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ABSTRACT Energy consumption and the latency of convolutional neural networks (CNNs) are two
important factors that limit their applications specifically for embedded devices. Fourier-based frequency
domain (FD) convolution is a promising low-cost alternative to conventional implementations in the spatial
domain (SD) for CNNs. FD convolution performs its operation with point-wise multiplications. However,
in CNNs, the overhead for the Fourier-based FD-convolution surpasses its computational saving for small
filter sizes. In this work, we propose to implement convolutional layers in the FD using the Hartley
transform (HT) instead of the Fourier transformation. We show that the HT can reduce the convolution
delay and energy consumption even for small filters. With the HT of parameters, we replace convolution
with point-wise multiplications. HT lets us compress input feature maps, in convolutional layers, before
convolving them with filters. In this regard, we introduce two compression techniques: fixed-rate and
adaptive-rate. In the fixed-rate compression, we select frequency domain input feature map (IFMap)
coefficients with a constant pattern over all convolutional layers. However, for the adaptive-rate IFMap
compression, the network, itself, learns to keep or discard coefficients, during training. Also, to optimize
the hardware implementation of our methods (fixed- and adaptive-rate compressions), we utilize stochastic
computing (SC) to perform the point-wise multiplications in the FD. In this regard, we re-formalize the
HT to better match with SC. We show that, compared to conventional Fourier-based convolution, Hartley
SC-based convolution can achieve 1.33x speedup, and energy is reduced by 23% on a Virtex 7 FPGA
when we implement AlexNet over CIFAR-10 based on the fixed-rate compression. Also, we show that
if we utilize the adaptive-rate compression, we receive 16% and 15% latency improvement and energy
consumption reduction, respectively, compared to the fixed-rate method.

INDEX TERMS Deep neural networks, frequency domain transformation, hardware implementation,
energy optimization, latency improvement, FPGA.

I. INTRODUCTION

AWIDE range of applications, from convolutional neural
networks (CNNs) to image compression tasks, uti-

lize convolution. Convolution, due to its iterative matrix
multiplications in the spatial domain (SD), is the most
computation and energy hungry operation in vision related
tasks [1]. For example, as you can see in Figure 1, more
than 98% of the operations in LeNet, and AlexNet are
in convolutional layers [2]. Consequently, researchers have

introduced accelerators in the spatial and frequency domains,
from application-specific hardware to GPUs, to optimize the
latency and energy efficiency of convolution [3], [4].
Efficient convolution in the frequency domain (FD) is

of particular interest. Researchers indicate, however, that
for small filter sizes the cost of transformations (spa-
tial to frequency, and vice versa) overwhelms the savings
when implementing convolution in the FD [2], [4], [5].
Subsequently, separate methods have been developed for
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FIGURE 1. Number of operations in the different convolutional and fully connected
layers of LeNet and AlexNet.

small and large filters. Winograd convolution [6] has been
introduced to reduce the complexity of convolution for
small filter sizes, while the Fast Fourier transform (FFT)
addresses large filter sizes better. FFT-based convolution
works with larger filter sizes better since the overhead that
FFT has for the required domain transformations in convo-
lution (FD→SD, and SD→FD) surpasses its computational
saving for small filters [7]. To optimize FFT, researchers
trade performance (latency) and area with the accuracy
of complex multiplications [8]. However, such aggressive
approximations limit the applications of these methods, and
therefore, they have not been used widely in CNNs.
Like [9], [10], we propose to optimize convolution in

CNNs by employing the Hartley transform (HT). However,
we also (a) utilize the HT to compress CNN input fea-
ture maps (IFMaps), for all convolutional layers, improving
CNN latency; and, (b) reformulating HT to target stochastic
computing, further reducing CNN FPGA resource utilization
and energy. We show that our proposed method can optimize
CNNs even with small filter sizes and overcome the overhead
of domain transformations required for FD convolution. To
the best of our knowledge, our work is the first that utilizes
the HT and SC to optimize CNNs with different filter sizes.
The Hartley transform [11] was developed to keep the

main advantages of FFT, such as performing convolution
based on point-wise multiplications, but without the addition
complexity of working with imaginary numbers. The trade-
off is that HT has been observed to require more computation
than FFT.
One key advantage of our approach is that convolution

can be performed directly on the HT compressed IFMaps.
Frequency domain transformations have been widely used
for image compression (such as JPEG) [12], and recent
work has compressed data in the FD to optimize CNNs
(e.g., [13]). Unfortunately, the FD transformations popular
in compression (e.g., the cosine transform for JPEG) are not
directly compatible with convolution [7] (they need extra
processing for the transformed data before being used in the
convolution).
Additionally, IFMap compression rate directly affects the

speed of a CNN by reducing the number of operations, but
it degrades accuracy [14]. To increase compression without
reducing accuracy considerably, we can learn to drop which
IFMap coefficients for convolutional layers besides learning

weights in a neural network to optimize its latency and
energy [15]. Many techniques have been developed that focus
on reducing the number of weights of neural networks, at
the possible expense of increased training cost [16], [17].
However, our method learns the weights for the FD trans-
formed IFMap to optimize a CNN’s speed and maintain its
accuracy using the same loss function and gradient decent
that are used for training the CNN.
A second key advantage of our approach is its suitability

for use with stochastic computing. Stochastic computing [18]
has also been used in the past to design low cost and
energy CNN accelerators [19], [20]. However, SC-based
operations suffer from two important problems: 1) low accu-
racy, and 2) long computation time [21]. Prior work has
shown that CNNs can tolerate the low accuracy of SC [22].
Unfortunately, if we implement FFT-based convolution with
SC [8], output feature map (OFMap) accuracy drops to the
point that CNNs cannot learn from them, and SC latency
overhead surpasses the speed-up gain from implementing
convolution in the FD. To prevent such an accuracy drop,
we utilize SC just for a part of FD convolution, point-wise
matrix multiplications, and perform the rest via fixed-point
operations.
The key contributions of this paper are:
• We introduce a stochastic based implementation of
convolution based on the Hartley transform (HT).

• We introduce a fixed-rate HT compression method to
approximate the IFMaps (in all CNN convolutional lay-
ers), reducing convolution latency and energy without
degrading CNN accuracy.

• We introduce an adaptive-rate optimization for the HT-
based compression technique to further improve latency
and energy. To the best of our knowledge, we are the
first to integrate this optimization into the training pro-
cedure, compressing IFMaps in each layer (at different
rates, which these rates are chosen automatically by
the neural network to optimize global accuracy and
inference delay).

• We introduce a re-formalization of the HT that better
fits with hardware, relying on a scaled, fixed-point look-
up-table-based implementation that is well-suited to SC.

We demonstrate the benefits of our approach with HSC-
CNN, a SC-based convolution accelerator that can be
utilized for CNNs’ inference. We use LeNet and AlexNet
on MNIST and CIFAR-10, respectively, to validate our
method against the spatial domain in terms of accu-
racy. We subsequently synthesize designs for FPGA for
performance (latency) and energy analysis. Our results show
that HSC-CNN significantly reduces inference time and
energy compared with spatial- and FFT-based convolution
even. We observe 1.21x and 1.28x latency improvement for
HSC-CNN based on fixed-rate and adaptive-rate IFMap com-
pression, respectively, compared to spatial LeNet with small
filters (3x3) over MNIST without loss of accuracy, while
FFT-convolution based LeNet performs 1.09x worst than
spatial-LeNet.
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FIGURE 2. The architecture of an example convolutional neural network. An input image (first IFMap) is convolved with filters. Then, the result (OFMap) is sub-sampled using
the pooling operation. This process repeats multiple times until the probability of input image belongs to a category is determined using a fully connected final layer.

II. MOTIVATION AND BACKGROUND
A. CONVOLUTIONAL NEURAL NETWORKS
CNNs are widely used in image and video processing [6]. As
shown in Figure 2, a CNN consists of some convolutional,
sub-sampling, and fully connected layers. CNNs gradually
extract local features from feature maps of higher resolu-
tions of images, and then they combine these features into
more abstract feature maps with lower resolutions. This is
done by alternating two types of layers: convolutional and
sub-sampling. In convolutional layers, input feature maps
(IFMaps) are convolved with filters. In sub-sampling layers
pooling function is utilized to reduce the dimentionality of
convolution’s output. Also, note that a non-linear activation
function could be applied on output feature maps (OFMaps)
before pooling to add non-linear features to the network.
The last few layers in the CNN use fully connected layers
for the purpose of classification.

B. CONVOLUTION
The convolution operation, in a convolutional layer of
a CNN, can be represented with an input tensor I ∈
R
cin×win×hin , and convolution filter weights F ∈ R

cin×d×d,
where each filter is d×d. cin represents the number of input
channels and input feature maps. Each filter cin is convolved
over the corresponding win× hin input matrix, in the spatial
domain (SD), as depicted at the top of Figure 3.
The convolution theorem [7] states that the dual of con-

volution in the SD is point-wise multiplication in the FD.
Letting H denote the Hartley transform, and H−1 its inverse,
we can compute convolutions between functions I and F as
follows [11]:

I ∗ F = H−1
2π

(√
2π

2
� H2π (I)� [H2π (F)+ H−2π (F)

]

+H−2π (I)� [H2π (F)− H−2π (F)
])

, (1)

where � is element-wise-multiplication, and in Hω, ω is
the HT angular frequency. Note that, as in the FFT, before

FIGURE 3. Convolution in the spatial- and frequency-domain (using the HT). Note
that convolution operation is required in each convolution layer of CNNs.

utilizing the HT, we should make the size of IFMaps and
filters equal and a power of two since these transformations
work on square input matrices and are optimized when the
size of matrices are a power of two [5]. In this regard, we
add zero padding as depicted in Figure 3.
The discrete Hartley-transform (DHT) for N×N matrix is

Hω=2π (k, l) = 1

N

N−1∑
m=0

N−1∑
n=0

f [m, n]cas

(
2π

N
(km+ ln)

)
, (2)

where cas(x) = cos(x) + sin(x) [11]. As shown in Eq. (2),
each element of an input matrix is multiplied with two
coefficients. Not all of these coefficients are unique: H(k+
N, l + N) = H(k, l) as cas(n × 2π) = 1. To implement
the HT, we utilize the fast Hartley transform (FHT) which
uses this symmetry to reduce the number of additions and
multiplications compared to the DHT [23]. Also, note that
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FIGURE 4. Stochastic multiplication and stochastic number generator.

the same transformation (Eq. (2)) is used for H−1: we just
need to substitute f [m, n] with H(k, l) in the formula [23].

C. COMPRESSING IFMAPS
Natural images have a lot of redundancy, and therefore can
be downsampled in the FD without affecting vision related
tasks’ accuracy such as image classification [24]. Moreover,
it has been shown that IFMaps, which have properties similar
to images, carry this redundancy throughout the first few
layers in CNNs [25]. We hypothesize that this redundancy
can be reduced without significantly increasing CNN error,
while dramatically reducing CNN latency.
To evaluate this hypothesis we trained AlexNet over

CIFAR-10. We train the network on compressed IFMaps, in
all convolutional layers. We set the compression rate to 65%
using the cosine transform (likewise JPEG [12]). As shown
in Figure 5, an input image (in this case a tiger) keeps its
image structure even-though it passes through multiple lay-
ers (C0-2). When we compress IFMaps, in all convolutional
layers, with a constant rate, 65%, we observe that even-
though the quality of IFMaps drops, we can still achieve the
baseline accuracy for AlexNet over CIFAR-10 dataset (on
average 64%). This experiment shows us a huge potential
in terms of compressing IFMaps, in the FD, for CNNs.
However, the mentioned FD compression technique (based

on the cosine transform), would not be useful for the SD
networks since the networks’ needed convolutions are being
performed in the SD, and therefore, the compressed ver-
sion of IFMaps in the FD cannot be used for convolution
(JPEG’s FD compression technique is not convolution com-
patible [7]). In sum, if we compress IFMaps in the FD and
perform convolution in the same domain (FD), we could
optimize CNNs considerably.

D. STOCHASTIC COMPUTING
Stochastic computing (SC) has shown promising results for
ultra low cost hardware implementation of different algo-
rithms including CNNs [18], [26]. More specifically, SC
is popular for performing low-cost, iterative, fixed-point
multiplications [26]. As we observed in Section II-B, one of
the main elements of convolution in the frequency domain
is point-wise matrix multiplication (PwMM). Therefore, if
we could utilize SC to perform PwMM, we could expect a

FIGURE 5. Visualizing IFMaps in the first three convolutional layers (C0-2) of
AlexNet with(out) compression when a tiger image passes through the trained
network with CIFAR-10. Note that for the sake of presentation, we made the size of all
the layer IFMaps the same and we constructed the images from IFMaps’ values by
some scaling operations. (Red color sections, with different spectrum, show that from
where and how each layer’s filter extract features).

huge hardware cost reduction. However, converting values
for use in SC with minimal overhead is challenging.
To utilize SC, first we should convert used numbers in

an algorithm to a same range as stochastic numbers (SNs).
Bipolar SNs represent values between −1, and 1. We can
easily scale the range of all data in a CNN to [−1, 1] to
match it with SNs. For example, in CNNs, the filter weights
are usually normalized, and between [−1, 1] [22]. To convert
feature maps to SNs, we use a normalization process: ws =
α × (w − 128), where α is the scaling factor (in this case,
α = 1

128 ). Therefore, ws ∈ [−1, 1).
We can represent SNs using streams of random bits [21],

where the probability of having ‘1’ in a long bit stream
is determined by a value in the [0, 1] interval. However,
to represent numbers in the [−1, 1] interval, which is used
in the bipolar representation, we need to utilize an encod-
ing: a real number x is processed by P(X = 1) = x+1

2 .
For example, we can represent 0.4 using 1011011101, as
P(X = 1) = 0.4+1

2 = 7
10 . Multiplication is performed by a

single XNOR gate in a bipolar representation [26]. This
results in a significant reduction in the hardware cost
compared to the conventional binary multiplier. A simple
stochastic multiplication using a two-input XNOR gate is
shown in Figure 4. Provided that X and Y are statisti-
cally independent (uncorrelated), a single XNOR gate can
precisely compute X × Y in the bipolar representation [21].

To do SC operations, we need to convert binary numbers
(BNs) to SNs and vice-versa. To do so, we need to utilize a
stochastic number generator (SNG). As shown in Figure 4, a
SNG often consists of a binary comparator, and a linear feed-
back shift register (LFSR) as the random bit generator [21].
For instance, to generate the corresponding SN representa-
tion of a fixed-point binary number x = 1

2 = 0.1002, we take
the fractional part and utilize an LFSR with 2n stages, where
n is the number of fractional digits (in this case three). Then,
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we compare the generated values from the LFSR with the
fractional part of x, in this case we can represent x with a bit-
stream S = 10101001, where four ‘1’s exist in an eight-bit
length bit-stream (P(X = 1) = 4

8 = 1
2 ). To represent num-

bers in SC via sufficiently independent bit streams (which
is crucial in SC [21]), we should employ different LFSRs
with different initial seeds. To convert an SN to BN, we just
need to count the number of ’1’s in a bit-stream (a binary
up-counter) [21].

III. HARTLEY STOCHASTIC-BASED COMPUTING CNN
WITH IFMAP COMPRESSION
A. TRANSFORMING IFMAPS AND FILTERS FROM
SD TO FD
We transform the range of all data in our method (Hartly
stochastic-based computing CNN (HSC-CNN)) to [−1, 1].
In this regard, we scale and keep the range of IFMaps data to
[−1, 1] as discussed in Section II-D. Note that 1) it has been
observed that if we keep the filter’s values between [−1, 1],
it does not damage a CNN’s accuracy [22], and 2) in the
implementation, for each IFMap matrix we construct two
matrices, one for the scaled data (which the range of is
elements are between −1 and 1), and the other for the scaling
factors of the matrix elements.
To perform FHT on the scaled input data (no matter if it is

a Filter or an IFMap), we substitute every multiplication with
addition. In this regard, first, we represent the scaled input
image matrix values in the trigonometry numerical system.
In other words, we apply the element-wise arcsin function
on the scaled IFMaps and filters to calculate the degrees that
correspond to the values of each element in the matrices.
Therefore, we can represent any filter and input image values
with sin(x) function, where x ∈ [0, π ]. Subsequently, we can
represent f [m, n] from Eq. (2) by sin(x) after scaling, where
x = arcsin(f [m, n]). As a result, we can expand the formula
for the Eq. (2) as below (for a simpler formula representation
we consider 2π

N (km+ ln) = y):

sin(x)× cas
(

2π

N
(km+ ln)

)
= sin(x)× cos(y)+ sin(x)× sin(y)
= 1

2
(sin(x+ y)+ sin(x− y)+ cos(x− y)− cos(x+ y))

= 1

2

(
sin(x+ y)+ sin(x− y)+ sin

(π

2
− x+ y

)

+sin
(−π

2
+ x+ y

))
. (3)

On the other hand, we estimate the values for sin(x)
by a look-up table (LUT): we divide the [0, π ] interval
into 2p equal degrees, and we keep their corresponding
sine values with 2q bits in a fixed-point representation. p
and q define the precision of estimating sin(x) with the
LUT, while they determine its memory usage as well. The
final expressions in Eq. (3) are replaced by an indexing
function that locates their angular interval and returns its
corresponding LUT entry. For example, if x = π

4 and y = π
8 ,

FIGURE 6. The process of compressing IFMaps (coefficient selection) using the HT
in all convolutional layers. In this figure, just for an understandable presentation, we
showed the compression process over the first layer’s IFMap (input image) over a
sample image: compressing an IFMap (image) by 65% has almost no effect in its
quality (PSNR = 28.1 dB). Note that in the spectrum figure, the low frequency
components are shown with lighter colors.

sin(x+y) = LUT(index(64+32)). Therefore, we can replace
two fixed-point multiplications and one addition, for cal-
culating each element in Eq. (2), with six integer (index)
additions and three fixed-point additions as represented in
Eq. (3), which is much more efficient (specifically in hard-
ware). Note that th For more details regarding implementing
sin(x) function using the LUT method, and how to manage
an index overflow issue in sin(x+ y), for example, you can
refer to [27].

B. COMPRESSING IFMAPS
1) FIXED-RATE IFMAP COMPRESSION

It has been shown in literature that we can approximate
the IFMaps before convolving them with kernels without
reducing the accuracy of CNNs [28]. With this in mind, we
compress IFMaps in the FD using the HT. The HT naturally
provides a compression process that even-though is not as
efficient as JPEG [12], however, it does not need an extra
transformation to perform convolution with [11]. Note that
standard JPEG works just with the cosine transform which
is not convolution compatible [7].
Moreover, the HT compression is much memory efficient

than the FT compression [7]. This is the case since HT
produces one real coefficient matrix while FT needs two
matrices to keep complex coefficients.
Also, as it is depicted in Figure 6, the HT separates

the high and low frequency coefficients in the image’s
transformed matrix: it pushes low-frequency coefficients to
the corners of the transformed matrix. Note that the low-
frequency coefficients are more pronounced in the IFMaps’
HT matrices, and therefore, they have the highest effect
on the convolution’s accuracy. To select the most impor-
tant coefficients, with an inspiration from entropy coding
method [7], we select four r× r sub-matrices from the four
corners of a Hartely transformed matrix (we mask the trans-
formed matrix), as is shown in Figure 6, and set the rest of
the coefficients to zero. We add r as a hyper-parameter to our
CNN models. Even-though this process shrinks the IFMaps
dramatically, it maintains the dimensionality of OFMaps after
applying the inverse HT.

2) ADAPTIVE-RATE IFMAP COMPRESSION

To compress IFMaps further, we propose to adaptive prune
their coefficients in the FD. An IFMap matrix in the FD, I,
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can be parameterized by associating a mask variable m ∈
{0, 1}. These binary parameters can be formed into a mask
matrix, T , whose values indicate whether a coefficient is
currently pruned or not. Then, the CNN’s model optimization
function can be described as:

min
I,T

L(I � T) s.t. Ti,j = f (Ii,j), (4)

where L() is the model’s loss function, � represents the
element-wise product and f () is the masking function which
satisfies f (Ii,j) = 1 if coefficient Yi,j seems to be important
in the current layer and 0 otherwise.
With an inspiration from the dynamic method in [29],

we set two thresholds a and b to decide the mask values
of coefficients for each layer. Also, we utilize an absolute
value to evaluate the importance of each coefficient. Using
function f () as below, the coefficients are not pruned forever
and have a chance to return during the training process.

f
(
It+1
i,j

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if a >

∣∣∣It+1
i,j

∣∣∣
Tti,j if a ≤

∣∣∣It+1
i,j

∣∣∣ ≤ b
1 if b <

∣∣∣It+1
i,j

∣∣∣
(5)

The a and b should be set with respect to the distribution
of coefficients in each layer, i.e.,

a = 0.9× (μ+ γ × σ) (6)

b = 1.1× (μ+ γ × σ), (7)

in which μ and σ are the mean value and the standard
deviation of all coefficients in one layer, respectively. γ

denotes the compression rate in each layer, by which the
number of remaining coefficients in each layer is determined.
Note that γ is a parameter for the model which is being set
during training.

C. FREQUENCY DOMAIN CONVOLUTION BY
POINT-WISE MATRIX MULTIPLICATION
We can perform convolution in the FD using the HT with
just element-wise matrix operations: two PwMMs, two addi-
tions, and one subtraction (refer to Eq. (2)). We know
that the HT is a real linear operator, and is symmet-
ric [11]. Therefore, we can construct ŶN×N = H−2π (X) from
YN×N = H2π (X) with a simple constant matrix element re-
mapping: Y(i, j) = Ŷ(N − i,N − j), where 0 ≤ i, j ≤ N − 1,
and N − 0 = 0 are the indexes and the width for Y and
Ŷ , respectively. Subsequently, we can hard-code this matrix
re-mapping in our implementation. As a result, we can
implement convolution with the HT via 1) two HTs over
I and F, 2) two element-wise matrix re-mappings, 3) three
matrix additions, and 4) two PwMMs. Also, note that there
exist quite a few number of optimization techniques for
FFT (e.g., Hermitian (conjugate) Symmetry, and kernel sub-
sampling [7]). Most of them can be applied on the FHT as
well [11]. However, investigating these methods is out of
the scope for this paper.

We use stochastic computing for the PwMMs in the FD.
SC naturally provides a very efficient implementation for
a PwMM. This is the case since multiplications are inde-
pendent in a PwMM, and therefore, we can use just two
random bit generators (implemented in the form of LFSR)
to produce the needed random bit streams for all the values
in the two matrices that we want to multiply in a point-wise
manner. Note that the need for multiple LFSRs for SC-based
arithmetic functions is one of important bottle necks for SC
implementations [21]. Moreover, we can utilize the fixed-
point values in the sine LUT (see Section III-A) to generate
the corresponding SNs (refer to Figure 4). This is the case
since our proposed Hartley transform re-formalization and
scaling regime keep the range of scaled Hartley-transformed
values between −1 and +1. Therefore, without any fur-
ther computation, we can utilize them to generate their
corresponding SNs, and perform multiplication via SC. In
sum, we utilize just two LFSRs, 2N2 comparators, and N2

up-counters to implement a PwMM, which is much more
efficient than fixed-point multiplications in terms of energy
consumption. For more details regarding the hardware imple-
mentation of Hartley stochastic based convolution, you can
refer to the Appendix.

D. TRANSFORMING OFMAPS FROM FD TO SD
To transform back OFMap (the output of convolving IFMap
and filter) from the frequency- to spatial-domain, we use
the same transformation. This is the case since the HT is
self-inverse and is a unitary operator. Therefore, the inverse
HT is equivalent to the HT [11] (we utilize the same
implementation approach as discussed in Section III-A).
Note that by implementing activation and pooling functions

(refer to Section II-A) in the FD, we can implement the
entire convolutional layer in the FD. This could save much
computation by preventing repetitive domain transformation
in each convolutional layer; and we would only need to
transform OFMaps to the spatial domain before the fully
connected layer(s) at the end of a the CNN architecture (see
Figure 5). However, this approach needs to implement training
in the FD as well. In other words, we need to learn weights
and extract features in the frequency domain. Investigating
these optimizations (i.e., implementing activation and pooling
functions in the FD for HSC-CNN) is out of the scope of
this paper and is the subject of our future work.

E. CNN TRAINING WITH ADAPTIVE-RATE IFMAP
COMPRESSION
When we utilize adaptive-rate IFMap compression, the train-
ing procedure must be changed accordingly. The procedure
of training an L-layers CNN with IFMaps’ pruning (masking)
can be divided into three phases as illustrated in Figure 7:
fully connected, back-propagation, and mask matrix and fil-
ter weights updates. Repeating these three phases, iteratively,
results in training the CNN while pruning its IFMaps in
all convolutional layers. Note that you can also find the
algorithm for training in the Appendix.
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FIGURE 7. Training CNN in the FD: a) forward propagation, b) back propagation, and c) filter weights and mask matrix updates. In forward propagation, we, first, zero-pad

filters (F
′
y ). Then, we transform IFMaps and filters to the FD using the Hartley transform. After the transformation, we mask IFMaps before convolving them with the transformed

filters to generate OFMaps in the FD (Oy ). Afterward, we transform Oy back to the SD using HT−1, and then pass Ot through the activation and sub-sampling layer. This
convolution and sub-sampling repeats multiple times until data reaches fully connected layers. In back propagation, we calculate the gradient of the loss from the output Out as

δ(L)
δ(Out) . Then, for the loss to be propagated to the other layers, we use the Chain rule and find δ(L)

δ(Oy ) , and δ(L)
δ(Iy ) . Note that in the backpropagation we utilize the inverse

operations such as the inverse of activation function (ACT−1) and the inverse of pooling (Po−1). Finally, in the update procedure, we update learnable parameters (filter weights
and mask matrix coefficients). We perform this update based on the gradient that is propagated in back propagation and the current values for learnable parameters. In this

regard, we calculate δ(L)

δ(F
′
y )

, and then update filter weights in spatial domain (F
′
t ) using HT−1.

As it is illustrated in Figure 7, in the fully connected phase,
the input and weight filters are transformed into the FD
using the HT. Afterward, a mask matrix is being applied on
the transformed IFMap. Then, filter and masked IFMap are
convolved in the FD. Consequently, a pooling and activation
are applied before passing data to the next layers.
During back-propagation, after computing the OFMap gra-

dient ∂L
∂Ot

, in the SD, a 2-D HT is directly used to obtain
the gradient ∂L

∂Oy
in the FD. Note that since HT is a linear

transformation, the gradient in the FD is the HT transfor-
mation of the gradient in the SD. Then, the gradient is back
propagated until first layer ∂L

∂It
, and is passed to previous

layers.
During update phase, we update filter weights and mask

coefficients. Also, we apply dynamic pruning (refer to
Section III-B2) after updating the coefficients. Note that we
update not only the remaining coefficients, but also the ones
that are considered temporarily unimportant. Therefore, we
can have the pruned parameters in previous training epochs
to be returned.

IV. EXPERIMENTAL RESULTS
To evaluate the accuracy, latency, and energy consumption
of our approach, we use two networks, LeNet, AlexNet,
over the MNIST and CIFAR-10 datasets, respectively. First,
we apply the Hartley stochastic computing (HSC) convolu-
tion to CNNs to investigate how hyper-parameter choices in
HSC-CNN (i.e., p, q, r, and l) affect network accuracy. We

select the design that achieves the best latency without loss
of accuracy compared with the original floating-point imple-
mentation using the fixed-rate IFMap compression method
(refer to Section III-B1). Afterward, we fix the best set of
hyper-parameters (p, q, and l) from the fixed-rate compres-
sion, and we re-train the network using the adaptive-rate
IFMap compression method (refer to Section III-B2). Next,
we synthesize these designs (adaptive-rate and fixed-rate), as
well as conventional approaches for comparison, for FPGA
implementation, and compare inference latency, inference
energy, and FPGA resource utilization. Finally, we ana-
lyze the memory and computational complexity of just the
fixed-rate HSC-convolution in comparison with spatial- and
FFT-convolution.
Compressing IFMaps adaptively results in stochastic layer-

wise compression rates which depend on training parameters
(such as the number of epochs and learning rate). Therefore,
the complexity of convolution based on adaptive-rate IFMaps
compression cannot be formalized. However, we show that the
complexity of convolution based on adaptive-rate IFMap com-
pression is upper bounded by the fixed-rate one. Therefore, if
fixed-rate IFMap compression works better than conventional
methods in terms of computational and memory complexity,
adaptive-rate compression always works even better.

A. NETWORK ACCURACY
Figure 8 shows the accuracy and the relative speed-up of
HSC-CNN over LeNet and AlexNet when we change the
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FIGURE 8. Accuracy (bars, left, in %), maximum average accuracy (red doted lines), and relative speed-up (dots, right, in %) comparison for different HSC-CNN configurations
based on fixed-rate IFMap compression, r = 12 for AlexNet and r = 11 for LeNet, p = 11, q = 8, and l = 128 for both the networks). Note that there are some convolutional layers
in these networks (LeNet and AlexNet) that their IFMap dimensions are less than (2 × r) × (2 × r); this translates to no compression for those layers.

hyper-parameters: angular precision (p), the sine function’s
fixed point precision (q), the size of selected sub-matrices
for the four corners of IFMaps after HT (r), and the SC bit-
stream lengths for representing the numbers for PwMMs (l).
Note that 1) The reported accuracy of the networks can
be improved by network-tuning. For example, we can apply
hyper-parameter optimization or modify the network’s archi-
tecture and/or utilize the knowledge transfer techniques such
as model distillation [30]. However, investigating these meth-
ods is out of the scope of this paper. 2) We compare the
configurations against a baseline system (p = 11, q = 8, and
l = 128 for both the networks, and r = 12 for AlexNet and
r = 11 for LeNet): whenever we change a hyper-parameter,
we fix others to the baseline system’s (default) values. 3) To
reduce the number of hyper-parameters, we chose a same set
of hyper-parameters (i.e., p, q, r, and l) for all convolutional
layers of a network when we report the networks’ accuracy.

1) ACCURACY UNDER FIXED-RATE COMPRESSION

Increasing r increases model complexity, as it reduces IFMap
compression. As a result, accuracy improves. For example,
increasing r from 4 to 12 results in 13.2% accuracy improve-
ment for AlexNet, but a 34% increase in latency relatively.
Note that LeNet almost reaches its maximum accuracy on
MNIST (98.0%) when r = 11, while AlexNet needs at least
r = 12 to reach 64.1% accuracy on average on CIFAR-10
(slightly better than the highest achievable accuracy uti-
lizing full-precision—63.9%). r in AlexNet is bigger than
in LeNet since LeNet has fewer convolutional layers com-
pared to AlexNet. We hypothesize that the improvement in
AlexNet’s accuracy results from the regularization of HT
compression. Also, note that sub-sampling a transformed
IFMap w.r.t. r could lead to r values bigger than half of
the IFMap’s matrix size (refer to Figure 6). In this case, no
compression is applied on that IFMap.
Angular precision (p) and fixed-point precision (q) do not

affect network latency, but considerably affect network accu-
racy. This is the case since we utilize fixed-point operations
and precision does not change the speed of these operations.
However, operation precision radically affects network over-
all accuracy: reducing q from eight to two bits reduces the
accuracy of AlexNet from 64.1% to 21.3%.

FIGURE 9. Adaptive compression rates for different convolution layers when p = 11,
q = 8, and l = 128 for both the networks and γ for each layer is being determined
during training.

Stochastic number (SN) bit-length (l) significantly affects
network accuracy and latency. For example, reducing the
bit-length from 128 to 8 reduces the accuracy of LeNet
more than 70%. PwMMs (which we implement using
SC-multiplications) multiply two fixed-point numbers with
magnitudes less than one, and therefore, the precision needed
for the result of the multiplication becomes doubled of the
original numbers. Also note that the speed of SC multipli-
cation has an inverse linear relationship with the length of
SNs. However, the overall effect of SN bit-length on latency
is less than 6% when we increase the bit-length 16x, since
PwMMs, which are the only operations made by SC, are
relatively small compared to others (such as FHT and IFHT
modules) in terms of computation.

2) ACCURACY UNDER ADAPTIVE-RATE IFMAP
COMPRESSION

To evaluate the accuracy of networks in the presence of
adaptive-rate IFMap compression, we fix hyper-parameters
other than r (i.e., p, q, and l) to those used to obtain the
most optimized result using fixed-rate compression (refer to
Section IV-A1 and Figure 8). Afterward, rather than tun-
ing r, we perform the Bayesian hyper-parameter tuning for
γ for each layer based on the methodology introduced in
Section III-B2.
In Figure 9, we show the IFMap compression rate that the

adaptive-rate method reaches for each convolutional layer.
Note that with these compression rates we do not observe
any accuracy loss for the networks. These compression rates
on different layers lead to dropping 78% and 58% of the
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FIGURE 10. Latency for different convolution gate-level implementations. Note that
for these results we set LeNet (r = 11 for fixed-rate, IFMap size = 32x32 and filter
size = 5x5), AlexNet (r = 12 for fixed-rate, IFMap size = 224x224, and filter
size = 11x11), and p = 11, q = 8, l = 128 for both the networks.

FD IFMaps coefficients for LeNet and AlexNet, respec-
tively. These are considerably higher than the 46% and
41% of total compression rates for the fixed-rate method for
LeNet and AlexNet, respectively. Also, we observe that the
total compression rate for LeNet (78%) is more significant
than AlexNet (58%). This originates from the fact that the
adaptive-rate method works on the first convolutional lay-
ers better and cannot compress later layers (consider C3-4
from AlexNet in Figure 9). This is the case since as we
pass through each convolutional layer, features that filters
try to extract become integrated more to IFMap. Therefore,
the compression rate for later layers is being reduced dur-
ing training, otherwise, the network would lose the learned
information from early layers in a way that training algo-
rithm cannot converge. Also, note that higher compression
rates come with the cost of more training time.

B. HARDWARE IMPLEMENTATION
For energy and latency analysis, we implement the proposed
accelerator on an FPGA. Taking inspiration from hard-
ware implementations of the 2-D FFT and IFFT modules,
we implement 2-D FHT and IFHT based on an array of
2-point 1-D FHT and IFHT implementations. For paral-
lel fixed-point multiplications, we use only an array of
32 multipliers in hardware: we trade resource utilization
for latency. For the sake of comparison, we also design a
spatial-convolution module using a systolic MAC (multiply-
accumulator) array [31]. To evaluate the cost of convolution
in HSC-CNN, we developed hardware for spatial-, FFT-, and
HSC-convolution in Verilog. Synthesis was performed using
the Xilinx ISE targeting the Virtex-7 xc7s50 FPGA (28nm).
The latency and energy consumption are reported using
Xilinx ISE synthesis delay reports and XPower Analyzer,
respectively.

1) LATENCY

In Figure 10, we report the latency of different sub-functions
(forward, PwMM, and inverse operations) in the spatial-
and frequency-domain for the first convolutional layer in

both the networks (LeNet and AlexNet). Even-though HSC-
convolution utilizes SC and sequential bit streams, still
it outperforms FFT-convolution by more than 33% for
AlexNet. First, SC-based PwMM is much more efficient
than the fixed-point PwMM; second, HSC-convolution per-
forms PwMM on the compressed IFMaps which results
in saving a considerable number of operations in HSC-
convolution. Another interesting observation is that, as it is
shown in Figure 10, FFT-convolution is slower than spatial-
convolution for LeNet, while it is faster for AlexNet. This
happens since the computational saving for performing con-
volution in the FD for small filter sizes (i.e., LeNet case)
is less than its associate domain transformations overhead.
However, as filters become bigger in a network (i.e., AlexNet
case), the computational saving surpasses the domain trans-
formations overhead. Consequently, convolution becomes
faster in the FD than SD. Also, note that even though
HSC-convolution needs those domain transformations, it out-
performs spatial-convolution for both the networks since it
compresses IFMaps before convolving them with filters.
We observe that compressing IFMaps with two differ-

ent rates (r = 11 and r = 12 for LeNet and Alexnet,
respectively) does not lead to a substantial decrease in
latency compared to FFT-convolution. This is the case
since we implement FHT and IFHT (the bottlenecks of
HSC-convolution) in a butterfly architecture [32]: the same
architecture that FFT and IFFT use. Butterfly architecture
trades hardware resource to keep latency almost constant.
Therefore, we observe that the latency for FFT and FHT as
well as IFFT and IFHT are almost the same.
For a fair comparison in terms of memory latency, we

keep the number of memory banks the same for FFT-
convolution and HSC-convolution (for both adaptive- and
fixed-rate implementations). In a case that we need parallel
memory accesses beyond the provided memory throughput
in the implementation, a controller translates those parallel
accesses to sequential ones. We observe that most of latency
saving for HSC-convolution comes from memory accesses.
This is the case since HSC-convolution needs much less
memory accesses compared to FFT-convolution and Spatial-
convolution. HSC-convolution uses fewer coefficients to
perform convolution.
We observe that if we utilize adaptive-rate IFMap com-

pression, latency is reduced by 16% compared to the
fixed-rate method. Also, latency is reduced more for AlexNet
than LeNet. The filters and IFMaps for the first layer
of AlexNet are larger than for LeNet, resulting in more
opportunity for compression.

2) HARDWARE RESOURCE UTILIZATION

As we see in Table 2, HSC-convolution requires fewer FPGA
resources (e.g., 11% fewer memory (flip-flops) and 15%
fewer slices for AlexNet), and 19% less energy for fixed-rate
implementation compared to FFT-convolution. Even though
our implementations for adaptive- and fixed-rate HSC-
convolution implementations utilize the same resources,
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TABLE 1. Computation and memory demands for different convolution methods.

TABLE 2. Resource utilization and energy consumption for different convolution
(FPGA Virtex-7 xc7s50 implementation, and memory consumption is being
represented using flip-flop counts). Note that for these results we set LeNet (r = 11
for fixed-rate, IFMap size = 32x32 and filter size = 5x5), AlexNet (r = 12 for fixed-rate,
IFMap size = 224x224, and filter size = 11x11), and p = 11, q = 8, l = 128 for both
the networks.

we observe 15% additional energy savings for adaptive-
compared to fixed-rate compression for AlexNet. When we
apply adaptive IFMap compression, fewer memory accesses
are needed for convolution, saving energy.

C. COMPLEXITY ANALYSIS FOR FIXED-RATE
HSC-CONVOLUTION
In Table 1, we summarize the computational complexity,
order of used memory and the needed number of operations
for the different approaches of convolution as a function of
IFMap size (n × n), and filter size (k × k). Note that since
the memory and computational complexities of adaptive-
rate IFMap compression for HSC-convolution depend on
the training procedure, and they vary based on the provided
input data set and hyper-parameter tuning strategy, we do
not analyze its complexity in this section.
As shown in Table 1, the computational complex-

ity of fixed-rate HSC-convolution is the same as FFT-
convolution [23]. We break down FFT-convolution and
HSC-convolution into three consisting modules: 1) forward

transformation, 2) point-wise matrix multiplication (PwMM),
and 3) inverse transformation. In both forward and inverse, a
2-D FFT and FHT is being applied for FFT-convolution and
HSC-convolution, respectively, which utilize butterfly data-
path structures [7]. This butterfly structure reuses needed
operations (additions and multiplications), and therefore,
reduces the complexity from n2 × n2 of 2D DFT and DHT
(refer to Eq. (2)) to 2×n2×Log(n) [7]. Note that for forward,
two matrices (Filter and IFMap) are transformed into the FD,
which each matrix transformation needs 2 × n2 × Log(n)
operations. Moreover, for PwMM, we need to multiply
two matrices. Therefore, the complexity of this module is
4 × n2 since this PwMM uses complex numbers for FFT-
convolution, and two point-wise matrix additions and two
PwMMs are needed for HSC-Convolution (refer to Figure 3).
Also, we observe that the complexity of both FFT and FHT
outperform spatial-convolution, especially when k is close
to n. Note that spatial-convolutions needs iterative point-
wise matrix multiplications which makes its computational
complexity quadratic [7] as shown in Table 1.
However, in terms of memory use, spatial-convolution

consumes the least, while fixed-rate HSC-convolution needs
less memory than FFT-convolution, even though we imple-
ment sine in memory. For the forward transformations, both
FFT and FHT need n2 memory cells to store a zero-padded
filter and an IFMap. Also, both need 2 × n2 memory cells
to store their transformation coefficients; FHT requires addi-
tional storage for sine approximations, a 2p-entry table in
memory. However, for the PwMM and the inverse opera-
tions (IFFT, and IFHT), fixed-rate HSC-convolution works
on a single real matrix, while FFT-convolution utilizes two
matrices (due to working with complex numbers). Ultimately,
FFT-convolution utilizes 2 × (n)2 − 2p more memory than
FHT-convolution.
Spatial-convolution needs the most arithmetic operations,

as it utilizes iterative point-wise matrix multiplications to
perform convolution. However, fixed-rate HSC-convolution
utilizes no fixed-point multiplications during frequency
domain transformation, resulting in considerable
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computational savings compared to FFT-convolution.
The most important difference between these two convo-
lution methods is their PwMMs: FFT-convolution utilizes
4× n2 fixed-point (FP) multiplications and 2× n2 additions
(which are the needed operations for complex matrix
multiplication), while fixed-rate HSC-convolution uses
2 × (4 × r)2 SC-multiplications which are very efficient in
terms of implementations than fixed-point multiplications
(refer to Figure 4), and 2 × n2 decimal additions likewise
FFT-convolution.

D. COMPARISON WITH PAST WORK
Unfortunately, there are no appropriate FD past work to let
us directly compare ours with them. This is the case since
ours is the first to implement convolutions in CNNs using the
frequency domain feature map approximation and stochas-
tic computing. For example, Abtahi et al., [33] showed
an end-to-end FFT-based scalable FPGA accelerator for
ResNet-20 via breaking down input matrices for convolu-
tion into multiple segments, and then generated block outputs
are aligned and added to form a complete output. However,
this method focuses on the required max memory usage of
FFT-based convolution, and it does not do any computation
optimization for the FD domain implementation of con-
volution. Therefore, our method (HSC-convolution) always
wins, in terms of computation reduction, compared [33]. To
reduce latency, [33] utilized a parallel processing elements
(PE) architecture, results in the 65% latency improve-
ment. However, this significant latency improvement is
achievable by using the parallel PEs architecture, while HSC-
convolution can utilize many PEs implementation on top of
the computation reduction that it has due to its IFMap com-
pression technique. For example, we can break-down the FD
feature map spectrum (see Figure 6) into r× r sub-matrices
from the four corners (refer to Section III-B1), and assign
them to parallel PEs. As a result, we expect to receive better
results than [33] if we implement HSC-convolution based on
its proposed architecture.
As another past work, [20] utilized a combination of

stochastic and deterministic computing design for low-
cost, energy-efficient and yet accurate implementation of
spatial domain CNNs. Like our work (HSC-convolution),
Faraji et al., [20] utilized a single gate to perform
multiplications in the required PwMMs for convolution.
Therefore, their hardware resource optimization is the same
as ours in PwMMs. Note that [20] operates in the SD,
while ours works in the FD, but both needs PwMMs.
Faraji et al., [20] claimed that they achieve 12.5% better
critical path delay when they compare their implementation
with a fully pipelined spatial-convolution used in LeNet.
However, HSC-convolution reaches more than 21% latency
improvement when it adaptively compresses IFMaps for con-
volution used in LeNet. Regarding the energy consumption,
Faraji et al., proposed approach works better since they used
SC and a bit-stream based methods to implement convolution

entirely. Consequently, they achieve more than 70% energy
saving, while ours could reach to 64%.

E. SUMMARY
By utilizing HSC-CNN, we can perform reduced precision,
approximate operations (p = 11, q = 8, and l = 128), and
achieve similar accuracy to with floating point computation
for LeNet (r = 11) and AlexNet (r = 12). Implemented
in hardware, this results in substantial latency and energy
reduction, 33% and 28%, respectively compared to using
FFT for AlexNet as an example. Even though the compu-
tational complexity of convolution with FFT and FHT are
the same, our implementation using HSC results in simpler
operations and less memory use.
Moreover, utilizing adaptive-rate IFMap compression lets

us achieve higher compression rates: 22% and 17% for LeNet
and AlexNet, respectively. These better compression regime
translates to more optimization in terms of hardware and
latency.

V. RELATED WORK
To optimize convolution (specifically for big matrices),
designers prefer to perform it in the FD [2], [5], [32]. There
are a few number of spatial to frequency domain trans-
formations that support convolution directly (e.g., Hartley,
and Fourier) [7]: it means that these transformations do not
need extra processes before performing convolution based
on PwMM(s). The Fast Fourier transform (FFT) is proven
to be the most efficient method for convolution in the
FD [34]. However, FFT suffers from 1) complex hardware
implementation structure (e.g., the need for multiple sepa-
rate memory banks to keep real and imaginary coefficients),
and 2) the need for complex multiplications (one complex
multiplication requires four multiplications and two addi-
tions). Some work [8], [35] focuses on optimizing the FFT,
for example, by approximating the operations of the trans-
formation. However, we observe that if we follow these
aggressive approximation techniques, the estimated result of
a convolution cannot be utilized for CNNs (accuracy drops
considerably). To address the complexity of FFT-based con-
volution, our method, which is based on the HT, utilizes
just real numbers and operations [23]. Moreover, in the lit-
erature, there are some similar approaches that utilize the
Hartley transform to reduce the complexity of CNNs by
implementing them in the FD [9], [10]. However, 1) they
did not utilize this transformation for optimizing CNNs with
small filters, and 2) none of them addresses the high cost of
needed point-wise matrix multiplications (PwMM) in the FD,
while our HSC-CNN implementation does by 1) approximat-
ing feature maps in the FD, and 2) utilizing SC for PwMMs,
respectively.
Some past work tried to reduce the needed computations

for CNNs by compressing CNNs data using FD meth-
ods [13], [36]. For example, Liu et al., [13] utilizes a lossy
compression technique in the FD using discrete cosine trans-
form (which is the base for JPEG compression), while [36]

VOLUME 2, 2021 815



MOZAFARI et al.: IMPLEMENTING CNNs USING HARTLEY SC

uses JPEG compression to reduce the memory required for
training a CNN. However, neither can utilize their used FD
transformations to optimize convolution itself (they just com-
press the input data and weights). This is the case since
the used FD transformations are not directly convolution
compatible [7] (those transformations need extra operations
to perform convolution in the FD). Our work utilizes the
HT to not only compress the input feature maps (IFMaps),
in covolutional layers of CNNs, without any computational
overhead, but also optimizes convolution in the FD (i.e., per-
forming convolution using a point-wise matrix multiplication
(PwMM)).
To improve the performance (latency) of CNNs even more,

past work tried to compress IFMaps in CNNs [14]. For
example, [14], [37] proposed to compress images/IFMaps
for a CNN using a frequency domain transformation (e.g.,
wavelet transform). However, these techniques cannot, adap-
tively, match the accuracy need for different convolutional
layers during training, and therefore, they suffer from lower
accuracy and higher computational need, while our method
utilizes an adaptive-rate IFMaps pruning which results to
more efficient networks. On the other hand, some tech-
niques compressed IFMaps in the spatial domain using
quantization schemes: fixed-point quantization [38], [39],
binary quantization [40], [41], and power-of-two quantiza-
tion [42]. Also, some others translated IFMaps’ compression
to weight pruning in CNNs [28], [43]: optimizing which val-
ues from IFMaps matrix can be pruned to cause the least
accuracy drop and highest latency improvement. Therefore,
they could utilize algorithms that address weight pruning
optimization in neural networks (e.g., [16], [17], [44]). Even-
though these spatial domain (SD) techniques are orthogonal
to our method, they are inherently limited in finding more
compact representations since they work in the SD, but our
method compresses IFMaps in the FD.
Many efficient accelerator algorithms have been developed

for CNNs [45], [46], and matrix convolution [8]. The first
category of these accelerators try to reformulate convolution
to make it more compatible with hardware. For example,
Abtahi et al., [33] proposed a method called FFT overlap
and add convolution to limit the max memory required for
the FFT hardware implementation. This FFT memory man-
agement technique coincidentally results in lower energy
consumption and latency for CNNs. As another example,
SPARCNet [47] makes CNNs’ convolutional layers sparse,
then, it introduces an efficient FPGA convolution imple-
mentation for them. These techniques are orthogonal to
our proposed solution. Therefore, they could be utilized,
together, to reach a higher optimization for the CNNs
hardware implementation. The second category of CNN
accelerators utilize approximation (i.e., low-bit width arith-
metic units) since CNNs are naturally tolerant to bit-width
variations [46]. This eliminates the need for costly full-
precision arithmetic units. For instance, Judd et al., [48]
dynamically change the precision for the operations of a
network to optimize its performance and energy consumption

Algorithm 1: How to Train a Multi-Layer CNN With
Pruning IFMap in the FD
Inputs: training data, M,
the reference model (i.e., the best fixed-rate model hyper-parameter: (p̂, q̂, l̂)),
Ŵ ,
the compression rate hyper-parameter, γ

Output: Updated binary mask T , and filter weights, F
for l=1,2,..., L do

Initialize (p, q, l) ← (p̂, q̂, l̂), Tl ← 1
end
for iter=1,2,...,max_iter do

Choose a minibatch of network input from M
for l=1,2,..., L do

Apply HT to the input matrix It → Iy and Ft → Fy
Forward propagation with Iy and Fy using convolution, activation
and pooling operations.

end
end
Loss calculation with I � T
Backward propagation and generate 	L
for l=1,2,..., L do

Compute the gradient w.r.t OFMap in the FD ∂L
∂Oy

Compute the gradient w.r.t IFMap in the FD ∂L
∂Iy

Using ∂L
∂Iy

and ∂L
∂Oy

, compute gradients for filter weights in the FD, ∂L
∂Fy

Use HT−1 to calculate ∂L
∂Ft

Using ∂L
∂Ft

, update Ft by SGD method
Update T according to function f () and the current I

end

without loosing accuracy significantly. As another example,
Yuan et al., [8] focused on implementing the FFT using SC
with an approximation method, which reduces the imple-
mentation’s complexity significantly. However, we observed
that utilizing fully SC circuits for FFT convolution does not
necessarily lead to an optimized implementation as some
operations, such as matrix multiplications, which needs many
additions, cannot be implemented in SC efficiently. Our
method addresses this problem by combining stochastic- and
binary-computing.

VI. CONCLUSION AND FUTURE WORK
In this work, we propose Hartley Stochastic-based convo-
lution, a novel technique for optimizing the implementation
of CNNs in hardware. Our method performs a frequency-
domain compression of the IFMaps in each convolutional
layer of a CNN, and implements convolution using SC,
improving performance and energy efficiency. We first use
the Hartley transform to perform a lossy compression on the
IFMaps of each convolution layer in a CNN. In this regard,
we introduce two compression methods: 1) fixed-rate, and
2) adaptive-rate. Then, we perform a reformulated Hartley-
based convolution, replacing multiplications with additions.
This new approach is a better match for stochastic computing
hardware. By utilizing our introduced method, we achieve
a considerable speedup (1.33x) and energy savings (37%)
without reducing CNN accuracy based on fixed-rate IFMap
compression. Also, we can reduce 16% and 15% latency and
energy consumption more, respectively, when we utilize the
adaptive-rate IFMap compression.
In this work, we did not use of the non-linearity of con-

volution in the frequency domain to optimize the FD-based
convolutional layers more. This effect can be used as a
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FIGURE 11. The dataflow and hardware implementation of HSC-convolution. First, IFMap matrix’s values are scaled using the method which is described in Section II-D. This
results into two matrices, scaled IFMap and scaling matrix. Then, the scaled IFMap is transformed to angular IFMap matrix using arcsine and its corresponding look-up table
(refer to Section III-A). Afterwards, we transform the IFMap to the FD using Hartley transform (refer to Eq. (3)). On the other hand, we scale zero-padded filter values. Then, we
transform them to the FD using HT. Consequently, we select a sub-set of transformed IFMap to convolve it with filter. We perform this based on point-wise matrix multiplication
(PwMM), which is implemented using stochastic computing. In the end, the output of convolution (i.e., OFMap) is transformed back to the SD using HT−1 and the angular look-up
table. Moreover, you can see the micro-architecture for the PwMM unit. To perform PwMM, we load the indexes of the matrix elements that should be multiplied together in matrix
index buffers, afterward the controller asks the memory bank(s) that save sin(x) look-up table to send the corresponding binary values to input buffer. Then, the corresponding
SC bit streams for the values of matrix elements are generated using random bit generator (RBG) and comparators. Consequently, XNOR performs the point-wise multiplication
and a up-counter transforms back the result to binary from SC. Subsequently, the binary output is saved to output buffer before being transferred to memory bank(s).

substitute for non-linear activation functions in the spatial
domain, which could make HSC-CNNs even more efficient.
Also, the spectral pooling that we introduced in this paper
(refer to Section III-B1) could substitute for the pooling
operation in the spatial domain if we implement the entire
network in the frequency domain. Implementing activation
and pooling functions in the frequency domain for the HSC-
CNN could result considerable saving in computation as they
eliminate the need for repetitive domain transformation in
each convolutional layer.

APPENDIX
A. ALGORITHM FOR TRAINING A MULTI-LAYER CNN
WITH ADAPTIVE-RATE IFMAP COMPRESSION
(PRUNING) IN THE FD
See Algorithm 1.

B. THE MICRO-ARCHITECTURE OF THE HARTLEY
STOCHASTIC-BASED CONVOLUTION FOR CNNS
See Figure 11.
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