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ABSTRACT Digital mismatch calibration for quantized analog (QA) signal processing is proposed for
the first time. Since the proposed calibration mechanism does not require uniform QA slicer levels, non-
uniform quantization can be applied to improve the system performance. We propose two methods utilizing
the genetic algorithm and µ-law to find non-uniform slicer levels offering superior performance compared
to uniform levels. Simulations show that for a QA amplifier consisting of 32 slices, the signal-to-noise-
and-distortion ratio (SNDR) under a multitone input can be doubled by adjusting only the quantization
levels while maintaining the same structure and same power, compared to uniform quantization levels
that provide 54 dB of SNDR.

INDEX TERMS Quantized analog (QA), digital calibration, adaptive linear combiner (ALC), non-uniform
quantization, peak-to-average power ratio (PAPR), genetic algorithms, µ-law.

I. INTRODUCTION

QUANTIZED analog (QA) signal processing is a
technique that decomposes the signal into multiple

portions, where each portion is processed by an indepen-
dent signal path. Unlike analog-to-digital converters (ADCs),
which convert analog signals into digital form, a QA ampli-
fier converts the input signal into both liquid digital “bits”
and analog residues [1]. Compared to an analog amplifier, a
QA amplifier has an expanded dynamic range (DR) because
its compression point can be higher than the voltage sup-
ply [2]. Furthermore, the DR of a QA amplifier can be tuned
by adjusting the overlap between the adjacent slices, making
it suitable for reconfigurable RF receiver applications. For
example, the QA receiver front-end in [1] has a reconfig-
urable DR, and its 1-dB compression point can be tuned
from −8.5 to 10.5 dBm under a 0.8-V supply.
QA signal processing has three essential blocks, as shown

in Fig. 1(a). The first block is the slicer, whose job is to
determine which portion of the input signal each slice shall
process. The slicing of the input signal can be realized by
adding an offset voltage at the input of each path. Depending

on the input signal level and the offset of each slice, some
slices carry the liquid digital “bits” by saturating to ground or
the supply voltage while others carry the analog residue [1].
Thus, the QA signal after the slicer is carried in both digital
and analog forms. Further processing of the QA signal after
the slicer may include filtering and digitization. Finally, the
combiner adds the signal from each path together. A digital
combiner has significant advantages over an analog combiner
because the latter suffers from the DR limitation imposed
by the supply voltage, whereas the DR of a digital combiner
is limited by the number of bits available. Therefore, it is
desirable to include an ADC before the combiner to allow for
digital recombination, assuming that the system ultimately
requires digital signal processing, for example, in wireless
receiver applications.
Although the structure of QA signal processing with back-

end ADCs is akin to that of a folding ADC [3], several
important differences exist. First, the folding amplifier cre-
ates a piecewise-linear input-output characteristic whose gain
polarity changes every fold. By contrast, the QA ampli-
fier does not “fold” the signal; instead, it performs a
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FIGURE 1. (a) Existing QA signal processing structure and (b) proposed QA signal
processing structure with adaptive output recombination and slicer optimization.

“slicing” operation whereby the input-output characteristic
is monotonic. Second, a coarse ADC is not required in the
QA structure. Third, folding ADCs often require preceding
sample-and-hold (S/H) circuits to alleviate the problem of
frequency multiplication inherent to the folding operation [4],
as well as to synchronize the folding path with the coarse
ADC path [5]. However, in a QA amplifier with ADCs,
there is no systematic delay mismatch, so the S/H operation
is not required prior to the ADCs. Hence, QA signal pro-
cessing can take advantage of continuous-time (CT) ADCs,
such as CT delta-sigma ADCs, with benefits like inherent
anti-aliasing [6].
There are two major shortcomings in all the existing works

on QA signal processing, which use uniformly distributed
slicer levels and unweighted adders for output recombina-
tion [1], [2], [7], [8]. The first is that the slicer levels,
in reality, will inevitably deviate from the desired uniform
distribution due to mismatch. The work in [1] argues that
the mismatches can be averaged by having enough overlap
between adjacent slices. However, enforcing a large overlap
of QA units hinders the DR expansion; thus, the QA ampli-
fier cannot be exploited to its full potential. The second is

FIGURE 2. Adaptive linear combiner for quantized analog signal processing.

that uniform slicing is not necessarily optimal for all input
scenarios because it neglects the statistical characteristics of
the signal completely. As shown in Fig. 1(b), this work pro-
poses digital algorithms that act on the QA slicer and the
combiner to address these shortcomings. In Section II, we
propose an all-digital calibration method using an adaptive
linear combiner (ALC) that can correct the QA slicer mis-
match by acting solely on the combiner. Then, in Section III,
we introduce optimization algorithms based on the genetic
algorithm (GA) and the µ-law algorithm to find non-uniform
slicer levels that offer performance superior to uniform levels
for different input statistics.

II. ADAPTIVE OUTPUT RECOMBINATION
The QA slicer performs the slicing and the amplification of
the partially quantized signal, both of which are adversely
affected by the mismatch in the sub-amplifiers. Fig. 2 shows
the system model of the QA amplifier with the digital cal-
ibration block using the ALC, which is implemented in
MATLAB, preceded by ideal 10-bit ADCs. The ADC res-
olution is chosen such that the thermal noise of the QA
amplifier is at least 10 dB higher than the ADC quanti-
zation noise, as we will see later in this section. The QA
amplifier is implemented using inverter amplifiers in 28nm
CMOS technology. The transistor VT mismatch results in
random variations in both the inverter threshold and gain.
The offset variation (threshold variation) occurs when the
PMOS and the NMOS VT values move in the same direc-
tion, whereas the gain variation occurs when the VT values
move in opposite directions [8]. As a result, the threshold
variation directly translates to variations in the QA slicer
levels, while the gain variation results in non-uniform gain
among the QA signal paths.
The ideal QA amplifier small-signal gain along with the

Monte Carlo results are shown in Fig. 3, where the QA
amplifier has 18 slices, and the voltage offset is �V =
47 mV. Transistor mismatch models are used in the QA
amplifier and the number of Monte Carlo trials is 100. As
shown, the mismatch results in greater ripples in the QA
amplifier gain, which deteriorates the system’s linearity. The
percentage gain variation increases from 1.3% to 9.6% due
to mismatch. This necessitates a calibration mechanism that
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FIGURE 3. (a) Ideal QA amplifier gain (N = 18) (b) Monte-Carlo QA amplifier gain
with mismatch (N = 18).

can smoothen the gain ripples and improve the linearity of
the QA amplifier. The aim of this section is to demonstrate
that the ALC with the LMS algorithm can digitally calibrate
for this mismatch.

A. ADAPTIVE LINEAR COMBINER USING THE LMS
ALGORITHM
Let N be the number of QA amplifier slices, and X be the
column vector containing all the digital QA outputs from all
slices:

X = [x1 x2 · · · xi · · · xN]T

The ALC performs a weighted sum of the QA outputs using
the weight vector:

W = [w1 w2 · · · wi · · · wN]T

and produces a single output:

y = XTW (1)

The weight vector W is obtained using the LMS algorithm,
which is commonly used in adaptive systems due to its
computational efficiency, simple implementation and robust-
ness [9]. The reference signal for the LMS is either a known
sequence during foreground calibration, or in data communi-
cation applications may be decision-directed for background
calibration [10].

FIGURE 4. Monte-Carlo QA amplifier gain with mismatch after calibration (N = 18).

FIGURE 5. SNDR and THD histograms with 100 seeds before and after calibration.

Although the precise resolution requirement of the ALC
cannot be accurately determined without a detailed design,
it can be reasonably estimated following the resolution of
the ADCs. To prevent degrading the quantization noise floor
of the QA output, the number of bits used in the ALC shall
not be lower than that of the ADCs. The simulation results
presented hereafter use 10-bit resolution for the ALC.

B. MISMATCH CALIBRATION
Foreground calibration is used to train the ALC weights.
The training signal is a 0.3 Vpp sinusoid at 2.66 MHz. Fig. 4
shows the QA amplifier gain after calibration with 100 Monte
Carlo trials. The ALC significantly reduces the QA amplifier
gain ripple by tuning the summation weight of each slice
digitally for the input range covered by the training signal.
The maximum percentage gain variation is reduced from
9.6% to 4.1%. Thus, the ALC can be seen as a block that
linearizes the QA amplifier gain by counteracting the non-
linearity introduced by random mismatch.
The quantitative improvements are summarized by his-

tograms in Fig. 5. The LMS algorithm minimizes the
mean-squared error between the ALC output and the refer-
ence signal, which contains both thermal noise and distortion.
The SNDR in the ideal case is thermal noise limited and
is degraded by distortion due to mismatch in the practi-
cal case. Hence, we expect the SNDR to be thermal noise
limited after calibration if the ALC sufficiently reduces the
gain ripple. This can be confirmed in Fig. 5(a), where the
SNDR after calibration reach the same value as the ideal
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FIGURE 6. QA amplifier (N = 18) gain without mismatch before and after calibration
using the ALC.

case, which is 55.4 dB. On the other hand, since the har-
monic distortions do not have a hard limit, the total harmonic
distortion (THD) values after calibration may have a small
variance, but they should all be lower than the noise power,
as shown in Fig. 5(b). Interestingly, more than half of the
trials after calibration have lower THD than the ideal case.
These marginal improvements in linearity are obtained with
completely random variations in the inverter threshold and
gain. This suggests that the performance of the QA ampli-
fier can be improved with non-uniform quantization spacing,
which will be investigated in Section III.
The proposed calibration algorithm operates in the fore-

ground. The limitation of foreground calibration is that it
does not track temperature variations continuously. There
are two possible ways to overcome this. One is to perform
foreground calibration periodically, for example, in certain
applications where the system needs to be re-calibrated at
wake-up [11], [12]. In applications where the system is never
taken offline, it can be calibrated first using a known refer-
ence before switching to the decision-directed mode whereby
the reference is obtained from the output decisions [10].
Although the proposed calibration method is in the digital

domain, the same principle is applicable to QA structures
with analog recombination where the signal does not need
to be digitized. For example, the ALC can be realized
by common-source amplifiers with tunable gate bias volt-
ages [13]. Thus, in principle, the mismatch in the QA
amplifier can nonetheless be calibrated without using ADCs.

C. COMPENSATION FOR QA AMPLIFIER GAIN
COMPRESSION
Besides mismatch calibration, the ALC can also serve as a
compensation for gain compression so that any QA ampli-
fier could benefit from it, whether the mismatch requires
calibration or not. Fig. 6 shows the QA amplifier gain with-
out mismatch before and after calibration using a 0.7 Vpp
training signal, which has a larger amplitude to explore the
input range where the gain rolls off, causing large-signal dis-
tortion. It is important to note that although the offsets are
uniformly spaced, the QA amplifier gain before calibration
is not perfectly uniform due to uneven overlap among the
slices. For example, the first and last slices in the inverter

FIGURE 7. QA amplifier (N = 18) output spectrum before and after ALC calibration
without mismatch (BW/NBW = 31 dB).

amplifier array have less adjacent slices, resulting in less
overlap and lower small-signal gain for the highest and low-
est input signal levels. Fortunately, this gain roll-off can be
compensated by the ALC due to its ability to digitally adjust
the gain of each slice. As shown, the gain after ALC cal-
ibration is flatter for the entire input range covered by the
training signal. This creates a much sharper roll-off. In other
words, the ALC can be seen as a digital non-linearity correc-
tion that reverses the gain compression of the QA amplifier,
or indeed anywhere in the analog signal path.
The quantitative improvement is shown in the output spec-

trum in Fig. 7, where the test signal is a 0.7 Vpp tone at
3.38 MHz and the input full-scale of the QA amplifier is
0.8 Vpp. The gain compression results in significant har-
monic distortions, which are then suppressed by the ALC.
The SNDR improvement is from 43 dB to 61 dB (by 18 dB).
The THD is reduced from −43 dB to −66 dB (by 23 dB).

III. QUANTIZATION LEVEL OPTIMIZATION
Analog front-ends are expected to handle various input sce-
narios due to the growing demand for multistandard wireless
receivers [14]–[18]. The drawback of uniform quantiza-
tion, which is used in all the prior works on QA signal
processing [1], [2], [7], [8], is that it hinders the QA
slicer from being optimized for different scenarios. Uniform
quantization, even with adaptive DR [1], only takes into
account the input amplitude and ignores the statistical char-
acteristics of the signal entirely. In many applications, we
expect the signal to be non-uniformly distributed over the
input range, affording opportunities for non-uniform quan-
tization. For example, it is well-known that orthogonal
frequency-division multiplexing (OFDM) signals have very
high peak-to-average power ratios (PAPR), which means that
samples of the signal are mostly concentrated in a much
smaller range than the maximum amplitude. The idea of
non-uniform quantization is not foreign as it has been stud-
ied extensively for ADCs. For example, the Lloyd-Max (LM)
algorithm [19] can determine the SQNR-optimal threshold
levels of an ADC given the input probability density function
(PDF). Also, several other works proposed algorithms to find
the BER-optimal quantization levels for ADC-based wireline
receivers [20]–[22]. However, it is important to note that in
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FIGURE 8. QA amplifier behavioral model for quantization level optimization.

this work, “quantization” is the slicing of the input signal by
the QA slicer, and the “quantization levels” determine which
portion of the input signal each slice shall process. It is
important to distinguish QA slicer quantization, also known
as liquid digital decomposition [1], from ADC quantization,
which is fully digitization. Therefore, the optimal QA slicer
(quantization) levels do not necessarily correlate with the
ADC quantization levels provided by those algorithms.

A. THE GENETIC ALGORITHM
This work considers the SNDR as the cost function for
the quantization level optimization. Although gradient-based
algorithms are popular candidates for many optimization
problems, the SNDR performance space of the QA quantiza-
tion levels contains local extrema that could potentially trap a
gradient-based optimizer. Moreover, the quantization levels
of the QA amplifier are ultimately controlled by digital-
to-analog converters (DACs) in the circuit implementation.
Consequently, their voltage values are discrete variables, for
which gradient-based algorithms are not best suited. The
most primitive discrete variable optimizer is an exhaustive
search, which examines all possible combinations of the vari-
ables to locate the global extrema. However, the complexity
of the performance space makes an exhaustive search imprac-
tical because the search space is N-dimensional, where N is
the number of slices. Hence, we require a discrete variable
optimizer that is time-efficient and performs well for cost
functions containing local extrema.
One promising candidate satisfying the criteria listed

above for QA quantization level optimization is the GA [23],
which is an evolutionary algorithm inspired by the law of
natural selection. GAs have been applied in analog design for
automated circuit synthesis [24], [25] and finding optimal cir-
cuit coefficients for wireline receiver analog front-ends [26].
Moreover, GAs have the advantage of not having to rely
on assumptions about the performance landscape, which in
this case varies considerably based on the operative scenario,
especially for wireless applications. In this work, we use the
GA as a global optimizer for various test cases. The behav-
ioral model of the QA system for the GA optimization is
shown in Fig. 8. To accelerate the GA, the inverter ampli-
fiers are modelled using tanh functions fit to simulations in
a 28nm CMOS technology as described in Appendix A, and

FIGURE 9. QA amplifier (N = 32) quantization levels before and after the GA
optimization for eight-tone input when the SNDR is noise-limited.

FIGURE 10. QA amplifier (N = 32) quantization levels before and after the GA
optimization for sinusoidal input when the SNDR is noise-limited.

the ADCs are modelled as unity gain buffers. We let vos,i
be the offset voltage added to the input of the ith slice. The
vector notation for all the offset voltages is:

Vos = [
vos,1 vos,2 · · · vos,i · · · vos,N

]T

The genes of the GA are Vos vectors and the cost func-
tion is SNDR. When evaluating the SNDR, the GA assumes
that the ALC weights are determined by the LMS algorithm
for each vector Vos and fixed after convergence. To accel-
erate the simulations, the outcome of the LMS algorithm is
found using the quadratic programming algorithm described
in Appendix B. A detailed description of the GA is provided
in Appendix C.

B. INPUT SIGNAL SETUP
We consider two practical scenarios in wireless communica-
tion receivers where highly non-uniform input distributions
arise. First, we construct an input with a peak amplitude of
0.707 Vpp using eight equal amplitude sinusoidal tones. The
PAPR is 12 dB, which is similar to a typical OFDM signal,
and the input PDF is shown in Fig. 9. It can be observed
that the signal content is concentrated in a much smaller
region than the peak-to-peak swing. The second scenario is
a single-tone sinusoidal input, which emulates a narrow-band
blocker. With the same peak-to-peak amplitude of 0.707 Vpp,
the sinusoid is more likely to be sampled at its peak, and
its PDF is higher at the two ends, as shown in Fig. 10.
Since the two input scenarios have very different statistical

42 VOLUME 3, 2022



characteristics, we expect the GA to produce very different
level distributions.

C. INTUITION BEHIND NON-UNIFORM LEVEL
DISTRIBUTION
We can first qualitatively set expectations of how non-
uniform level distributions can improve the SNDR of the
QA amplifier assuming it is thermal noise limited, using
the LM algorithm [19] as an analogy. The LM algorithm
minimizes the quantization noise power of an ADC by con-
densing the levels where the input PDF is higher so that the
quantization error is less for the more frequently arising sig-
nal levels. For the signal levels where the PDF is lower, the
LM algorithm allows the instantaneous quantization error to
be higher because it has less impact on the overall SQNR.
It is important to note that the QA amplifier does not

digitize the signal like an ADC because it produces a com-
bination of liquid bits and analog residues. Hence, the LM
algorithm, which assumes full digitization, is not suitable for
SNDR optimization of the QA amplifier. Nevertheless, the
same intuition can be applied to explain why non-uniform
quantization could be advantageous for the QA amplifier. For
the thermal noise limited case, the SNDR can be maximized
by reducing the noise for signal levels where the PDF is
higher while allowing higher noise elsewhere. Therefore, we
expect the optimized quantization levels to be more closely-
spaced in the high PDF regions, affording the QA amplifier
higher gain at these signal levels so that the input-referred
noise (IRN) is lowered. One challenge is that non-uniform
level spacing will result in considerable gain variation, since
less-frequently arising input signal levels will experience
lower gain through the QA amplifier. Fortunately, the ALC
can digitally correct for this gain variation. In what follows,
we quantify the improvement of such optimization.

D. GA OPTIMIZATION FOR THERMAL NOISE LIMITED
SNDR
The SNDR of the QA amplifier could be limited by either
distortion or thermal noise. Therefore, it is important to study
the two scenarios separately. The small-signal distortion of
the QA amplifier depends on the overlap, which is con-
trolled by the total number of slices [1]. For the simulations
presented hereafter, the number of slices used in the QA
amplifier are 32 and 16, in order to emulate a noise limited
scenario and a distortion limited scenario, respectively. We
first consider the case where the SNDR is limited by thermal
noise. The QA amplifier has 32 slices (N = 32), and the
IRN of each unsaturated slice has a total integrated power
of 1.98 × 10−7 V2.

1) EIGHT-TONE INPUT

The GA is initialized with uniform quantization levels, and
the level spacing is chosen from an exhaustive search to
maximize the SNDR before the optimization. The SNDR
adaptation is shown in Fig. 11(a). The SNDR improvement
is from 54.3 dB to 58.0 dB (by 3.7 dB) over 200 generations

FIGURE 11. QA amplifier (N = 32) GA adaptation for (a) eight-tone input
(b) sinusoidal input.

FIGURE 12. QA amplifier (N = 32) gain with uniform and non-uniform
(genetic) quantization levels under eight-tone input when SNDR is noise-limited
(a) pre-ALC (b) post-ALC.

of the GA. The initial and final quantization levels are shown
in Fig. 9.
As expected, the GA concentrates the quantization levels

so that the QA amplifier gain is higher where the input PDF
is higher, as shown in Fig. 12(a). Although the resulting QA
amplifier gain is non-linear, it is corrected by the digital ALC
as shown in Fig. 12(b). This confirms the prediction that the
optimal levels shall be distributed such that the IRN is lower
for signal levels where the input arises more frequently.

2) SINUSOIDAL INPUT

The GA adaptation for the sinusoidal input scenario is shown
in Fig. 11(b). The SNDR improvement is from 62.2 dB to
63.9 dB (by 1.7 dB) over 200 generations of the GA. The
initial and final quantization levels are shown in Fig. 10.
In contrast to the eight-tone input, a sinusoid is more

likely to be sampled at its peaks, so we expect the optimized
quantization levels to produce higher gain near the peaks
of the input signal, as shown in Fig. 13(a). Similar to the
eight-tone case, the non-linearity of the QA amplifier gain
is corrected by the ALC, as shown in Fig. 13(b).

E. GA OPTIMIZATION FOR DISTORTION LIMITED SNDR
We now consider the case where the SNDR of the QA
amplifier is limited by distortion caused by the gain rip-
ple in the input-output transfer characteristics. Although this
distortion can be reduced by increasing the overlap between
the slices [2], the penalty is either a reduction of the input
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FIGURE 13. QA amplifier (N = 32) gain with uniform and non-uniform (genetic)
quantization levels under sinusoidal input when SNDR is noise-limited (a) pre-ALC
(b) post-ALC.

FIGURE 14. QA amplifier (N = 16) GA adaptation for (a) eight-tone input
(b) sinusoidal input.

FIGURE 15. QA amplifier (N = 16) quantization levels before and after the GA
optimization for eight-tone input when the SNDR is distortion-limited.

range or the use of impractically large number of slices,
which inevitably results in substantial chip area and design
complexity (e.g., 100 as done in [1]). Thus, the possibility
of using non-uniform quantization to reduce the gain rip-
ple becomes very attractive because it does not necessarily
compromise the input range expansion of the QA amplifier.
To emulate a distortion-limited scenario, the number of QA
slices is reduced to 16 to increase the gain ripple and the
simulations are performed with noise sources turned off.

1) EIGHT-TONE INPUT

The GA improves the SNDR from 64.3 dB to 71.7 dB (by
7.4 dB), as shown in Fig. 14(a). It is important to note that
noise is completely neglected in the simulation so the SNDR
values only reflect the signal to distortion power ratio. The
initial and final quantization levels are shown in Fig. 15.

FIGURE 16. QA amplifier (N = 16) gain with uniform and non-uniform (genetic)
quantization levels under eight-tone input when SNDR is distortion-limited (a) pre-ALC
(b) post-ALC.

FIGURE 17. QA amplifier (N = 16) quantization levels before and after the GA
optimization for sinusoidal input when the SNDR is distortion-limited.

FIGURE 18. QA amplifier (N = 16) gain with uniform and non-uniform (genetic)
quantization levels under sinusoidal input when SNDR is distortion-limited
(a) pre-ALC (b) post-ALC.

We expect the optimal quantization levels to be distributed
such that the post-ALC gain of the QA amplifier has as little
ripple as possible, especially for the signal levels where the
input arises more frequently, as shown in Fig. 16.

2) SINUSOIDAL INPUT

The SNDR adaptation is shown in Fig. 14(b). The SNDR
improvement is from 68.8 dB to 79.9 dB (by 11.1 dB).
Again, this SNDR value only reflects the signal to distor-
tion power ratio. The initial and final quantization levels are
shown in Fig. 17. Similar to the eight-tone scenario, the
GA-optimized levels are distributed such that the post-ALC
QA amplifier gain has as little ripple as possible, despite
the fact that the pre-ALC gain is non-linear, as shown in
Fig. 18.

44 VOLUME 3, 2022



TABLE 1. Comparison between GA optimization and µ-law optimization for noise
limited SNDR.

F. µ-LAW OPTIMIZATION
Although the GA is a powerful algorithm that can optimize
the QA quantization levels and improve the performance sig-
nificantly, it still suffers from the time complexity because it
requires the evaluation of the cost function for a large number
of candidate Vos distributions. The fundamental challenge is
the complexity of the N-dimensional search space of Vos.
This motivates the need for a heuristic that can constrain
the search space. Through application of the GA, we notice
that the QA amplifier SNDR (noise-limited) is improved
by concentrating the quantization levels in the region where
the input PDF is high. This insight allows us to reduce the
dimensionality of the optimization search space. Specifically,
µ-law is a coding algorithm originally proposed for com-
panding audio signals in digital transmission with only one
free parameter [27]. We propose a modified µ-law to param-
eterize the compression or expansion of the QA quantization
levels resulting in performance similar to that achieved by
global optimization using the GA, but without running a
long GA simulation.
The proposed µ-law search method is a two-dimensional

parameter sweep to find the SNDR-optimal quantization lev-
els. The first parameter is µ, which controls the degree of
logarithmic compression or expansion. First, a uniform level
distribution between −1 and 1 is created:

Uos = [
uos,1 uos,2 · · · uos,i · · · uos,N

]T

Then the distribution is compressed or expanded by:

vos,i = δmax ·

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sgn
(
uos,i

) (1 + μ)|uos,i| − 1

μ
, μ > 0

uos,i, μ = 0

sgn
(
uos,i

) ln
(
1 − μ

∣∣uos,i
∣∣)

ln (1 − μ)
, μ < 0

(2)

where δmax sets the degree of linear compression and it
equals to the maximum value in the Vos array. Note that
equation (2) logarithmically compresses the quantization lev-
els when μ > 0, and expands the quantization levels when
μ < 0. Thus, the SNDR of the QA amplifier can be eval-
uated as a function of µ and δmax. Since there are only 2
parameters, an exhaustive search of all reasonable values of
µ and δmax can be performed to find their global optimum.

The same SNDR simulation setup as the GA is used to
evaluate the 2D search surface for µ-law optimization. The
SNDR performance surfaces for the thermal noise limited
cases are shown in Fig. 19, and the results are summairzed
in Table 1 in comparison with the GA. It is expected that the
GA, which is a global optimizer, will provide more optimal

FIGURE 19. QA amplifier (N = 32) SNDR (noise-limited) µ-law search surface with
(a) eight-tone input (b) sinusoidal input.

results than the µ-law 2D search because µ-law operates on a
restricted performance surface. In other words, it is possible
that the SNDR-optimal levels do not precisely correspond to
the µ-law logarithmic compression or expansion. However,
the µ-law 2D search is much more efficient despite using an
exhaustive search. Each 2D search surface shown in Fig. 19
only requires the SNDR to be evaluated 256 times, compared
to 8000 required by the GA global optimization. Further
reductions in the complexity of the optimization may be
obtained by applying more efficient algorithms on the 2D
search surface, such as simulated annealing, particle swarm,
or a GA, to find the best values for µ and δmax.
In comparison with the GA, which is a global optimizer,

the proposed µ-law method is a heuristic to achieve similar
results using less time. It is reasonable to assume that the
GA will work for many other possible operative scenarios
that are not yet analyzed because it is a global optimizer
which does not rely on information about the performance
space. However, the same assumption cannot be made for µ-
law. The µ-law method is proposed to reduce the complexity
of optimization for the scenarios which we have considered
so far.

G. OPTIMIZATION UNDER VARYING INPUT POWER
The key benefit of QA signal processing is that the DR can be
reconfigured to fit different input scenarios. This is demon-
strated using measurement results in [1]; specifically, by
increasing the quantization level spacing, the 1-dB compres-
sion point of the QA amplifier increases faster than the noise
figure. However, the QA topology in [1] only allows the
quantization levels to be uniformly distributed because the
offset voltages are generated using a resistive ladder. In what
follows, we quantify the improvement obtained with non-
uniform quantization in comparison with what the existing
QA topology allows.
Fig. 20 shows the relationship between SNDR and input

power under 3 optimization settings, for a QA amplifier
with 32 slices, each having an IRN of 1.98 × 10−7 V2. The
input to the QA amplifier is an eight-tone signal, and the
full-scale is defined as the spacing between the maximum
and minimum vos, which is equal to 1 Vpp.
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FIGURE 20. QA amplifier (N = 32) optimization under three different settings.

The “Uniform Optimized” setting emulates the existing
QA topology in [1], where the quantization levels are allowed
to be compressed or expanded while maintaining a uniform
distribution. This allows the QA amplifier to take advantage
of both the low-noise configuration and the high compression
point configuration. The low-noise configuration is when the
level spacing is minimized to maximize the QA amplifier
gain, and the high compression point configuration is when
the level spacing is maximized to expand the input range.
This allows the relationship between the SNDR and the input
power to have a slope less than 1, as shown in Fig. 20.
Both the “µ-law Optimized” and the “GA Optimized”

settings provide approximately 3 dB SNDR improvement
compared to the “Uniform Optimized” setting at high input
power. This two-fold improvement in SNDR is equivalent to
saving half of the power consumption. As the input power
drops, the optimized SNDR using non-uniform levels slowly
approaches the “Uniform Optimized” SNDR because as the
level spacing reduces, in the extreme case, all slices would be
overlapping with each other, and the QA amplifier practically
becomes a single amplifier. In other words, both uniform and
non-uniform quantization levels approach the same distribu-
tion when all the slices are overlapped for the low-noise
configuration.

H. HARDWARE COMPLEXITY OF NON-UNIFORM LEVEL
GENERATION
Although non-uniform quantization may require extra hard-
ware complexity to allow each offset voltage to be adjusted
individually, its SNDR performance boost should not come
with notable penalty on either power consumption or design
effort. For wireless communication applications where the
system needs to be calibrated periodically, the offset voltages
can be set during the calibration phase and remain static
afterwards. Hence, these offset voltages can be generated
by low power, medium resolution DACs that can be eas-
ily designed without any stringent bandwidth requirements.
One candidate is a resistor string DAC with N outputs, each
one provides the DC bias point for a sub-amplifier [8]. This
allows all the bias voltages to be generated by a single DAC

which consumes little static power. Furthermore, it would
be unnecessary to make the DAC resolution finer than the
IRN of each slice. This work assumes 10-bit resolution for
the offset added to each line.

I. RECONFIGURATION TIME
Assuming that the input PDF for the common operative
scenarios can be stored in the firmware, we can use the
proposed optimization algorithms to obtain the Vos distri-
bution for each input PDF so that there is a one-to-one
relationship between each PDF and the optimized Vos. The
initial ALC weights are also unique for each Vos since they
are determined using the quadratic programming method as
in Appendix B. Hence, the optimized Vos along with the
ALC weights for the common input scenarios can be stored
in a look-up table using the input PDF as the keys. Thus,
the reconfiguration time of the QA quantization levels can
be reasonably estimated by the time it takes to obtain the
input PDF. In this work, the signal PDF for each scenario is
obtained using 1000 samples. For example, assuming that a
baseband ADC has a sampling rate of 200 MSPS, then 5 µs
is required to obtain the input PDF, which is much less than
the 0.2 ms transmission time interval size for hybrid auto-
matic repeat request in 5G mission-critical communication
applications [28].

IV. CONCLUSION
An all-digital calibration method using the ALC with the
LMS algorithm is introduced to correct for the mismatch
effects in the QA front-end. Since the calibration algorithm
does not require uniform quantization for the QA amplifier,
non-uniform quantization can be applied to achieve better
system performance. The optimal quantization levels can
either be obtained by global optimization using the GA or
closely approximated using the modified µ-law as a heuristic.
Compared to the existing QA topologies, all of which adopt
uniform quantization, the proposed optimization algorithms
can achieve 3 dB higher SNDR by taking advantage of
non-uniform quantization under a multitone input.

APPENDIX A
QA AMPLIFIER BEHAVIORAL MODELING USING
HYPERBOLIC TANGENT FUNCTIONS
A behavioral model for the CMOS inverter amplifier is con-
structed to shorten the simulation time, particularly for the
proposed optimization algorithms. Since the optimizers in
this work only consider the DC characteristics of the QA
amplifier, the inverter amplifier can be modelled by fit-
ting mathematical functions into the DC voltage transfer
characteristics obtained from SPICE simulations.
The fitting function is a combination of T hyperbolic tan-

gent functions. Let x and y be the input and output voltage
of the behavioral inverter amplifier. The fitting function is:

y =
T∑

i=1

pi tanh
(
qi(x− c)

) + d (3)
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FIGURE 21. (a) QA amplifier DC voltage transfer characteristics comparison with
tanh behavioral model (b) QA amplifier DC gain comparison with tanh behavioral
model.

where Q = [q1 q2 · · · qi · · · qT ] is a user defined vec-
tor controlling the sharpness of each tanh function and
P = [p1 p2 · · · pi · · · pT ] along with c and d are determined
from parameter fitting.
An inverter amplifier is first designed in 28nm CMOS

technology, with both PMOS and NMOS devices having
W = 280nm, L = 30nm and fingers = 16. The behavioral
model used in this work consists of T = 5 hyperbolic tangent
functions and Q = −[10 15 20 25 30]. The arrived-at fitting
parameters are: P = [0.7281 −1.597 1.997 −0.6 −0.02731],
c = 0.4683 and d = 0.5023. The fitted function, along with
the inverter voltage transfer characteristics obtained from
SPICE simulation, is shown in Fig. 21(a). The resulting
small-signal gain of the behavioral model in comparison
with SPICE simulation is shown in Fig. 21(b).

APPENDIX B
OBTAINING THE ALC WEIGHTS USING QUADRATIC
PROGRAMMING
Let x be the variable representing the input voltage to the
QA amplifier; let f (x) be the voltage transfer function of
one QA amplifier slice and let g(x) be the overall voltage
transfer function of the entire QA amplifier consisting of N
slices, then:

g(x,W) =
N∑

i=1

wi · f
(
x+ vos,i

)
(4)

where vos,i and wi are the offset voltage and ALC weight
of each slice, respectively. Then the small-signal gain of the
QA amplifier is the first derivative of g(x,W) with respective
to x:

h(x,W) = ∂g(x,W)

∂x
=

N∑

i=1

wi · f ′
(
x+ vos,i

)
(5)

Let G be the desired DC gain of the QA amplifier and let
ε be the error between the desired gain and the actual gain:

ε(x,W) = h(x,W) − G (6)

We can take L samples of the gain error ε(x,W) over the
entire input range of x and calculate the total squared gain

error:
L∑

l=1

[
ε(xl,W)

]2 =
L∑

l=1

[
h(xl,W)2 − 2h(xl,W)G+ G2

]
(7)

The goal is to find the vector W containing the ALC weights
such that equation (7) is minimized. We can drop the constant
term in equation (7) and express the remaining terms as:

ρ(W) =
L∑

l=1

[
h(xl,W)2 − 2h(xl,W)G

]
(8)

=
L∑

l=1

[
N∑

i=1

wi · f ′
(
xl + vos,i

)
]2

(9)

− 2G
L∑

l=1

N∑

i=1

wi · f ′
(
xl + vos,i

)
(10)

We notice that ρ(W) can be reduced to the form of the
quadratic optimization problem:

ρ(W) = 1

2
WTAW − BTW (11)

where A is an N × N matrix whose values are given by:

Ai, j = 2
L∑

l=1

f ′
(
xl + vos,i

)
f ′

(
xl + vos, j

)
(12)

and B is a column vector with N rows:

Bi = 2G
L∑

l=1

f ′
(
xl + vos,i

)
(13)

The solution to finding the minimum of (11) can be
obtained by solving W = A−1B or using the dedicated
quadratic programming algorithms in MATLAB if additional
constraints on W are needed.

APPENDIX C
IMPLEMENTATION OF THE GENETIC ALGORITHM FOR
QUANTIZATION LEVEL OPTIMIZATION
Fig. 22 explains the GA used to optimize the quantization
levels of the QA amplifier. The algorithm has five steps
in total. Step 1 is choosing the initial parent(s). A parent
is a vector Vos containing the offset voltages added at the
input of each slice. If the GA is in its first cycle, the parent
is one single uniform Vos; otherwise, the parents are 3 sur-
vivors from the previous generation. Step 2 is the generation
of the new Vos population through crossover, mutation and
adding new random individuals. Crossover is the exchange
of genetic information between the parents to generate off-
springs. Each pair of the three parents generates one offspring
through crossover. Let Vos,p1 and Vos,p2 be a pair of parents
and let Br be a vector containing N random boolean values
with equal probability of 0 and 1. The offspring generated
from crossover is:

Vos,c = Br � Vos,p1 + B̃r � Vos,p2 (14)

VOLUME 3, 2022 47



YU et al.: OPTIMIZATION OF QUANTIZED ANALOG SIGNAL PROCESSING

FIGURE 22. GA procedure for optimization of the QA amplifier quantization levels.

Each of the three parents also generates 8 offsprings through
mutation, which is modelled by adding Gaussian random
variables to all elements in the parent Vos. The standard
deviation of the Gaussian mutation is 2 mV. Moreover, 10
completely random Vos are added to the pool of offsprings
in order to explore other points in the search surface. Thus, a
new population of Vos is formed by combining the 3 parents,
3 offsprings from crossover, 24 offsprings from mutation
and 10 new random individuals. The evaluation of the new
population happens in two separate steps. In step 3, the ALC
weights W corresponding to each Vos is obtained using the
quadratic programming method as described in Appendix B.
Then in step 4, the entire population is evaluated by the
cost function SNDR. It is important to note that during the
evaluation of SNDR, the ALC weights are fixed because they
are pre-calculated in step 3. Finally, step 5 is the selection
of the survivors based on the SNDR. The top 3 candidates
with the highest SNDR are selected to be the parents of the
next generation. The algorithm then goes back to step 2 and
continues iteratively.
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