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ABSTRACT A pipelined wired-logic deep neural network (DNN) processor implemented in a 16-nm
field-programmable gate array (FPGA) is presented. The latency and power required for memory access
are minimized by utilizing the wired-logic architecture, thus enabling low power and high throughput
operation. One technical issue with the wired-logic architecture is that it requires a lot of hardware
resources. To reduce them, two core technologies are developed: (1) a convolutional non-linear neural
network (CNNN) and (2) a pipeline-type neuron cell. The CNNN optimizes both the network structure
and the non-linear activation function of each neuron by using a newly developed back-propagation-
based training method. While conventional reinforcement learning can train only a small size network
thus limiting its application to handwritten number recognition, the proposed CNNN enables a larger
network size making it applicable to object recognition. The pipeline-type neuron cell has a small look-up
table (LUT) to process non-linear functions using only a small amount of hardware resources. These two
technologies enable the implementation of the entire network on a single FPGA chip with the wired-logic
architecture. Three types of CNNN trained on the CIFAR-10 dataset are implemented in 16-nm FPGAs.
An energy efficiency of 0.09, 0.12, and 0.61 µJ/frame is achieved with 70%, 75%, and 82% accuracy,
respectively. Compared with a state-of-the-art accelerator using a binary neural network (BNN), the energy
efficiency is improved by more than two orders of magnitude.

INDEX TERMS Edge computing, FPGA, on-device intelligence, deep learning, software and hardware
co-design.

I. INTRODUCTION

THE DEEP neural network (DNN) is a promising tech-
nology for IoT solutions. The incorporation of a DNN,

especially a convolutional neural network (CNN), into an
edge system is expected to expand its application into areas
such as the automation of human workload in warehouses [1]
and factories, smart cities, and unstaffed retail shops.
Always-on AI cameras [2] are a promising solution to realize
such IoT applications.
The technical challenge in applying DNN to edge systems

is energy efficiency. The weight parameters of synapses and
data are transferred from memory to arithmetic unit circuits
to execute a large amount of multiply-accumulate (MAC)

operations. Since there are a lot of parameters in DNNs
(Fig. 1(a)), the memory access needs to be performed many
times for each DNN calculation (Fig. 1(b)). A large amount
of power is consumed in memory access, especially in
DRAM access which consumes two orders of magnitude
more power than the arithmetic unit [3]. Since most IoT
systems have a limited battery capacity, it is necessary to
make power consumption as low as possible.
To improve the energy efficiency in DNN processing,

bit-width reduction techniques have been actively stud-
ied [4]–[7]. Since DNNs have a lot of weight parameters,
high recognition accuracy can be obtained even with a
reduced bit width [7]. By reducing the bit width, the total
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FIGURE 1. Comparison of DNN accelerator architectures. (a) Conventional DNN
and (b) its processor.(c) Proposed NNN and (d) its wired-logic processor.

amount of data processed can be reduced to fit into on-
chip SRAM which has limited storage capacity. Since the
power consumption for SRAM access is lower than that for
DRAM [3], the total power consumption can be lowered.
Recently, the bit width of data and weight parameters

has been aggressively reduced to a binary bit, resulting in
what is known as a binary neural network (BNN). By using
BNN, the processor can process the neural network with
on-chip SRAM only to improve energy efficiency [8]–[13].
The most energy efficient BNN processor achieves an energy
efficiency of 3.8 µJ/image [9]. However, it still consumes
power that is at least 5.7 times larger than the power budget
for the AI-based always-on smart camera application [2].
One promising solution to improve energy efficiency is

the wired-logic architecture where all the processing ele-
ments (PEs) required for DNN processing are implemented
on one chip and data are transferred from PE to PE
directly. Intermediate data are never stored in either SRAM
or DRAM. Unlike the conventional processor architecture,
which allows flexible processing according to input instruc-
tions, the wired-logic architecture can only repeat fixed
processing. However, the wired-logic architecture is quite
energy-efficient and its latency is quite small due to the
elimination of memory access. The wired-logic architec-
ture is typically used in the control field, where only fixed
processing is performed, and latency is the most important
factor [14]. It can also be applied to DNN because the same
trained DNN model is processed iteratively in AI-based IoT
systems such as robots in warehouses [1].
The technical problem with applying the wired-logic archi-

tecture to DNN lies in the required hardware resources.
Specifically, the conventional DNN model requires a lot
of computing elements (neurons and synapses), thereby
consuming a huge amount of hardware.
To mitigate this problem, a non-linear neural

network (NNN) (Fig. 1(c)) that can achieve the same

recognition accuracy with fewer neurons and synapses,
along with its wired-logic processor implementation in
FPGA (Fig. 1(d)), was developed [15]. Both the non-linear
activation functions of neurons and the network structure of
the neural network were optimized by using a reinforcement
learning technique. The number of neurons was reduced
by more than one order of magnitude and the number of
synapses was reduced by more than two orders of mag-
nitude while keeping the same recognition accuracy. The
wired-logic FPGA-based DNN processor [15] is 47 times
more energy-efficient than a conventional SRAM-based
digital ASIC BNN processor [8].
One technical issue with this conventional NNN is that

the network size is limited. Since the search space of rein-
forcement learning is limited to small-scale problems (e.g.,
using only a few thousand neurons), the application of the
NNN is also limited to the handwritten number recognition
of black-and-white images. It is difficult to apply it to object
recognition tasks with color images because a much more
complex neural network structure with a larger number of
neurons would be required.
In this work, a convolutional NNN (CNNN) is proposed

that can be applied to a broader range of applications. Wired-
logic processors using the proposed CNNN are demonstrated
with the CIFAR-10 [16] color-image object recognition
dataset. The following two core technologies are developed.
1) Convolutional NNN (CNNN): Both the network struc-

ture of the NNN and the non-linear activation function of
each neuron are optimized by a newly developed back-
propagation-based training method. A conventional CNN is
used as the initial network structure to enable stable and fast
learning even with complex tasks such as object recognition.
2) Pipelined Neuron Cell: In CNNN, all the weights are

binarized (+1 or −1), so multiplication is not necessary and
only adders and subtractors are required. Instead, calculating
a different nonlinear function for each neuron is required.
To calculate the nonlinear functions efficiently, an activation
look-up table (Act-LUT) technique is used. A pre-calculated
activation function is stored in an LUT that outputs the value
of the function in accordance with the input. Act-LUTs are
implemented with FPGA LUTs. Since the developed CNNN
inherits the CNN structure, there are no wires straddling
layers. Therefore, it can easily be implemented in a pipelined
architecture to increase throughput.
Using the above technologies, CNNNs trained on the

CIFAR-10 dataset were implemented in 16-nm FPGAs.
Three types of CNNNs (Small/Middle/Large) were realized
which demonstrated a recognition accuracy of 70.6%, 75.3%,
and 81.6%, respectively. Compared with the state-of-the-
art BNN processor implemented on an FPGA [10], which
achieves an energy efficiency of 164 µJ/frame, the energy
efficiency is improved by more than two orders of magnitude
(at 0.61 µJ/frame). By making the proposed wired-logic pro-
cessor an ASIC chip and reducing static power consumption,
the power consumption can be lowered further to sub-mW
level, making it suitable for always-on AI cameras [2].
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TABLE 1. Comparison of conventional neural network architectures.

Section II of this paper gives an overview of related
research on wired-logic DNN accelerators. In Section III,
we present the proposed CNNN method after describing the
conventional NNN learning method based on reinforcement
learning and its problems. In Section IV, the proposed wired-
logic accelerator and its implementation are described. The
experimental results are reported in Section V. This paper
concludes with a brief summary in Section VI.

II. RELATED WORKS ON WIRED-LOGIC DNN
PROCESSORS
A well-known method for implementing neural networks
in a wired-logic architecture is a neuromorphic proces-
sor [17]–[22]. Neurons and synapses that mimic the human
cerebrum are integrated onto silicon chips with an algo-
rithm called a spiking neural network (SNN) that mimics
neural activities. Similar to the human cerebrum, data sig-
nals are transferred directly between neurons via synapses,
without being stored in memory. To further improve energy
efficiency, analog-type neuron circuits have been actively
studied [20], [21].
The problem with the neuromorphic processor and SNN

algorithm is a large chip size. While the SNN mimics neu-
ral activities, expressive ability of the neural network is
low, resulting in a large number of neurons and synapses
(Table 1). Almost the same numbers of neurons and synapses
as conventional DNN are required [17]. To implement such
a large SNN model, 8 silicon chips are needed, resulting in
a large power consumption [17].
In an attempt to minimize the number of neurons and

synapses, thereby achieving an area-efficient wired-logic
DNN processor, a non-linear neural network (NNN) has been
developed [23]. In this NNN, both the neural network struc-
ture and the non-linear function of each neuron are optimized
by reinforcement learning. By properly using neurons with a
wide variety of non-linear functions, the expressive ability of
the neural network is improved. Therefore, high recognition
accuracy can be achieved with a small number of neurons
and synapses. Another proposed network is a fixed-weight
NNN (FW-NNN) in which all weights are fixed to a constant

FIGURE 2. Conventional reinforcement learning algorithm for NNN.

value such as “+1” [15]. By using FW-NNN, multiplication
of data and weights becomes unnecessary, resulting in higher
energy efficiency.
The problem with NNN is that training is difficult with

complex tasks such as object recognition tasks due to the
evolutionary reinforcement learning algorithm. With complex
tasks, the search space becomes quite large, so it takes a long
time to find an optimal solution. Similar to the neuromorphic
method, the application of NNN has thus far been limited
to MNIST tasks [15], [23].

III. LEARNING METHOD OF NON-LINEAR NEURAL NET
A. CONVENTIONAL REINFORCEMENT LEARNING
Conventional training of NNN [15], [23] is done
through reinforcement learning using a NeuroEvolution of
Augmenting Topologies (NEAT) algorithm [24]. NEAT is
a genetic algorithm to generate neural networks by using
genetic operations such as selection, mating, and mutation.
The detailed NNN training procedure is as follows. First,
various actions from the following candidates are randomly
selected at each step: (a) change connection, (b) change
activation, (c) insert a new connection, and (d) insert a new
node (Fig. 2). Then, the neural network structures generated
at each step are evaluated, and those with low scores are
eliminated. The evaluation criteria are recognition accuracy
and the number of neurons. These steps are repeated until a
final neural network is generated.
The key feature of the conventional NNN is that the

expressive ability of the neural network can be improved by
using an individually optimized nonlinear activation func-
tion in each neuron. For example, non-linear functions such
as Sigmoid, Relu, Tanh, Sin, Cos, and Gaussian which are
not used in traditional DNNs are used in the conventional
NNN. High handwritten number recognition accuracy is
achieved with a small number of neurons even when all
synaptic weights are fixed at +1 [15].
The technical challenge here is that the learning is not well

processed with complex tasks such as object recognition.
The learning of the neural network structure is a kind of
combinatorial optimization problem such as determining how
to combine N neurons to obtain high recognition accuracy.
As the number of neurons N increases, the time complexity
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FIGURE 3. Proposed convolutional NNN training algorithm.

increases exponentially (O(2N)). For complex tasks such as
object recognition that uses color images as input, such as
CIFAR-10, the number of neurons N of the traditional DNN
is more than 100 times that for MNIST. The training of
MNIST [15] was completed in about two weeks, but the
accuracy of the network for CIFAR-10 did not change from
the initial value even after a month of training. No network
with good accuracy could be obtained in a realistic amount
of time with such reinforcement learning technique.
As such, a new learning method is required to expand the

application range of NNN. A Graph-CNN-based reinforce-
ment learning method was developed for the combinatorial
optimization problem with large N in [25], but it was opti-
mized for the place-and-route problem in VLSI design
and not for the training of neural networks. In recent
years, network architecture search (NAS) methods have been
extensively studied in the field of machine learning, includ-
ing image recognition tasks [32]–[35]. NAS explores the
entire network architecture [32], [33] and the component
cells [34], [35]. However, all of them search for combina-
tions of multiple layers, and do not optimize the connections
of each neuron as in NNN. The NAS method is difficult to
be used for the NNN method as is.

B. PROPOSED CONVOLUTIONAL NNN (CNNN)
In this work, a new NNN training method based on an
existing CNN structure is developed. Starting with the
CNN, which is already known to provide good recognition
performance with CIFAR-10, the initial CNN is transformed
into a CNNN as the training proceeds. As with conven-
tional NNN, the weight coefficients are fixed at +1/ − 1.
By setting the weighting coefficients to +1/−1, multiplica-
tion can be eliminated as in the conventional NNN, resulting
in improving the efficiency of both the power and area of
the arithmetic unit. As shown in [15], the power and area per
neuron cell can be reduced by a factor of four in FPGA by
removing multipliers. To further reduce power consumption
by implementing NNN as an ASIC chip, the binary weight is
advantageous because it does not require multiplication and

the memory which stores weight coefficients. The detailed
procedure is as follows (Fig. 3).

Step (1): Learn the binary weights (+1/−1) of the CNN.
Step (2): Prune the synapses of the CNN.
Step (3): Learn the non-linear activation function at each

neuron individually.
Step (4): Repeat Steps (1)–(3) until enough accuracy is

achieved with the targeted number of neurons.

As described later, Steps (1) and (2) are the same as for
the conventional CNN using a back-propagation algorithm.
Thus, the training proceeds easily even with a large network
model. By binarizing the weights (+1/−1), the proposed
CNNN can be calculated simply by adding and subtract-
ing, without multiplication, the same as the conventional
NNN [15]. By using the proposed method, the generated
CNNN inherits some of the features from the CNN (e.g.,
convolution and pooling), unlike the conventional NNN.
The key distinction of the proposed CNNN lies in Step

(3), where the activation function of each neuron is opti-
mized by learning. Compared with CNN, where the nonlinear
functions of all neurons are Relu, the expressive ability is
improved by optimizing the nonlinear functions individually.
Unlike the conventional NNN (Section III-A), where the

optimal nonlinear functions are searched by reinforcement
learning, the nonlinear functions whose non-linearity is
controlled by trainable parameters are optimized by the back-
propagation method, as described later. Since the training can
be processed with back-propagation just like a conventional
CNN, it is possible to achieve a larger CNNN model that can
infer with high accuracy even for complex datasets and tasks.
Techniques for both Step (1) (training the BNN) and

Step (2) (pruning the synapses) to reduce the total amount of
CNN computations have been studied extensively. The lot-
tery ticket hypothesis method is attracting attention because it
enables simple back-propagation-based learning rules while
achieving high pruning rates [26].
The multi-prize lottery ticket hypothesis (MLT) [27] is a

method that combines BNN with the lottery ticket hypothesis
(synapse pruning). It is known that even if BNN is pruned
by 80%, training with the MLT method makes it possible
to achieve a recognition accuracy equivalent to that of the
original, full precision bit width, dense neural network. In
the MLT method, a value called the pruning score is set
for each synapse according to the initial weight coefficient.
The pruning score is an indicator of the importance of each
synapse. The indicator is updated by the backpropagation
method. After the training is completed, synapses with a
pruning score below a predetermined threshold are removed.
This synapse pruning operation generates neurons that have
no synaptic connections at all, and these are pruned as well.
In this study, the MLT method is utilized in both Steps

(1) and (2).
In Step (3), to train the nonlinear function, the parameters

(p1, p2, p3) of the following Eq. (1) are optimized [28].

y = (p1 − p2)/(1 + exp(−p3(p1 − p2)x) + p2x. (1)
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FIGURE 4. Examples of parametrized non-linear function (Eq. (1)).

FIGURE 5. Baseline convolutional neural network.

Various nonlinear functions can be achieved by using these
parameters (p1, p2, p3). They are optimized at each neuron
by the error back-propagation method. Example shapes of
the nonlinear function are shown in Fig. 4. It can simulate
a wide variety of functions such as the linear function, a
Relu-like function, and a downwardly convex function.
In Step (4), Steps (1)-(3) are repeated until enough accu-

racy is achieved with the targeted number of neurons.
Training of the BNN and pruning are processed again by
using MLT (Steps (1), (2)). Each neuron has its own nonlin-
ear function trained in Step (3). In all steps, the training is
processed with the back-propagation method, which makes
it possible to train a large model stably in a short time, the
same as the conventional DNN.
The CNNN is trained using the CIFAR-10 dataset. Based

on the VGG-like CNN structure shown in Fig. 5, which con-
sists of four convolutional layers, two pooling layers, and
two fully connected layers, several variations of CNNN with
different numbers of neurons are trained. The convolutional
layers have eight or 16 channels, which is less than the tra-
ditional CNN (e.g., 64 or 128). By optimizing the nonlinear
functions, high recognition accuracy can be achieved even
when the number of channels is reduced. As described in
Section IV-A, average pooling is used in the pooling lay-
ers. Since average pooling can be implemented simply by
an averaging process, the hardware cost is lower than that

FIGURE 6. Trained results of non-linear functions.

FIGURE 7. Recognition accuracy dependency on number of synapses.

of max pooling. By employing the average pooling, there is
slight degradation of the recognition accuracy compared with
the max pooling. Comparing the accuracy of CNNNs trained
with CIFAR-10 using max and average pooling layers, the
difference in accuracy is 1%.
Figure 6 shows the training results of the nonlinear func-

tions in each convolution layer, where blue lines indicate
linear functions and orange lines indicate non-linear func-
tions. Interestingly, Layers 2 and 3 have many neurons with
functions exhibiting a strong degree of non-linearity, while
Layers 1 and 4 have many neurons with linear functions.
Figure 7 shows the recognition accuracy dependency on

the number of synapses. In this experiment, CNNNs with the
same number of neurons are trained with different total num-
bers of synapses by changing the pruning rate. As the number
of synapses increases, the trainable parameters increase, and
the expressive ability increases so that the recognition accu-
racy tends to improve. However, under the condition that
the number of neurons and the network structure are fixed,
the recognition accuracy saturates at a certain number of
synapses. In Sections IV and V, FPGA implementations
are performed using three models with different numbers
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FIGURE 8. Comparison of neurons and accuracy with conventional BNN models.

TABLE 2. Detailed comparison with prior BNN models.

of synapses and neurons. The largest model has enough
synapses for its recognition accuracy to saturate.
Figure 8 shows the comparison between the simple BNN

trained with the MLT method [27] and the CNNN where
nonlinear functions of neurons are optimized. In this exper-
iment, the number of neurons is varied while the pruning
ratio is fixed at 90%. As shown in Fig. 8, by optimizing
the nonlinear functions individually, the number of neurons
required to obtain the same recognition accuracy is reduced
to 1/8. By optimizing the nonlinear function, the expressive
ability of each neuron is greatly improved, and the required
number of neurons is significantly reduced.
The proposed CNNN is compared with the state-of-the-art

BNN [11] (Table 2), which was implemented as an ASIC
and is the most energy-efficient compared with other prior
works (as discussed later in Section V). In the conven-
tional BNN [11], the weights are simply binarized using
a conventional bit quantization method.
Compared with the conventional NNN [15]

(Section III-A), which is trained by reinforcement learning,
the proposed CNNN has achieved equivalent neuron and
synapse reduction effects. Specifically, in the conventional
NNN, the number of neurons is reduced by 1/5.7 and the
number of synapses is reduced by 1/274 compared to the
conventional BNN for MNIST application, while in the
proposed CNNN, the number of neurons is reduced by 1/9.6

FIGURE 9. (a) (b) Conventional NNN and its wired-logic processor and (c)
(d) proposed CNNN and its pipelined wired-logic processor.

and the number of synapses is reduced by 1/346 compared
to the conventional BNN for CIFAR-10 application. These
results demonstrate that the proposed CNNN method has
almost the same optimization effect as the conventional
reinforcement learning method. The number of LUTs
are estimated for when each NN is implemented using
the conventional wired-logic method [15]. As shown in
the table, the number of required LUTs is reduced by
two orders of magnitude (1/528) because the number of
synapses is significantly reduced by NNN technology,
enabling implementation on a single FPGA board.

IV. PIPELINED WIRED-LOGIC PROCESSOR
A. PROCESSOR ARCHITECTURE AND
IMPLEMENTATION
Unlike DNN, the structure of the conventional NNN is not
based on hierarchical layers, and many synapses straddle
layers (Fig. 9 (a)). Therefore, in the conventional wired-logic
CNNN processor, many wires connect neuron cells (NC)
across layers (red lines in Fig. 9). As a result, it is difficult
to divide the NNN into a pipelined structure (Fig. 9 (b)),
and so the throughput decreases as the scale of the NNN
increases.
The proposed CNNN is generated from CNN and inherits

its structure, so there are no synapses that straddle layers
(Fig. 9 (c)). Therefore, by inserting a flip-flop in each CNN
layer (convolution 1st layer, 2nd layer, ...), it can easily be
pipelined (Fig. 9 (d)). Each neuron of CNNN is implemented
as a neuron cell circuit (NC), and synapses connecting neu-
rons are implemented as wiring between NCs. A neuron cell
consists of adder circuits, LUTs, and flip-flops (Fig. 10).
Since CNNN uses various nonlinear functions for each neu-
ron, the calculation of nonlinear functions with a simple,
small, and energy-efficient circuit is a technical issue.
To address this issue, the activation LUT (Act-LUT)

method is utilized, which stores the pre-calculated results of
the nonlinear function as a LUT form (the same as the con-
ventional method [15]). This enables the activation functions
to be calculated with fewer hardware resources and lower
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FIGURE 10. Proposed pipelined wired-logic processor.

FIGURE 11. Implementation of average pooling layer.

power consumption than computing methods using circuits,
such as CORDIC. Moreover, the Act-LUTs can be simply
implemented with the FPGA LUTs. CNN has additional
parameters such as biases and scale factors. To calculate
such parameters, each activation function, which includes
both a bias factor and a scale factor, is pre-calculated and
stored in an Act-LUT.
CNNN inherits the characteristics of BNN, including the

binary weights (+1/−1). In the wiring with a weight of +1,
data are directly input to the adder circuit. In the wiring with
a weight of −1, data are converted into their complement
representations and then input to the adder. The output of
Act-LUT is stored in a flip-flop and NC outputs the data in
synchronization with the clock signal.
While the conventional NNN [15] has no pooling layers,

CNNN inherits the characteristics of CNN, so it has some
pooling layers. As discussed in Section III (Fig. 5), average
pooling layers are used, each of which consists of adder
circuits and LUTs for obtaining the average value, as shown
in Fig. 11. For example, the average pooling neuron cell
is implemented by receiving four inputs, adding them, and
multiplying by 0.25 using an LUT to generate the output. It
can be implemented in circuits similar to other neuron cell
circuits.

FIGURE 12. Maximum and minimum value ranges vs. accuracy.

B. BIT WIDTH OPTIMIZATION
Since NNN uses a wide variety of non-linear functions
to improve the expressive ability, a sufficient bit width is
required. Unlike the conventional BNN, the representation
of the intermediate data cannot be binarized.
For all data D generated in CNNN, the value of D is

converted into data D’ (the data value is clipped at ±Q
(Eq. (2))).

D′ =
⎧
⎨

⎩

D (|D| ≤ Q)

Q (D > Q)

−Q (D < −Q).

(2)

Investigation of the recognition accuracy dependency of
CNNN on the value of Q (Fig. 12) shows that the recognition
accuracy of CNNN degrades to less than 80% when Q is
smaller than 8. Next, the sensitivity of recognition accuracy
to the numerical resolution of data is investigated. In this
experiment, Q is set to 8. Data D′ is further converted into
data D′′ with Eq. (3), and the dependency of the recognition
accuracy of CNNN on DRES is investigated

D′′ = DRES ∗ Round(D′/DRES) (3)

As shown in Fig. 12, the recognition accuracy is signifi-
cantly degraded for DRES > 0.25(= 2−2).
On the basis of the above results, this work utilizes the

INT 6-bit representation, in which the position of the decimal
point is placed between the 2nd and 3rd digits from the
LSB. The MSB is the sign bit.
Since the bit width is INT 6-bit, the Act-LUT is com-

posed of six Xilinx FPGA LUTs, and an N-input adder
circuit consists of 6 × N Xilinx FPGA LUTs. Most of
the FPGA hardware resources are consumed by the adder
circuits.

V. EXPERIMENTS AND DISCUSSIONS
The proposed wired-logic processor using CNNN was imple-
mented on an FPGA. As with the conventional method [15],
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TABLE 3. Detailed implementation results.

FIGURE 13. Implementation results of three types of CNNN.

all Verilog codes were automatically generated from Python.
The Xilinx UltraScale+ Virtex series [29] and CIFAR-
10 dataset were used.
The implementation results are shown in Fig. 13 and

Table 3. Three types of CNNN (Small/Middle/Large) were
trained. The network structure was the same as shown in
Fig. 5, but the number of synapses and neurons was varied
by changing the pruning ratio. Differences between the three
types of CNNN are quantified by the factor “synapse/neuron
ratio”. The factor for small was 3.8, for middle was 7.0, and
for large was 14.4. The factor for the large model was twice
as large as that for the middle model and four times as large
as that for the small model.
The optimum FPGA size was used for each CNNN model.

For example, in the small CNNN model, Virtex VU7P was
used, and the LUT usage ratio was 68.62 % while the FF
usage ratio was 7.63 %. For the middle CNNN model, Virtex
VU11P was used, and the LUT usage rate was 54.36 %
while the FF usage rate was 4.34 %. For the large CNNN
model, Virtex VU19P was used, LUT usage rate was 84.19 %
while the FF usage rate was 3.01 %. Note that BRAM is not
used (Table 3), as intermediate data are transmitted directly
between NCs without being stored in memory.

FIGURE 14. Experimental results of latency (large model).

The latency for each layer was measured for each CNNN
model and was found to be lower than 23 ns for all three
sizes. A part of the measured latency in the large model is
shown in Fig. 14. For each layer, nine samples of latency data
of different paths are shown. Layers #1 to #4 in Fig. 14 rep-
resent the first to fourth layers of the convolution layers as
seen from the input, respectively. These measured results of
the latency suggest that the operating frequency can be raised
up to about 40 MHz with margin. Therefore, for the small
and middle CNNN models, the operating frequency was set
to the maximum frequency of 40 MHz. For the large one,
the operating frequency was reduced so as to ensure a power
consumption of 20 W, which is basically the largest power
consumption acceptable for edge computing. Consequently,
the frequency of the small and middle models was 40 MHz
and large one was 30 MHz. The resultant power consumption
and energy efficiency for each model are listed in Table III.
The highest energy efficiency was achieved with the small

CNNN model (0.09 µJ/frame). As the number of neurons
and synapses increases, the recognition accuracy increases,
but so too does the number of LUTs. As the number of
required LUTs increases, it becomes necessary to implement
the CNNN on a larger FPGA. This results in an increased
leakage current of the SRAM, an increased static power
consumption, and a degraded operating frequency due to
the power consumption limit. In other words, energy effi-
ciency degrades as the model size of the CNNN increases.
The energy efficiency of the large model with a recogni-
tion accuracy of 81.6 % is 0.61 µJ/frame. Owing to the
wired-logic architecture, high throughput of 30 × 106 fps
is achieved. This makes real-time object recognition possi-
ble with ultra-high-speed cameras (e.g., 20 Mfps) [30], [31],
which is difficult with prior works due to the long latency
of the memory access.
A comparison of the proposed CNNN processor and

various state-of-the-art DNN processors optimized for the
CIFAR-10 dataset is shown in Table 4. The energy
efficiency of the proposed processor is improved by
270 times compared to the FPGA-based state-of-the-art BNN
processor [10] and the neuromorphic processor [17], which
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TABLE 4. Performance comparison with state-of-the-art works.

is also a wired-logic processor. Furthermore, the energy effi-
ciency of the proposed processor is about 6.3 times higher
than that of the BNN processor implemented on ASIC [9].
The same as for the conventional works in [9], [11], the
energy efficiency of the proposed CNNN-based wired-logic
processor can be further improved by more than one order of
magnitude by implementing it as an ASIC chip [3]. Since the
static power consumption of the ASIC chip can be lowered
compared with that of the FPGA, the power consumption
can be lowered to sub-mW level by reducing the frame rate,
which is suitable for always-on AI camera applications [2].
For an input size of about CIFAR-10 (< 32×32×3), the

NNN can be implemented on the FPGAs available on the
market, and provides much better energy efficiency than
the conventional AI accelerators. IoT applications on the
same network scale as the network for CIFAR-10 are being
researched. For example, there is research such on face
recognition [11], hand-sign recognition for sign language
recognition, and simple object detection [36]. The CNNN
developed in this study is also expected to be applicable to
similar applications.
On the other hand, it is difficult to apply it to huge neu-

ral networks such as those for semantic segmentation and
ImageNet. This is because as the input image size increases,
the number of LUTs required also increases dramatically.
For example, in the case of ImageNet (224 × 224 pixels),
the input image size is much larger than that for CIFAR-
10 (32 × 32 pixels). Even for the simple neural network
shown in Fig. 5, the number of neurons and synapses both
increase by a factor of 49 (2242/322) when the input image
size is changed to 224×224. The required number of LUTs
increases to 3.4×107. Furthermore, the depth direction also
needs to be increased, and the number of LUTs required
is even higher. With commercial FPGAs, the number of

LUTs is clearly insufficient. It is not possible to implement
such complicated tasks with the current technology in a sin-
gle FPGA. New circuit technology is needed to reduce the
number of LUTs required.

VI. CONCLUSION
An energy-efficient FPGA-based CNN processor that can
process an image from the CIFAR-10 dataset with the energy
consumption of just 0.61 µJ per frame is proposed. The
proposed processor utilizes a wired-logic architecture in
which all the neuron circuits that make up the CNN are
implemented on an FPGA chip. Since data are directly trans-
ferred between processing elements, they are never written
to memory. To reduce the required hardware resources, two
core technologies were developed: (1) a CNNN in which
the expressive ability of each neuron is improved by opti-
mizing the structure of the neural network and its non-linear
activation function individually, and (2) a pipelined neuron
cell that utilizes an Act-LUT to process the non-linear func-
tion with minimal hardware resources. Three types of neural
networks optimized for the CIFAR-10 dataset were imple-
mented on 16-nm FPGAs and processed the image data with
a power efficiency of 0.09, 0.12, and 0.61 µJ/frame and a
recognition accuracy of 70 %, 75 %, and 82 % respectively.
Compared with a state-of-the-art accelerator implemented on
FPGA using a binary neural network, the energy efficiency
is improved by more than two orders of magnitude.
Since the hardware resource utilization ratio is still large,

further technology improvements to reduce the network size
and circuit area will be required. In particular, since the
large model prototyped in this work utilized the largest
FPGA currently on the market (Virtex VU19P), a more
efficient implementation is desired in order to lower the costs.
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