, colour, location and
HOG descriptors) are combined within a boosting framework
that automatically selects the most discriminative features
for each object. The work [72] can be viewed as an inte-
gration of object class segmentation methods and object
detection approaches. The model used is a conditional ran-
dom field defined on pixels, segments and objects, then a
global energy function which combines results from sliding
window detectors, low-level pixel-based unary and pairwise
relations, has been adopted. Successively, other approaches
have been addressed to produce high quality unaries by try-
ing to predict the labels for all the pixels in a patch instead
of only in central pixel. Inspired by this idea [73] provided a
novel way to incorporate joint statistics about the local label
neighborhood in the random forest framework. The approach
adopted in [74] differs from other previous existing solutions
for the use of dense depth maps recovered via multi-view
stereo matching techniques as cues to achieve accurate scene
parsing. A combination of popular hand designed features
and spatio-temporal super-pixelization is used in [75] to
obtain higher accuracy in labelling image regions. The avail-
ability of RGB-D sensors (color + depth) and the release
of several Kinect datasets [76] showed the usefulness of the
depth channel to improve segmentation. Improvements were
made in [77] by extracting RGB-D rich features at low-level
and by combining, for contextual modeling, two strategies,

one using segmentation trees, and the other using superpixel
Markov random fields.
More recently the success of deep convolutional neural

networks has prompted many researchers to exploit their
feature learning capabilities for classifying images at pixel
level. In [78] a feed-forward neural network approach which
can take into account long range label dependencies in
the scenes while controlling the capacity of scene, was
suggested. A new form of convolutional neural network
that combines the strengths of CNNs and conditional ran-
dom fields (CRFs)-based probabilistic graphical modeling,
has been introduced in [43]. Contrary to previous existing
approach posing semantic segmentation as a single task of
region-based classification, the architecture in [79] decouples
classification and segmentation: labels associated with an
image are identified by a classification network, and binary
segmentation is subsequently performed by segmentation
network.
Recent approaches to semantic segmentation are based

on convolutional encoder-decoder architectures where the
encoder generates low-resolution image features and the
decoder upsamples features to segmentation maps with
per-pixel class scores. The pioneer method used to perform
end-to-end segmentation is the fully convolutional network
(FCN) [39], in which the last fully connected layer of tra-
ditional architectures, such as VGG [80] and AlexNet [81],
is converted into a fully convolutional layer. The interesting
idea of this approach is that a simple interpolation filter
is employed for deconvolution and only the CNN part of
the network is fine-tuned to learn deconvolution indirectly.
To overcome the absence of real deconvolution in FCN,
a different strategy is used in [82] in which a multi-layer
deconvolution layer, composed of deconvolution, unpooling,
and rectified linear unit (ReLU) layers, is learned. A large
number of methods choose the architecture of FCN as their
baseline and the predictive performance of FCN has been
improved further by adopting a large variety of different
solutions.

B. STATE-OF-THE-ART TECHNIQUES
Convolutional neural networks (CNNs) are powerful visual
methods that have proven to be particularly suitable for solv-
ing whole-image classification tasks. Nevertheless, in recent
years it has been shown that CNNs can also be adopted to
perform dense predictions for per-pixel tasks such as seman-
tic segmentation. Here we summarize the main techniques
that represent the state-of-the-art in semantic segmentation
and that will be used for a comparison with the architecture
proposed in this paper.

1) FCN

Fully convolutional networks (FCNs) [39], are built by trans-
forming fully connected layers of a CNN into convolutional
layers. The network so obtained is called convolutionalized
network. In this way typical classification networks (i.e.,

VOLUME 3, 2022 117

FALASCHETTI et al.: LOW-RANK CNN ARCHITECTURE FOR REAL-TIME SEMANTIC SEGMENTATION

AlexNet, VGG-16) are first converted into fully convolu-
tional networks and then a transposed convolution layer (also
called up-sampling layer) is appended to the end of the
convolutional networks. The transposed convolution layer is
used for up-sampling the output feature map obtained by
the last layer of the initial CNN architecture, to produce a
dense prediction of the input image.

2) U-NET

U-Net architecture firstly proposed in [56] for biomedical
image segmentation, modifies and extends FCN architecture
such that it works with very few training images and yields
more precise segmentations. It consists of a contracting path
and an expansive path. The former (contracting path) has
the typical architecture of a convolutional network: repeated
application of convolutions, each followed by a rectified lin-
ear unit (ReLU) and a pooling operation for downsampling.
The latter (expansive path) consists of the repeated applica-
tion of an upsampling applied to the feature map, followed
by a convolution (“up convolution”), that halves the numbers
of feature channels.

3) DEEPLAB

DeepLab model [46] was proposed to overcome some limi-
tations in the application of CNNs to semantic segmentation:
reduced feature resolution, existence of objects at multiple
scales, and reduced localization accuracy due to CNN invari-
ance. To address the first issue, convolution with upsampled
filters, or ‘atrous convolution’, is derived as a powerful tool
in dense prediction tasks. More specifically, the downsam-
pling operator from the last few max pooling layers of
CNNs are removed and instead the filters in subsequent con-
volutional layers are upsampled, resulting in feature maps
computed to a higher sampling rate. Secondly the atrous
spatial pyramid pooling (ASPP) technique, a computation-
ally efficient scheme of resampling a given feature layer at
multiple rates prior to convolution, is adopted to robustly
segment objects at multiple scales. Finally to remove the
invariance to spatial transformations, inherently limiting the
spatial accuracy of a CNN, a fully connected Conditional
Random Field (CRF) is applied to capture fine details.
In order to capture the contextual information at multiple
scales, DeepLabv3 [83] applies several parallel atrous con-
volutions with different rates and DeepLabv3+ [57] extends
DeepLabv3 by adding a simple effective decoder module to
refine the segmentation.

4) SEGNET

SegNet [41] is a deep convolutional encoder-decoder
architecture that consists of an encoder network, and a
corresponding decoder network followed by a pixel-wise
classification layer. The encoder is topologically identical
to the convolution layers in VGG-16, except for the fully
connected layers that are removed. The novelty of SegNet
is the decoder network which is formed by a hierarchy of
decoders one corresponding to the other. A decoder uses

the max-pooling indices received from the corresponding
encoder to perform upsampling of their input feature maps.
It then performs convolution with a trainable filter bank to
densify the feature map.

5) ENET

The architecture named ENet (Efficient Neural
Network) [58] was created specifically for tasks requiring
a low latency operation. The architecture is based on the
concept of ‘deep residual learning’, that was introduced
in [84] to solve the degradation problem of deeper networks:
with the network depth increasing, accuracy is saturated
and degrades rapidly. The architecture is formed by
stacked layers, named bottleneck modules, each of which
asymptotically approximates a residual function instead of
a generic mapping. Each conv layer is either a regular,
dilated for full convolution (also known as deconvolution),
and the activations are zero padded to match the number of
feature maps.

6) ICNET

Image Cascade Network (ICNet) [59] is mainly focused on
the challenging task of real-time semantic segmentation, to
make semantic segmentation fast while not sacrificing too
much quality. To this end the image at the input of the ICNet
is downsampled by factors of 2 and 4, forming a cascade
input to medium-and-high-resolution branches. To get high
quality segmentation, medium and high resolution branches
help recover and refine the coarse prediction. To limit the
number of parameters, light weighted convolution layers are
adopted in higher resolution branches, while output feature
maps from low and medium resolution are fused in the
high-resolution branch by a cascade-feature-fusion unit.

7) ERFNET

ERFNet (Efficient Residual Factorized Network) architec-
ture [60] is based on the concept of residual layer [84] which
has the property of allowing convolutional layers to approxi-
mate residual functions. This technique significantly reduces
the degradation problem present in architectures that stack
a large amount of layers. Two different versions are com-
monly used to implement a residual layer: the non-bottleneck
design with two 3×3 convolutions and the bottleneck design
with two 1 × 1 convolutions at the input and output ends,
and a 3 × 3 convolution in the middle. As these two layers
compete each other in terms of computational resources and
accuracy, in the ERFNet the non-bottleneck residual mod-
ule is redesigned in a more optimal way by entirely using
convolutions with 1D filters.

8) BISENET

Bilateral Segmentation Network (BiSeNet) [61] has been
proposed to achieve real-time inference speed while
preserving segmentation performance. This architecture is
composed of two parts: Spatial path (SP) and Context path
(CP). SP is used to preserve the spatial size of the original

118 VOLUME 3, 2022

TABLE 1. Summary of advantages and disadvantages of the different architecture described in Section II-B.

input image and encode its spatial information. This path
contains three layers and extracts 1/8 of the original image,
thus encoding rich spatial information. The CP downsamples
the input feature map quickly to obtain a large receptive field,
thus encoding high level semantic information. Finally a
Feature Fusion Module (FFM) and an Attention Refinement
Module (ARM) are used for the function of the two paths
and refinement of final prediction.

9) FAST-SCNN

Fast Segmentation Convolutional Neural Network (Fast-
SCNN) [62], is inspired by existing two-branch methods for
fast segmentation of high resolution images, and is partic-
ularly suited to efficient computation on embedded devices
with low memory. Fast-SCNN uses three modules: a learning
to downsample module, a coarse global feature model and
a feature fusion module. A learning to downsample module
computes low-level features for multiple resolution branches
simultaneously. The global feature extractor module is aimed
at capturing the global context. The feature fusion model is
used for the fusion of the two branches.

10) RECENT EFFICIENT MODELS

Several efficient models for dense prediction have recently
been proposed for real-time prediction on mobile platforms
such as cars, drones, and various kind of robots.

Instead of using custom lightweight architectures to
decrease computational complexity, in [63] an alternative
approach which achieves a significantly better performance,
has been proposed. The method has been conceived around
three basic building blocks. i) Recognition encoder. A
pre-trained lightweight architecture (ResNet-18 [84] or
MobileNet V2 [85]) has been used as the main segmentation
encoder. ii) Upsampling decoder. To leverage lightweight
upsampling, lateral connections as the most cost-effective
solution to restore prediction resolution, is used. iii) Module
for increasing the receptive field. A spatial pyramid pooling
(SPP) block has been adopted to enlarge the receptive field
by fusing shared features at multiple resolution.
The Harmonic Densely Connected Network to achieve

high efficiency in terms of both low MACs and memory
traffic, has been recently proposed [64]. This new network
architecture is based on a Densely Connected Network and
uses an efficient sparsification scheme that reduces the con-
catenation cost significantly better than that achieved by
logDenseNet. The proposed connection pattern forms a group
of layers called a Harmonic Dense Block (HDB), which is
followed by a Conv 1 × 1 layer as a transition. DenseNet
employees a bottleneck layer before every Conv 3 × 3 layer
to enhance the parameter efficiency.
For easy reference Table 1 summarizes the most relevant

aspects, as well as advantages and disadvantages of archi-
tectures previously discussed.

VOLUME 3, 2022 119

FALASCHETTI et al.: LOW-RANK CNN ARCHITECTURE FOR REAL-TIME SEMANTIC SEGMENTATION

III. PROPOSED METHOD
Although all the networks previously discussed are able to
obtain a good accuracy, the performance achieved both in
terms of storage cost and computational complexity do not
suffice for embedded MCUs.
The main goal of the proposed work is to prove that a

novel CNN architecture can be derived, to achieve an optimal
trade-off between accuracy and computational resources. To
reach this goal we proceed as follows:

• The CANDECOMP/PARAFAC (CP) decomposition
technique has been applied to the kernel of a generic
convolutional layer. In this way the layer is decomposed
as two 1 × 1 convolutions at the input and output ends,
and a D × D convolution in the middle. As a result a
reduction of both the parameter number and operation
number is obtained.

• An optimized architecture which combines U-Net struc-
ture and ResNet residual blocks, has been defined. Three
versions, i.e., V1, V2 and V3, have been derived to
explore the trade-off between model complexity and
segmentation accuracy.

• All those models were initially trained to get the desired
accuracy and were compressed using the CP decompo-
sition technique. To this end an iterative compression
fine-tuning algorithm was used to compensate for the
loss of accuracy due to compression.

• The three models were implemented on Google
Colaboratory using TensorFlow v. 2.4.1 and TensorFlow
Keras v. 2.4.0 as a backend in Python v. 3.7.10. The
networks were trained for 100 epochs on the CamVid
dataset by using an Adam optimizer with categorical
cross entropy as loss function.

• The low-rank CNN architectures so derived, have been
implemented in two embedded platforms: a Raspberry
Pi 4 (CPU) and an NVIDIA Jetson Nano 2 GB (GPU).

IV. TENSOR DECOMPOSITION FOR CNN COMPRESSION
CNN accuracy is achieved at the expense of high com-
putational complexity, thus adopting CNN compression
techniques to reduce the inference time in real-time SIS is
essential. Among them, pruning, quantization and low-rank
tensor decomposition are the most common.
Pruning starts by learning the weights via normal train-

ing, then proceeds by removing the small-weight connec-
tions [86]–[88].
Quantization reduces the number of bits used to represent

data [89], [90].
Tensor decomposition is a multilinear approximation that

reduces a full-rank tensor to a low-rank tensor, i.e., that
requires a reduced number of data and operations to be
represented by preserving accuracy [91]–[93].
Since CNN models involve convolutional operations on

banks of filters represented by tensors, the size of which can
be very large, thus tensor decomposition is a useful technique
to reduce complexity of CNN implementation [89], [94],

and it will be applied in the following to derive a high
performance CNN architecture.
Although pruning and quantization are valuable techniques

for CNN comparison, they don’t affect the network archi-
tecture, thus they are irrelevant in defining a new optimized
CNN model.
It is well known that the numbers of an N-th order

(I × I × . . . I) tensor, IN , scales exponentially with the
tensor order N. Among different techniques available to
reduce computational cost and storage cost of tensor
models for an N-th order tensor for which the storage
requirement of raw data is O(IN), the most effective are
CANDECOMP/PARAFAC (CP) decomposition and Tucker
decomposition (TKD) [92]. The number of parameters in a
CP decomposition reduces to NIR while TKD reduces the
size of a given data tensor to (NIR+RN), where R represents
the number of terms in the decomposition. Thus in order to
minimize CNN complexity, CP decomposition will be used
since it is able to outperform TKD in terms of compression
rate.
This method has shown to be very effective to reduce

redundancy of the neural network parameters, however it
suffers for a degeneracy phenomena when applied to approx-
imate a tensor of relatively high rank. The degeneracy of CP
has been extensively studied in the past [95], [96] and is a
common phenomena in tensors which have non unique CP
and determines stability problems during the training stage
of a CNN. Recently the Error Preserving Correction method
(EPC) [97] and a variant of EPC [98] that introduce a cor-
rection to the decomposition have been proposed to get a
more stable decomposition. To avoid this degeneracy effect
we will apply the CP method to tensors of not too high rank.

A. CP DECOMPOSITION
The CANDECOMP/PARAFAC (CP) decomposition [92] is
a multilinear transformation [93] that approximates a ten-
sor A ∈ R

n1×n2×...×nn with a tensor Â that is a linear
combination of R rank-1 tensor in the form

Â =
R∑

r=1

λr a
(1)
r ◦ a(2)

r ◦ . . . ◦ a(n)
r (1)

where the symbol “◦” represents the outer product [91],
a(1)
r , a(2)

r , . . . are the column vectors of the matrices A1 =
[a(1)

1 , . . . , a(1)
R] ∈ R

n1×R, A2 = [a(2)
1 , . . . , a(2)

R] ∈ R
n2×R, . . .

respectively and λr are coefficients to be determined. The
matrices A1,A2, . . . and � = diag(λ1, . . . , λR) are derived
by solving for a given value of R the optimization problem

min
Â

=
∥∥∥A − Â

∥∥∥
F

(2)

where ‖·‖F denotes the Frobenius norm. Denoting with
A(1),A(2), . . . and Â(1), Â(2), . . . the modal unfoldings (or
matricizations) of tensors A and Â respectively, it can be
proven that the error in (2) can be rewritten as

∥∥∥A − Â
∥∥∥
F

=
∥∥∥A(1) − Â(1)

∥∥∥
F

=
∥∥∥A(2) − Â(2)

∥∥∥
F

= (3)

120 VOLUME 3, 2022

Taking into account these constraints, the minimization
problem stated by (2) is equivalent to a multilinear
least-square problem, which can be solved by minimiz-
ing iteratively any one of the errors between the matrices
in (3) until the convergence is reached, using the so-called
multilinear least-square (MLS) technique.

B. CNN COMPRESSION
In this section we want to show that the CP decomposition
technique previously described, can be profitably used to
compress a CNN network in order to reduce both the storage
cost and the computational cost.
To this end let us refer to a generic convolutional layer

Y h′,w′,t =
S∑

s=1

∑

i,j

X hi,wj,sK i,j,s,t (4)

where X ∈ R
Ix×Iy×S is the input tensor, Y ∈ R

Ox×Oy×T the
output tensor and K ∈ R

D×D×S×T the kernel of the filter.
Denoting with s the stride of the layer, then Ox,y = Ix,y/s and
the number of operations, both additions and multiplications,
are given by

Nops = OxOyD
2ST = IxIy

s2
D2ST = IxIy

s2
Nparams (5)

where Nparams is the number of parameters in the weight
tensor.
Using the CP decomposition the kernel K can be

approximated by the 1-rank tensor

K̂ i,j,s,t =
R∑

r=1

ai,r ◦ bj,r ◦ cs,r ◦ dt,r (6)

so that (6) becomes

Y h′,w′,t ∼=
R∑

r=1

S∑

s=1

∑

i,j

X hi,wj,s Qi,j,r cs,r dt,r (7)

where Qi,j,r = ai,r bj,r is the generic term of tensor Q ∈
R
D×D×R.
Defining the tensors W and Z , then (7) can be interpreted

as a sequence of three convolutions

W hi,wj,r =
S∑

s=1

X hi,wj,s cs,r (8)

Z h′,w′,r =
∑

i,j

W hi,wj,s ai,j,r (9)

Y h′,w′,t =
R∑

r=1

Z h′,w′,r dt,r, (10)

two 1 × 1 convolutions (8), (9) at the input and output ends
respectively, and a D× D convolution in the middle.
Comparing (4) and (7) it results that the tensor Ki,j,s,t ∈

R
D×D×S×T in (4) is decomposed in (7) as the combination

of tensors cs,r ∈ R
S×R, dr,t ∈ R

R×T , Qi,j,r ∈ R
D×D×R and

this correspondence is schematically depicted in Fig. 1.

FIGURE 1. The effect of CP decomposition on Conv2D Layer.

Denoting by cparams and cops the reduction factors of the
parameters number and Floating Point Operations number,
it is easy to show that:

cparams = R
(
D2 + S+ T

)

D2ST
(11)

cops = s2RS+ RT + RD2

D2ST
. (12)

V. LOW-RANK CNN ARCHITECTURE
The design flow to derive the low-rank CNN architecture
based on CP decomposition comprises two main stages.

• First, an optimized architecture called UNet-ResNet,
or full rank (FR) UNet-ResNet, which combines
U-Net [56] structure with ResNet [99] residual-blocks
technique was proposed.
Three different versions V1, V2 and V3 of the model
have been proposed in order to better explore the
tradeoff between model complexity and segmentation
accuracy.
These models were initially trained to get the desired
accuracy.

• Next, these trained networks were decomposed with
the CP decomposition technique to reduce the com-
putational complexity and to achieve acceptable val-
ues for inference times. An iterative compression
fine-tuning technique was used to compensate for
the loss of accuracy due to network decomposi-
tion. The networks so obtained were called low rank
UNet-ResNet (LR-UNet-ResNet) V1, V2 and V3.

A. UNET-RESNET ARCHITECTURE
The design of the UNet-ResNet was based on the U-Net
architecture [56], truncated to three stages as depicted in
Fig. 2.
In using this architecture however, a large number of

encoder/decoder layers and block channels would be required
to achieve a satisfactory learning accuracy, that corresponds
to a high-complex model unsuitable to be implemented in an
embedded processor. To overcome this issue, the residual-
blocks of ResNet architecture [99] have been adopted to
implement the encoder/decoder layers, instead of simple con-
volutional layers. These blocks, which are depicted in Fig. 3,
are formed by two convolutional blocks in the main path, the
first of which may include a downsampling of the features.
In this case a convolutional layer is added to the residual path

VOLUME 3, 2022 121

FALASCHETTI et al.: LOW-RANK CNN ARCHITECTURE FOR REAL-TIME SEMANTIC SEGMENTATION

FIGURE 2. U-Net architecture truncated to three stages.

FIGURE 3. Residual blocks of ResNet architecture with (a) and without
(b) downsampling.

in order to adjust features dimension for the final addition,
otherwise residual-path is simply an identity.
A similar approach, based on the combination of UNet

and ResNet architectures, has been used in [100] to solve
a binary sea-land semantic segmentation task. However,
instead of using simple convolutions in the upsampling
process the proposed model uses residual blocks for both
encoding/decoding stages since an accurate design of the
decoder architecture process has shown to be crucial for
segmentation accuracy [82].
Instead of starting with totally random initialized weights,

a pretrained set of weights on Imagenet dataset [101] were
used to achieve better segmentation performance.

TABLE 2. Summary of UNet-ResNet V1 architecture. Here c is the number of output
channels, s is the stride of the block.

UNet-ResNet V1 architecture is reported in Fig. 4 and
described in Table 2. A first reduction of the features
dimension is obtained with a convolutional layer and a max-
pooling, followed by two stages which are formed by two
residual-blocks each, the first of whom is responsible for the
downsampling.
The decoder stages are made by the residual-blocks of

the encoder without downsampling, the first of whom is
followed by a bilinear interpolation upsampling. A factor
4 of upsampling is recovered at the output of the network.
With the aim of achieving better results in terms of com-

putational efficiency without a high loss of accuracy, the
stride of the initial maxpooling was set to s = 4 and a
third stage with 2 residual-blocks was added to the encoder
and decoder. With these modifications the UNet-ResNet V2
architecture described in Table 3 was obtained.
An intermediate version V3 might be derived choosing

s = 2 for the second residual-block, instead of using a
downsampling factor of 4 for the maxpooling. In this manner
the features learnt by the first residual-block are of the same
dimension as in V1, that corresponds to a more accurate
segmentation than V2 since less information is lost. On the
other hand complexity is higher than V2 but lower than V1.
The architecture of the network UNet-ResNet V3 so derived
can be found in Table 4.
In order to better understand the properties of the networks

previously discussed it is worth to explore the similarity
between low-rank UNet-ResNet architecture and Depthwise
Separable models [102], [103]. The basic idea in these
latter models is to replace a convolutional layer with a
factorized version that splits convolution into two sepa-
rate layers. The first layer, called depthwise convolution,
performs lightweight filtering by applying a simple convo-
lutional filter per input channel. The second layer, called
pointwise convolution, performs a 1 × 1 convolution. A

122 VOLUME 3, 2022

FIGURE 4. UNet-ResNet V1 architecture.

TABLE 3. Summary of UNet-ResNet V2 architecture.

modified version of this model, used in the MobileNet V2
architecture [85], is based on the so called ‘residual bottle-
neck layer’ (rbl), that comprises two 1×1 convolutions at the
input and output ends, and a 3×3 convolution in the middle.
Although rbl resembles the layer achieved by CP decompo-
sition described in Section IV, the resulting networks, LR
UNet-ResNet and MobileNet V2, can be quite different. In
fact, the LR UNet-ResNet is obtained starting from the FR
UNet-ResNet that was initially trained to get the desired
accuracy and then, once decomposed with the CP technique,
is retrained to restore the accuracy. Differently MobileNet
is trained without benefit of a pre-training/finetuning
scheme applied to a full-rank/low-rank dimensional-
ity reduction technique as was done in the proposed
approach.

TABLE 4. Summary of UNet-ResNet V3 architecture.

VI. EXPERIMENTAL RESULTS
A. DATASET
We evaluated the performance of UNet-ResNet (V1, V2,
and V3) on the Cambridge-driving Labeled Video Database
(CamVid) dataset [104]–[106]. This dataset is often used
in (real-time) semantic segmentation research, particularly
for road scene segmentation and autonomous driving appli-
cations. The CamVid dataset is a publicly available cloud
segmentation dataset that contains a collection of videos with
object class semantic labels, completed with metadata. The
database provides ground truth labels that associate each
pixel with one of 32 semantic classes that are relevant in
a driving environment: animal, archway, bicyclist, bridge,
building, car (sedan/wagon), cart/luggage/pram, child, col-
umn/pole, fence, lane markings drivable, lane markings

VOLUME 3, 2022 123

FALASCHETTI et al.: LOW-RANK CNN ARCHITECTURE FOR REAL-TIME SEMANTIC SEGMENTATION

TABLE 5. Comparison of the full-rank UNet-ResNet V1, V2 and V3.

non-drivable, misc text, motorcycle/scooter, other moving,
parking block, pedestrian, road (drivable surface), road shoul-
der, sidewalk, sign / symbol, sky, SUV / pickup truck, traffic
cone, traffic light, train, tree, truck / bus, tunnel, vegetation
misc, void, wall. The “void” label indicates an area which is
ambiguous or irrelevant in this context. The dataset is split
up as follows: 369 training, 100 validation and 232 testing
pair images (original RBG images and segmentation masks).
The original frame resolution for this dataset is 960 × 720.

In this experimentation, 11 foreground classes are selected:
bicyclist, building, car, fence, pedestrian, pole, road, side-
walk, sign, sky, tree. This approach is commonly used in
literature [41], [58], [59], [63] as it better reflects the sta-
tistically significant classes of the dataset [106]. To reduce
32 classes into 11, multiple classes from the original dataset
are grouped together, e.g., “car” is a combination of “car”,
“SUV / pickup truck”, “truck / bus”, “train”, and “other
moving”. By adding the void class, which is treated as
background, we have 12 classes in total. The original frame
resolution has been downsampled to 480 × 360.

Fig. 6 shows some examples of this dataset. The first row
is for the raw input image, and the second row is for the
ground truth.

B. TRAINING OF UNET-RESNET ARCHITECTURE
The proposed models were trained on the dataset described
in the previous subsection by minimizing a categorical-
crossentropy loss with the Adam optimizer, by using a
learning rate of 0.001 by applying an exponential decay
with a rate of 0.985 for 100 epochs and a batch size of 3.
Model performances were evaluated using stan-

dard segmentation metrics, i.e., accuracy and mean
Intersection-Over-Union (mIoU) also known as Jaccard
Index.
On the other hand models’ suitability in a low-cost,

low-power embedded system was measured with stor-
age cost (MB), parameters number (complexity), and
number of FLOPs (Floating Point Operations). The stor-
age cost has been computed using the Python API
os.path.getsize(), which returns the file size in bytes,
where, in this case, the file corresponds to the CNN model
in h5 format.
Table 5 provides the results of full-rank UNet-ResNet V1,

V2, V3 for the specified metrics.
All the models achieve good segmentation accuracy

and mIoU. UNet-ResNet V1 has the highest accuracy but

FIGURE 5. Design flow to derive final network LR-UNet-ResNet.

its complexity is considerably higher than V2 and V3.
UNet-ResNet V2 has the minimum complexity but the worst
segmentation performance. This loss is caused by the details
missed by increasing the initial downsampling factor. The
gap is partially recovered by UNet-ResNet V3.
It can be noticed from Table 5 that a high number of

FLOPs and storage cost are required, resulting for an unprac-
tical model to be implemented on an embedded device for
the discussed application.
For this purpose hence it is essential to dramatically reduce

model complexity without losing too much segmentation
accuracy contemporarily.
Thus the trained models were compressed with

CP-decomposition applied to all but the 1 × 1 convolu-
tional layers (which cannot be further decomposed properly)
according to (8), (9) and (10).
Particularly, an iterative compression & fine-tuning tech-

nique was used to derive the final LR-UNet-ResNet, which
is synthesized by Fig. 5. At each iteration all 3 × 3 layers
of a stage in the encoder and the corresponding ones in the
decoder are decomposed, then the network is re-trained to
recover the loss of accuracy.

124 VOLUME 3, 2022

FIGURE 6. Qualitative assessment of segmentation on the CamVid test set (color code: maroon - building, citrus - tree, gray - sky , indigo - car , oriental pink - sign, cannon
pink - road , olive - pedestrian, purple - fence, pine glade - pole, blue - sidewalk , deep sky blue - bicyclist , and black - void).

This method is much more stable than a simple
full-compression & re-training, since at each step accuracy
degradation is much lower and easy to be compensated.

At the final iteration the initial 7×7 layer is decomposed
separately since it extracts the main features of the network,
hence it is highly responsible for the segmentation quality.

VOLUME 3, 2022 125

FALASCHETTI et al.: LOW-RANK CNN ARCHITECTURE FOR REAL-TIME SEMANTIC SEGMENTATION

TABLE 6. Compression parameters for UNet-ResNet V1.

TABLE 7. Compression parameters UNet-ResNet V2.

TABLE 8. Compression parameters for UNet-ResNet V3.

The parameters used in the described method such as
the layers compression factor, learning rate and number of
epochs used for the fine-tuning can be found in Table 6, 7, 8
for the three models respectively.
The compression factors were chosen accurately low so

that we could obtain sufficiently low inference times when
implementing models on an embedded device. Particularly
we had to select lower compression factors for UNet-ResNet
V1 than for V2 and V3 since V1 has a much higher
complexity.
Table 9 provides the outcomes for the low-rank models

resulting from the proposed compression technique.
All the models lose no more than 1.1% of accuracy with

respect to their full-rank counterparts, moreover a consider-
ably high gain in number of parameters, storage cost and
computational cost is achieved. LR-UNet-ResNet V1 has no
longer the best segmentation performances, this is obviously
due to the higher compression applied. LR-UNet-ResNet
V3 achieves the best accuracy and mIoU, but with a much
lower gain in computational cost with respect to V1 and V2.
LR-UNet-ResNet V2 has still the lowest complexity and
worst segmentation accuracy.

C. TESTING ON EMBEDDED PLATFORMS
In order to validate the suitability of the low-rank CNN
architecture previously discussed for the real-time semantic
segmentation, some experiments on the low-cost, low-power
embedded platforms Raspberry Pi 4 and NVIDIA Jetson
Nano 2 GB, have been conducted. Besides, to meet the best
performance the CNN architecture has been implemented in
the high-cost GPU NVIDIA Tesla P100 PCIe 16 GB.
The former two platforms have been chosen to distin-

guish between the performance required by autonomous

robot navigation and car navigation systems. In autonomous
robot navigation systems cost and low power are the main
performance required, since typically a robot proceeds at
a moderate speed. Thus in this case the Raspberry Pi 4
represents a low-cost, low-power hardware solution suitable
for this purpose [10], [20]–[30]. The Raspberry Pi 4 model
B is based on a quad-core Cortex-A72 (ARM v8) 64-bit
SoC clocked at 1.5 GHz and 4 GB of LPDDR4 SDRAM.
As this board consumes 3 W when idle and 6 W under
load on average,1 it is representative of typical low-power
systems. Conversely for car navigation systems low latency
of SLAM algorithm is the primary performance required,
due to the higher speed of a car. The NVIDIA Jetson Nano
2 GB is a compromise choice to meet the requirements of
speed and low cost in this case. The NVIDIA Jetson Nano
2 GB is based on a quad-core ARM A57 at 1.43 GHz, a
NVIDIA Maxwell GPU with 128 core and 2 GB of LPDDR4
SDRAM.
The experiments aim to compare the performance of LR-

UNet-ResNet (V1, V2, and V3) with those achieved by the
state-of-the-art networks. In particular, the following seman-
tic segmentation architectures have been considered: UNet-
MobileNetV2, U-Net [56], DeepLabv3+ [57], SegNet [41],
ENet [58], ICNet [59], ERFNet [60], BiSeNet [61], Fast-
SCNN [62], SwiftNetRN-18 [63], FCHarDNet-68 [64].
For the experiments on the three platforms the same met-

rics defined in Section VI-B together with the inference time
and the number of recognized frames per second (FPS) were
used as performance of the network.
All models were implemented on Google Colaboratory

(GPU runtime) using TensorFlow v. 2.4.1 and TensorFlow
Keras v. 2.4.0 as a backend in Python v. 3.7.10. The networks
were trained for 100 epochs on the CamVid dataset parti-
tioned as reported in previous section, by using an Adam
optimizer with categorical cross entropy as loss function, a
learning rate of 0.02 and a batch size of 4. All models were
saved in Hierarchical Data Format version 5 (HDF5) binary
data format (.h5). HDF5 is a grid file format to store struc-
tured data, that is ideal for storing multi-dimensional arrays
of numbers. Keras saves models in this format, so that the
weights and model configuration can be easily stored in a
single file.
To run the evaluation code on Raspberry Pi 4, we

used TensorFlow/Keras v. 2.4.0 with Python v. 3.7.3 on
Raspbian 10 (Buster) operating system. The results for all
tensors were obtained with 32-bit floating point precision
(h5 model).
To perform inference on Jetson Nano 2 GB the

NVIDIA TensorRT,2 an SDK for high-performance deep
learning inference on NVIDIA hardware, is used and
the Keras h5 models were then converted in Open
Neural Network Exchange (ONNX) format. To compute

1. https://www.raspberrypi.org/documentation/hardware/raspberrypi/
power/README.md https://www.pidramble.com/wiki/benchmarks/power-
consumption

2. https://developer.nvidia.com/tensorrt

126 VOLUME 3, 2022

TABLE 9. Comparison of the LR-UNet-ResNet V1, V2 and V3.

TABLE 10. Comparison of proposed network with the state-of-the-art methods on the CamVid 11 road class segmentation problem in terms of storage cost, accuracy and
inference time - performance on the embedded platform Raspberry Pi 4 - Keras h5 model.

inference, ONNX models with FP32 precision and
opset 13 have been generated and the Jetson module
was run with maximum performance, which is 10W for
Jetson Nano. Particularly, NVIDIA JetPack v. 4.6 that
includes TensorRT v. 8.0.1 and CUDA v. 10.2 has been
used.
To evaluate the performance on Raspberry Pi 4 plat-

form, Table 10 reports the results achieved for storage cost,
compression, parameter numbers (complexity), FLOPs, accu-
racy, inference time, and FPS, while Table 11 reports both
the IoU for each class and the mIoU. The performance
obtained on NVIDIA Jetson Nano 2 GB are shown in
Table 12 and Table 13.
As can be seen all the LR-UNet-ResNet networks

proposed in this paper outperform the other networks in
terms of FLOPs, inference time and FPS. Besides, the
LR-UNet-ResNet V1 has the best performance also in terms
of storage cost and parameter numbers.
Comparing the performance obtained with the three ver-

sions of the LR-UNet-ResNet, the following considerations
can be made.

• If the shortest inference time is the main requirement,
without worrying about learning accuracy, thus the
architecture V2 is the better choice.

• The solution V1 ensures the best performance in terms
of storage cost.

• The architecture V3 gives a trade-off between inference
time and accuracy.

About the accuracy and mIOU, the values achieved
with LR-UNet-ResNet are just a few percentage below
the best performances obtained with other networks, but
this does not constitute a real issue for the goal, since
this lack of accuracy is compensated by the greater num-
ber of frame per second the LR-UNet-ResNets are able to
perform.
To a complete treatment, a comparison with other com-

pression techniques like pruning methods was conducted.
The pruning methods can be grouped into two main cate-
gories: weight pruning (WP) [107], [108] and filter (channel)
pruning (FP) [109]. WP is a pruning method that discards the
individual weights with low values by using a fine-grained
approach, resulting in a sparse network without affecting
prediction performance. However, sparse networks require
to be implemented in a specialized hardware in order to
obtain an actual reduction of computation cost and inference
time. FP-based methods prune filters or channels within the
convolution layers that give a low contribute to the total
energy of the weights tensor. By removing whole filters in

VOLUME 3, 2022 127

FALASCHETTI et al.: LOW-RANK CNN ARCHITECTURE FOR REAL-TIME SEMANTIC SEGMENTATION

TABLE 11. Comparison of proposed network with the state-of-the-art methods on the CamVid 11 road class segmentation problem in terms of IoU for each class - performance
on the embedded platform Raspberry Pi 4 - Keras h5 model.

TABLE 12. Comparison of proposed network with the state-of-the-art methods on the CamVid 11 road class segmentation problem in terms of storage cost, accuracy and
inference time - performance on the embedded platform NVIDIA Jetson Nano 2 GB (GPU) - ONNX model.

the network together with their connecting feature maps, the
computation costs are reduced significantly without sparse
connectivity patterns.
Table 14 shows the results achieved by applying WP

and FP compression methods to the UNet-ResNet (V1,
V2, and V3). In the first two rows of each model we
reported the full rank and low rank versions of the proposed
networks for convenience. The compression factor is almost

the same for all the compressed networks. As you can
see the CP method outperforms both weight and filters
pruning in terms of accuracy. As far as the inference
time is concerned filters method is able to obtain the
best performance. However, it is worth to notice that
while a wide range of optimization techniques have been
proposed to perform standard convolutions, such as fast
fourier transform (FFT) [110], winograd (Winograd) [111]

128 VOLUME 3, 2022

TABLE 13. Comparison of proposed network with the state-of-the-art methods on the CamVid 11 road class segmentation problem in terms of IoU for each class - performance
on the embedded platform NVIDIA Jetson Nano 2 GB (GPU) - ONNX model.

TABLE 14. Comparison of the UNet-ResNet V1, V2, V3 models with the state-of-the-art compression methods - performance on the embedded platforms: Raspberry Pi 4 (CPU)
and NVIDIA Jetson Nano 2 GB (GPU) - Keras h5 model for Raspberry Pi 4 and ONNX model for NVIDIA Jetson Nano 2 GB.

and general matrix multiplication (GEMM) [112], these
solutions offer little benefit for depthwise convolutions. This
is because such techniques are designed to optimize arith-
metic computation, but not memory access latency, which
often dominates the execution time of depthwise convo-
lution [113], [114] due to its lower arithmetic operations
compared to a standard convolution. Thus, these optimizated
techniques used to implement efficiently filters pruning
method are the major reason for the best performance
obtained in terms of inference time. Nevertheless, the accu-
racy achieved with this method is very low in comparison
to the other techniques. Therefore, the proposed networks
ensure the best compromise between accuracy and infer-
ence time, thus showing suitable performance for semantic
segmentation task both in autonomous driving vehicles and
robots.

Fig. 6 shows the qualitative comparisons of the
LR-UNet-ResNet (V1, V2, and V3) predictions with the
state-of-the-art networks. For this comparison, the archi-
tectures U-Net and DeepLabv3+ have been chosen, since,
according to Table 10, they outperform the selected
state-of-the-art networks in terms of storage cost and
accuracy, respectively.
Besides, in order to show the capability of the proposed

CNN architecture to reach low/ultra-low latency with suitable
hardware, Table 15 and Table 16 report the performance
achieved on desktop (Intel Core i7-6800K CPU with
3.40 GHz and 32 GB of RAM and GPU NVIDIA
Tesla P100 PCIe 16 GB). As expected storage cost,
compression, complexity and accuracy keep unchanged,
while inference time is scaled by about an order of
magnitude.

VOLUME 3, 2022 129

FALASCHETTI et al.: LOW-RANK CNN ARCHITECTURE FOR REAL-TIME SEMANTIC SEGMENTATION

TABLE 15. Comparison of proposed network with the state-of-the-art methods on the CamVid 11 road class segmentation problem in terms of storage cost, accuracy and
inference time - performance on desktop - Keras h5 model for CPU using TensorFlow and ONNX model for GPU using NVIDIA TensorRT.

TABLE 16. Comparison of proposed network with the state-of-the-art methods on the CamVid 11 road class segmentation problem in terms of IoU for each class - performance
on desktop - Keras h5 model.

VII. CONCLUSION
One of the main challenges in autonomous driving for smart
vehicles and smart robots, is to implement the real-time
functional modules, such as location, perception and so on,
on a low-power embedded platform at an affordable price.
Semantic segmentation is one of the most critical tasks of
autonomous driving, since it requires massive computation
and storage resources as well as fast real-time performance.
This paper shows that adopting a CNN compression tech-
nique based on tensor decomposition, and an architecture
that combines the U-Net structure and the ResNet residual
blocks, a new architecture named UNet-ResNet that is suit-
able for real-time semantic segmentation, can be derived. The
networks proposed in this paper outperform state-of-the-art
networks both in terms of complexity, and accuracy, as well
as inference time and storage cost. To demonstrate the supe-
riority of the proposed approach a large experimentation on
the low-cost, low-power Raspberry Pi 4 and on two GPUs
platforms have been conducted.

REFERENCES

[1] N. Atif, M. Bhuyan, and S. Ahamed, “A review on semantic segmen-
tation from a modern perspective,” in Proc. Int. Conf. Elect. Electron.
Comput. Eng. (UPCON), 2019, pp. 1–6.

[2] Z.-W. Hong et al., “Virtual-to-real: Learning to control in visual
semantic segmentation,” in Proc. 27th Int. Joint Conf. Artif. Intell.
(IJCAI), Jul. 2018, pp. 4912–4920.

[3] C. Gao, X. Zhang, and H. Wang, “A combined method for multi-
class image semantic segmentation,” IEEE Trans. Consum. Electron.,
vol. 58, no. 2, pp. 596–604, May 2012.

[4] L. Chen et al., “DRINet for medical image segmentation,”
IEEE Trans. Med. Imag., vol. 37, no. 11, pp. 2453–2462,
Nov. 2018.

[5] R. Li, S. Wang, and D. Gu, “Ongoing evolution of visual SLAM from
geometry to deep learning: Challenges and opportunities,” Cogn.
Comput., vol. 10, no. 6, pp. 875–889, 2018.

[6] C. Cadena et al., “Past, present, and future of simultaneous
Localization and mapping: Toward the robust-perception age,” IEEE
Trans. Robot., vol. 32, no. 6, pp. 1309–1332, Dec. 2016.

[7] N. Engelhard, F. Endres, J. Hess, J. Sturm, and W. Burgard, “Real-
time 3D visual SLAM with a hand-held RGB-D camera,” in Proc.
RGB-D Workshop 3D Perception Robot. Eur. Robot. Forum, vol. 180.
Vasteras, Sweden, 2011, pp. 1–15.

130 VOLUME 3, 2022

[8] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop clo-
sure in 2D LIDAR SLAM,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), 2016, pp. 1271–1278.

[9] J. Tang, S. Liu, L. Liu, B. Yu, and W. Shi, “LoPECS: A low-power
edge computing system for real-time autonomous driving services,”
IEEE Access, vol. 8, pp. 30467–30479, 2020.

[10] O. C. B. Silveira, J. G. O. C. de Melo, L. A. S. Moreira,
J. B. N. G. Pinto, L. R. L. Rodrigues, and P. F. F. Rosa, “Evaluating
a visual simultaneous Localization and mapping solution on embed-
ded platforms,” in Proc. IEEE 29th Int. Symp. Ind. Electron. (ISIE),
2020, pp. 530–535.

[11] T. Peng, D. Zhang, D. L. N. Hettiarachchi, and J. Loomis, “An
evaluation of embedded GPU systems for visual SLAM algorithms,”
Electron. Imag., vol. 2020, no. 6, pp. 325–331, 2020.

[12] T. Peng, D. Zhang, R. Liu, V. K. Asari, and J. S. Loomis,
“Evaluating the power efficiency of visual SLAM on embedded GPU
systems,” in Proc. IEEE Nat. Aerosp. Electron. Conf. (NAECON),
2019, pp. 117–121.

[13] R. Giubilato, S. Chiodini, M. Pertile, and S. Debei, “An evaluation
of ROS-compatible stereo visual SLAM methods on a nVidia Jetson
TX2,” Measurement, vol. 140, pp. 161–170, Jul. 2019.

[14] S. Aldegheri, N. Bombieri, D. D. Bloisi, and A. Farinelli, “Data
flow ORB-SLAM for real-time performance on embedded GPU
boards,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
2019, pp. 5370–5375.

[15] J. Tang, L. Ericson, J. Folkesson, and P. Jensfelt, “GCNv2: Efficient
correspondence prediction for real-time SLAM,” IEEE Robot. Autom.
Lett., vol. 4, no. 4, pp. 3505–3512, Oct. 2019.

[16] A. Bokovoy, K. Muravyev, and K. Yakovlev, “Real-time vision-based
depth reconstruction with NVidia Jetson,” in Proc. Eur. Conf. Mobile
Robots (ECMR), 2019, pp. 1–6.

[17] T. Ma, N. Bai, W. Shi, L. Wang, and T. Wu, “Research and applica-
tion of visual SLAM based on embedded GPU,” in Proc. Int. Conf.
Heterogeneous Netw. Qual. Rel. Security Robustness, 2020, pp. 3–21.

[18] T. Ma et al., “Research on the application of visual SLAM in embed-
ded GPU,” Wireless Commun. Mobile Comput., vol. 2021, Jun. 2021,
Art. no. 6691262.

[19] J. Jeon, S. Jung, E. Lee, D. Choi, and H. Myung, “Run your
visual-inertial Odometry on NVIDIA Jetson: Benchmark tests on
a micro aerial vehicle,” IEEE Robot. Autom. Lett., vol. 6, no. 3,
pp. 5332–5339, Jul. 2021.

[20] P. Phueakthong and J. Varagul, “A development of mobile robot
based on ROS2 for navigation application,” in Proc. Int. Electron.
Symp. (IES), 2021, pp. 517–520.

[21] A. Torresani, F. Menna, R. Battisti, and F. Remondino, “A V-SLAM
guided and portable system for photogrammetric applications,”
Remote Sens., vol. 13, no. 12, p. 2351, 2021.

[22] P. Huang, L. Zeng, K. Luo, J. Guo, Z. Zhou, and X. Chen,
“ColaSLAM: Real-time multi-robot collaborative laser SLAM via
edge computing,” in Proc. IEEE/CIC Int. Conf. Commun. China
(ICCC), 2021, pp. 242–247.

[23] M. Liao, D. Wang, and H. Yang, “Deploy indoor 2D laser
SLAM on a Raspberry Pi-based mobile robot,” in Proc. 11th Int.
Conf. Intell. Human–Mach. Syst. Cybern. (IHMSC), vol. 2, 2019,
pp. 7–10.

[24] K. Krinkin, E. Stotskaya, and Y. Stotskiy, “Design and implemen-
tation Raspberry Pi-based omni-wheel mobile robot,” in Proc. Artif.
Intell. Nat. Lang. Inf. Extraction Soc. Media Web Search FRUCT
Conf. (AINL-ISMW FRUCT), 2015, pp. 39–45.

[25] L. D. S. Pinto, L. E. S. A. Filho, L. Mariga, C. L. N. Júnior,
and W. C. Cunha, “EKF-SLAM with autonomous exploration using
a low cost robot,” in Proc. IEEE Int. Syst. Conf. (SysCon), 2021,
pp. 1–7.

[26] J. Lomps, A. Lind, and A. Hadachi, “Evaluation of the robust-
ness of visual SLAM methods in different environments,” 2020,
arxiv.abs/2009.05427.

[27] Y. K. Tee and Y. C. Han, “LiDAR-based 2D SLAM for mobile
robot in an indoor environment: A review,” in Proc. Int. Conf. Green
Energy Comput. Sustain. Technol. (GECOST), 2021, pp. 1–7.

[28] H. A. Miranto, A. N. Jati, and C. Setianingsih, “Realization of point
cloud maps using ROS & visual sensor on Raspberry Pi 3D based
mobile robot,” in Proc. 4th Int. Conf. Inf. Technol. Inf. Syst. Elect.
Eng. (ICITISEE), 2019, pp. 517–522.

[29] F. Zhen, G. Yanning, H. Peng, and Z. Shaojiang, “The implementa-
tion of visual odometer based on Raspberry Pi and robot operating
system,” in Proc. IEEE CSAA Guid. Navig. Control Conf. (CGNCC),
2018, pp. 1–6.

[30] D. T. Son, M. T. Anh, D. D. Tu, L. Van Chuong, T. H. Cuong, and
H. S. Phuong, “The practice of mapping-based navigation system for
indoor robot with RPLIDAR and Raspberry Pi,” in Proc. Int. Conf.
System Sci. Eng. (ICSSE), 2021, pp. 279–282.

[31] Z. Tu, “Auto-context and its application to high-level vision tasks,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2008, pp. 1–8.

[32] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “TextonBoost for
image understanding: Multi-class object recognition and segmenta-
tion by jointly modeling texture, layout, and context,” Int. J. Comput.
Vis., vol. 81, no. 1, pp. 2–23, 2009.

[33] M. Johnson and J. Shotton, Semantic Texton Forests. Berlin,
Germany: Springer, 2010, pp. 173–203.

[34] B. Fulkerson, A. Vedaldi, and S. Soatto, “Class segmentation and
object localization with superpixel neighborhoods,” in Proc. IEEE
12th Int. Conf. Comput. Vis., 2009, pp. 670–677.

[35] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu, “Semantic
segmentation with second-order pooling,” in Proc. Comput. Vis.
ECCV, 2012, pp. 430–443.

[36] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected
CRFs with Gaussian edge potentials,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 24, 2011, pp. 109–117.

[37] X. He, R. S. Zemel, and M. A. Carreira-Perpinan, “Multiscale con-
ditional random fields for image labeling,” in Proc. IEEE Comput.
Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 2, 2004,
pp. 695–702.

[38] L. Ladický, C. Russell, P. Kohli, and P. H. S. Torr, “Associative
hierarchical CRFs for object class image segmentation,” in Proc.
IEEE 12th Int. Conf. Comput. Vis., 2009, pp. 739–746.

[39] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2015, pp. 3431–3440.

[40] W. Liu, A. Rabinovich, and A. C. Berg, “ParseNet: Looking wider
to see better,” 2015, arxiv.abs/1506.04579.

[41] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep
convolutional encoder–decoder architecture for image segmenta-
tion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12,
pp. 2481–2495, Dec. 2017.

[42] A. Kendall, V. Badrinarayanan, and R. Cipolla, “Bayesian SegNet:
Model uncertainty in deep convolutional encoder–decoder architec-
tures for scene understanding,” 2015, arxiv.abs/1511.02680.

[43] S. Zheng et al., “Conditional random fields as recurrent neural
networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2015,
pp. 1529–1537.

[44] A. Arnab, S. Jayasumana, S. Zheng, and P. H. Torr, “Higher order
conditional random fields in deep neural networks,” in Proc. Eur.
Conf. Comput. Vis., 2016, pp. 524–540.

[45] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556.

[46] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional
nets, Atrous convolution, and fully connected CRFs,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018.

[47] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Semantic image segmentation with deep convolutional nets and fully
connected CRFs,” 2014, arXiv:1412.7062.

[48] L. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille, “Attention
to scale: Scale-aware semantic image segmentation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 3640–3649.

[49] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” 2015, arXiv:1511.07122.

[50] Z. Wu, C. Shen, and A. van den Hengel, “High-performance semantic
segmentation using very deep fully convolutional networks,” 2016,
arxiv.abs/1604.04339.

[51] Z. Wu, C. Shen, and A. van den Hengel, “Wider or deeper:
Revisiting the ResNet model for visual recognition,” 2016,
arxiv.abs/1611.10080.

[52] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 2881–2890.

VOLUME 3, 2022 131

FALASCHETTI et al.: LOW-RANK CNN ARCHITECTURE FOR REAL-TIME SEMANTIC SEGMENTATION

[53] C. Hazirbas, L. Ma, C. Domokos, and D. Cremers, “FuseNet:
Incorporating depth into semantic segmentation via fusion-based
CNN architecture,” in Proc. Comput. Vis. ACCV, 2017, pp. 213–228.

[54] A. Valada, G. Oliveira, T. Brox, and W. Burgard, “Towards robust
semantic segmentation using deep fusion,” in Proc. Robot. Sci. Syst.
(RSS) Workshop, vol. 114, 2016, p. 9.

[55] A. Valada, J. Vertens, A. Dhall, and W. Burgard, “AdapNet: Adaptive
semantic segmentation in adverse environmental conditions,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), 2017, pp. 4644–4651.

[56] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in Proc. Med. Image
Comput. Comput.-Assist. Intervent. (MICCAI), 2015, pp. 234–241.

[57] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder–decoder with Atrous separable convolution for seman-
tic image segmentation,” in Proc. Comput. Vis. ECCV, 2018,
pp. 833–851.

[58] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “ENet: A deep
neural network architecture for real-time semantic segmentation,”
2016, arxiv.abs/1606.02147.

[59] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “ICNet for real-time
semantic segmentation on high-resolution images,” in Proc. Eur.
Conf. Comput. Vis. (ECCV), 2018, pp. 405–420.

[60] E. Romera, J. M. Álvarez, L. M. Bergasa, and R. Arroyo, “ERFNet:
Efficient residual factorized ConvNet for real-time semantic segmen-
tation,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 1, pp. 263–272,
Jan. 2018.

[61] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “BiSeNet:
Bilateral segmentation network for real-time semantic segmentation,”
in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 325–341.

[62] R. P. K. Poudel, S. Liwicki, and R. Cipolla, “Fast-SCNN: Fast
semantic segmentation network,” 2019, arxiv.abs/1902.04502.

[63] M. Oršic, I. Krešo, P. Bevandic, and S. Šegvic, “In defense of pre-
trained ImageNet architectures for real-time semantic segmentation of
road-driving images,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2019, pp. 12599–12608.

[64] P. Chao, C.-Y. Kao, Y.-S. Ruan, C.-H. Huang, and Y.-L. Lin,
“HarDNet: A low memory traffic network,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis., 2019, pp. 3552–3561.

[65] P. Yin, R. Yuan, Y. Cheng, and Q. Wu, “Deep guidance
network for biomedical image segmentation,” IEEE Access, vol. 8,
pp. 116106–116116, 2020.

[66] L. Jing, Y. Chen, and Y. Tian, “Coarse-to-fine semantic segmentation
from image-level labels,” in Proc. CVPR, 2018, pp. 1–10.

[67] S. Pan, Y. Tao, C. Nie, and Y. Chong, “PEGNet: Progressive
edge guidance network for semantic segmentation of remote sens-
ing images,” IEEE Geosci. Remote Sens. Lett., vol. 18, no. 4,
pp. 637–641, Apr. 2021.

[68] L. V. Tran and H.-Y. Lin, “BiLuNetICP: A deep neural network
for object semantic segmentation and 6D pose recognition,” IEEE
Sensors J., vol. 21, no. 10, pp. 11748–11757, May 2021.

[69] G. Dong, Y. Yan, C. Shen, and H. Wang, “Real-time high-
performance semantic image segmentation of urban street scenes,”
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 6, pp. 3258–3274,
Jun. 2021.

[70] J. Shotton, M. Johnson, and R. Cipolla, “Semantic texton forests
for image categorization and segmentation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2008, pp. 1–8.

[71] P. Sturgess, K. Alahari, L. Ladicky, and P. Torr, “Combining
appearance and structure from motion features for road scene
understanding,” in Proc. BMVC, Sep. 2009, pp. 1–11.

[72] L’. Ladický, P. Sturgess, K. Alahari, C. Russell, and P. H. S. Torr,
“What, where and how many? Combining object detectors and
CRFs,” in Proc. Comput. Vis. ECCV, 2010, pp. 424–437.

[73] P. Kontschieder, S. R. Bulò, H. Bischof, and M. Pelillo, “Structured
class-labels in random forests for semantic image labelling,” in Proc.
Int. Conf. Comput. Vis., 2011, pp. 2190–2197.

[74] C. Zhang, L. Wang, and R. Yang, “Semantic segmentation of urban
scenes using dense depth maps,” in Proc. Comput. Vis. (ECCV),
2010, pp. 708–721.

[75] J. Tighe and S. Lazebnik, “SuperParsing: Scalable nonparametric
image parsing with Superpixels,” in Proc. Comput. Vis. (ECCV),
2010, pp. 352–365.

[76] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmen-
tation and support inference from RGBD images,” in Proc. Comput.
Vis. (ECCV), 2012, pp. 746–760.

[77] X. Ren, L. Bo, and D. Fox, “RGB-(D) scene labeling: Features and
algorithms,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2012, pp. 2759–2766.

[78] P. Pinheiro and R. Collobert, “Recurrent convolutional neural
networks for scene labeling,” in Proc. 31st Int. Conf. Mach. Learn.,
vol. 32, Jun. 2014, pp. 82–90.

[79] S. Hong, H. Noh, and B. Han, “Decoupled deep neu-
ral network for semi-supervised semantic segmentation,” 2015,
arxiv.abs/1506.04924.

[80] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proc. ICLR, 2015, pp. 1–6.

[81] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 25, 2012, pp. 1106–1114.

[82] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” in Proc. ICCV, 2015, pp. 1520–1528.

[83] L. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking
Atrous convolution for semantic image segmentation,” 2017,
arxiv.abs/1706.05587.

[84] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2016, pp. 770–778.

[85] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 4510–4520.

[86] Y. L. Cun, J. S. Denker, and S. A. Solla, Optimal Brain Damage.
San Francisco, CA, USA: Morgan Kaufmann, 1990, pp. 598–605.

[87] S. J. Hanson and L. Y. Pratt, “Comparing biases for minimal network
construction with back-propagation,” in Proc. 1st Int. Conf. Neural
Inf. Process. Syst. (NIPS), 1988, pp. 177–185.

[88] N. Ström, “Phoneme probability estimation with dynamic sparsely
connected artificial neural networks,” Free Speech J., vol. 5,
nos. 1–41, p. 2, 1997.

[89] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proc. IEEE, vol. 108, no. 4, pp. 485–532, Apr. 2020.

[90] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y.
Bengio, “Binarized neural networks: Training deep neural networks
with weights and activations constrained to +1 or −1,” 2016,
arxiv.abs/1602.02830.

[91] T. G. Kolda and B. W. Bader, “Tensor decompositions and applica-
tions,” SIAM Rev., vol. 51, no. 3, pp. 455–500, Sep. 2009.

[92] A. Cichocki et al., “Tensor decompositions for signal processing
applications: From two-way to multiway component analysis,” IEEE
Signal Process. Mag., vol. 32, no. 2, pp. 145–163, Mar. 2015.

[93] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang,
E. E. Papalexakis, and C. Faloutsos, “Tensor decomposition for sig-
nal processing and machine learning,” IEEE Trans. Signal Process.,
vol. 65, no. 13, pp. 3551–3582, Jul. 2017.

[94] S. Lin, R. Ji, C. Chen, D. Tao, and J. Luo, “Holistic CNN com-
pression via low-rank decomposition with knowledge transfer,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 41, no. 12, pp. 2889–2905,
Dec. 2019.

[95] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and
D. P. Mandic, “Tensor networks for dimensionality reduction
and large-scale optimization: Part 1 low-rank tensor decomposi-
tions,” Found. Trends Mach. Learn., vol. 9, nos. 4–5, pp. 249–429,
Dec. 2016.

[96] R. A. Harshman, “The problem and nature of degenerate solu-
tions or decompositions of 3-way arrays,” in Proc. Talk Tensor
Decompositions Workshop, Palo Alto, CA, USA, 2004, p. 79.

[97] A.-H. Phan, P. Tichavský, and A. Cichocki, “Error preserving correc-
tion: A method for CP decomposition at a target error bound,” IEEE
Trans. Signal Process., vol. 67, no. 5, pp. 1175–1190, Mar. 2019.

[98] A.-H. Phan et al., “Stable low-rank tensor decomposition for com-
pression of convolutional neural network,” in Proc. Comput. Vis.
ECCV, 2020, pp. 522–539.

[99] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2015, arxiv.abs/1512.03385.

132 VOLUME 3, 2022

[100] Z. Chu, T. Tian, R. Feng, and L. Wang, “Sea-land segmentation with
RES-UNet and fully connected CRF,” in Proc. IEEE Int. Geosci.
Remote Sens. Symp. (IGARSS), 2019, pp. 3840–3843.

[101] O. Russakovsky et al., “ImageNet large scale visual recognition
challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[102] A. G. Howard et al., “MobileNets: Efficient convolutional
neural networks for mobile vision applications,” 2017,
arxiv.abs/1704.04861.

[103] F. Chollet, “XCeption: Deep learning with depthwise separable
convolutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2017, pp. 1800–1807.

[104] “Motion-based segmentation and recognition dataset.” [Online].
Available: http://mi.eng.cam.ac.uk/research/projects/VideoRec/
CamVid/(Accessed: Jun. 10, 2021).

[105] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, “Segmentation
and recognition using structure from motion point clouds,” in Proc.
Comput. Vis. ECCV, 2008, pp. 44–57.

[106] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes
in video: A high-definition ground truth database,” Pattern Recognit.
Lett., vol. 30, no. 2, pp. 88–97, Jan. 2009.

[107] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both
weights and connections for efficient neural networks,” 2015,
arXiv.abs/1506.02626.

[108] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and Huffman
coding,” in Proc. 4th Int. Conf. Learn. Rep. (ICLR), May 2016,
pp. 1–6.

[109] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient ConvNets,” in Proc. ICLR, 2017, pp. 1–13.

[110] Z. Li et al., “AutoFFT: A template-based FFT codes auto-generation
framework for ARM and X86 CPUs,” in Proc. Int. Conf. High
Perform. Comput. Netw. Storage Anal. (SC), 2019, pp. 1–15.

[111] D. Yan, W. Wang, and X. Chu, Optimizing Batched Winograd
Convolution on GPUs. New York, NY, USA: Assoc. Comput. Mach.,
2020, pp. 32–44.

[112] A. Vasudevan, A. Anderson, and D. Gregg, “Parallel multi chan-
nel convolution using general matrix multiplication,” in Proc. IEEE
28th Int. Conf. Appl. Specif. Syst. Archit. Process. (ASAP), 2017,
pp. 19–24.

[113] G. Lu, W. Zhang, and Z. Wang, “Optimizing Depthwise separable
convolution operations on GPUs,” IEEE Trans. Parallel Distrib. Syst.,
vol. 33, no. 1, pp. 70–87, Jan. 2022.

[114] “NVIDIA, CUDA C++ best practices guide.” [Online]. Available:
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
(Accessed: Apr. 23, 2022).

LAURA FALASCHETTI (Member, IEEE) received the B.Sc., M.Sc., and
Ph.D. degrees in electronic engineering from the Università Politecnica delle
Marche, Ancona, Italy, in 2008, 2012, and 2016, respectively. In 2017, she
joined the Department of Information Engineering, Università Politecnica
delle Marche as a Postdoctoral Research Fellow, where she is currently a
Postdoctoral Researcher and an Assistant Professor of Electronic Systems.
Her current research interests include embedded systems, machine learning,
neural networks, manifold learning, pattern recognition, signal processing,
image processing, speech processing, and biosignal analysis.

LORENZO MANONI (Graduate Student Member, IEEE) received the
B.Sc. and M.Sc. degrees in electronics engineering and the Ph.D. degree
in information engineering from the Università Politecnica delle Marche,
Ancona, Italy, in 2015, 2018, and 2022, respectively, where he is cur-
rently a Research Fellow with the Department of Information Engineering.
His current research interests include signal processing, embedded systems,
machine learning, convolutional neural networks, algorithms analysis and
design, and biosignal analysis.

CLAUDIO TURCHETTI (Life Member, IEEE) received the Laurea degree
in electronics engineering from the University of Ancona, Ancona, Italy,
in 1979. He joined the Università Politecnica delle Marche, Ancona, in
1980, where he was the Head of the Department of Electronics, Artificial
Intelligence and Telecommunications for five years and is currently a Full
Professor of Micro-Nanoelectronics and Design of Embedded Systems.
He has published more than 160 journal and conference papers, and
two books. The most relevant papers were published in IEEE JOURNAL

OF SOLID-STATE CIRCUITS, IEEE TRANSACTIONS ON ELECTRON

DEVICES, IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF

INTEGRATED CIRCUITS AND SYSTEMS, IEEE TRANSACTIONS ON

NEURAL NETWORKS AND LEARNING SYSTEMS, IEEE TRANSACTIONS

ON SIGNAL PROCESSING, IEEE TRANSACTIONS ON CYBERNETICS,
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, IEEE
TRANSACTIONS ON CONSUMER ELECTRONICS, and Information Sciences.
He has held a variety of positions as a Project Leader in several applied
research programs developed in cooperation with small, large, and multi-
national companies in the field of microelectronics. His current research
interests include statistical device modeling, RF integrated circuits, device
modeling at nanoscale, computational intelligence, signal processing, pattern
recognition, system identification, machine learning, and neural networks.
He has served as a program committee member for several conferences and
as a reviewer for several scientific journals. He is a member of the IEEE,
Computational Intelligence and Signal processing Society. He has been an
Expert Consultant of the Ministero dell’Università e Ricerca.

VOLUME 3, 2022 133

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

