
Received 1 July 2021; revised 30 October 2021; accepted 7 November 2021. Date of current version 9 December 2021.

Digital Object Identifier 10.1109/OJCAS.2021.3127273

ChaCha20-in-Memory for Side-Channel
Resistance in IoT Edge-Node Devices

M. AAMIR , SOMYA SHARMA , AND ANUJ GROVER
Department of ECE, Indraprastha Institute of Information Technology Delhi, New Delhi 110020, India

This article was recommended by Associate Editor A. Bermak.

CORRESPONDING AUTHOR: M. AAMIR (e-mail: aamir17167@iiitd.ac.in)

ABSTRACT IoT edge devices process the data collected, which can contain sensitive information related
to the user. It is crucial to incorporate robust encryption algorithms considering the resource and power
budget of these devices. In this paper, we present a power-based SCA-resistant implementation of the
ChaCha20 encryption algorithm for low-end devices by utilizing memory arrays. The 10T SRAM-based
implementation performs simple operations (like NAND, NOR, XOR) on the bitlines and other operations
like addition/subtraction, shifting, rotation on custom-designed in-memory elements tightly coupled to sense
amplifiers (SA). The design is verified for multiple test vectors to generate power consumption signatures.
Welch’s t-test is performed on these signatures to demonstrate that the design is highly resistant to power-
based SCA. The proposed implementation of ChaCha20 runs at 250MHz at a 1.2V supply, in 65nm Low
Standby Power (LSTP) technology, achieving a speedup of around 7 times in terms of execution time
compared to the ARM Cortex A9 processor.

INDEX TERMS ChaCha20, edge computing, encryption, in-memory compute, IoT security, SCA.

I. INTRODUCTION

IOT EDGE-NODE devices are now being used every-
where, from smart homes to industries. They collect

information from the surroundings, process it, and upload
the necessary data to the cloud. The data collected by these
devices often include sensitive or safety-critical information
and needs to be protected from theft and tampering [1]. To
achieve this, encryption algorithms are integrated into the
devices. They use private keys to encrypt and decrypt the
data, hence ensuring confidentiality [2]. The security of these
algorithms is dependent on the safety of their private keys.
In IoT devices, the private keys are generally stored during
the manufacturing process and are optionally updated dur-
ing the entire life-cycle of the device [3]. It makes these
devices a vulnerable target for side-channel attacks (SCA).
As an alternative, Physically Unclonable Functions (PUFs)
are also being used to generate private keys, which can’t be
anticipated or replicated [5], [6].
In SCA, the adversary takes advantage of

implementation-specific characteristics to uncover or
build a logical relationship for some of the secret param-
eters involved in the algorithm [4]. These characteristics
are the measurable parameters like power consumption,

execution time generated due to the algorithm’s execution in
the underlying hardware. For instance, the work shown in [7]
conducts a power-analysis-based attack on an AES-128
cipher, and [8], [9] demonstrates cache-based SCA.
In power-based SCA, the power consumption profile of

the machine running the encryption algorithm is analyzed
to extract some valuable information like the private key.
These attacks work on the basis that the power consumed
in computing bit value ‘1’ is different than when computing
bit value ‘0’ [10]. This is valid when the algorithm is being
executed in a processor. The existing countermeasures to
SCA, as mentioned in [11], are resource and power-intensive.
Therefore, these methods to secure the chip against SCA
can’t be used in edge devices that are resource-constrained
and operate on a limited power budget. Ideally, methods to
secure edge devices from SCA should have no impact on
the energy, area, and performance of the system.
IMC offers a promising solution to secure low-end IoT

edge devices. It enables part of the logic operations to be
executed on the fly during read access. This architecture
exploits the flexibility of the memory cells to be dually
used for storing data and for computing. In this work,
we show that the power consumption of logic operations

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 2, 2021 833

HTTPS://ORCID.ORG/0000-0002-1261-1621
HTTPS://ORCID.ORG/0000-0002-8258-5262
HTTPS://ORCID.ORG/0000-0002-6057-4984

AAMIR et al.: ChaCha20-IN-MEMORY FOR SIDE-CHANNEL RESISTANCE IN IoT EDGE-NODE DEVICES

implemented using in-memory-compute architecture can be
designed to be independent of the data being processed.
Here, it must be noted that, the design of the ChaCha20 algo-
rithm makes it naturally resistant to timing-based SCA [12].
This paper focuses explicitly on designing a power-based
SCA-resistant ChaCha20 stream cipher implementation for
resource-constrained devices.
The rest of the paper is organized as follows. In Section II,

we discussed the previous work done on memory-based
implementations of encryption algorithms. In Section III,
we elaborate on the advantages of using IMC architecture in
effectively avoiding SCA in edge devices. In Section IV, we
give a brief overview of the ChaCha20 stream cipher and
its implementation. In Section V, we provide the detailed
implementation of in-memory computing units, followed by
Section VI, in which we describe the verification setup
and explain the methodology of power-based side-channel
leakage assessment. Then in Section VII, we present the
results of side-channel leakage assessment and performance
comparison. Finally, the conclusion is drawn in Section VIII.

II. RELATED WORKS
Many existing hardware implementations for encryption
algorithms have been proposed in the academia that are
based on cryptographic co-processors like [13]–[15]. On
the other hand, the countermeasures for power-based side-
channel attacks are also being studied as discussed in [11]
but at the cost of significant area and energy overhead.
However, memory-based hardware encryption is rarely used
while addressing the problems of side-channel attacks. The
existing memory-based implementations of encryption algo-
rithms focus majorly on the power and performance gain,
as discussed below.
In [16], the authors propose a reconfigurable cryptographic

processor (Recryptor) implementing the AES algorithm. In
this paper, a block of memory is configured to imple-
ment in-memory and near memory compute operations. Only
the XOR operation is implemented as in-memory. Rest of
the operations namely, shifting, rotation, and substitution
box (SBOX) are implemented by cross-wiring, combina-
tional logic, and latches added near the memory. Similar
to this, [17] proposes an in-memory implementation of the
Advanced Encryption Scheme (AES) algorithm for non-
volatile memories (NVMs). In this, various components of
the AES algorithm like the Substitution box (SBOX), Mix-
column blocks are implemented using a combination of
look-up tables (LUTs) and combinational logic.
The near memory circuitry used in these works was

independent of the array and could not synergize effec-
tively with in-memory elements, leading to a significant
area overhead and consequently power consumption. The
architecture proposed in our work focuses entirely on IMC
elements. The proposed adder circuitry takes benefits from
the IMC operation, thereby reducing the area overhead.
To the best of our knowledge, our work is the first to

FIGURE 1. 6T SRAM Bitcell.

propose IMC-based ChaCha20 algorithm implementation
with resistance to power-based SCA.

III. ADVANTAGES OF IMC BASED ARCHITECTURE
As discussed in [19], the IoT edge devices have limited
budget for power and resources to implement robust security
measures. Also, to enable edge computing, they are burdened
with local processing. This leaves out minimal resource
and power budget to incorporate encryption algorithms
with effective measures against SCA without degrading the
device’s performance. Moreover, existing methods to miti-
gate power-based SCA as discussed in [11], require a lot of
additional resources which are not available in these low-
end devices. Furthermore, the ChaCha20 algorithm requires
high bit-width computations and contains multiple rounds
of operation on the input data. While a higher number of
rounds increases the diffusion between input and cipher-
text (hence the security), it results in higher execution time.
Implementation of the algorithm on the lower-end processor
results in huge performance overhead and is not within the
budgeted capability of most IoT edge devices.
IMC capabilities in SRAMs enable high bandwidth of

operations within a small power envelope. So, as proposed,
in-memory implementation can be considered as a solu-
tion for the trade-off mentioned above between security,
performance, and resources. Since memory elements form a
significant area in any computing system, memory bitcells
are used for storage and computation purposes. Given below
are a few benefits of the in-memory-compute architecture.
1) Power-consumption pattern masking capability: A

conventional 6T SRAM cell is shown in Fig. 1. It is a
pair of inverters (M1-P1 and M2-P2) cross-coupled to
form a latch. M3 and M4 devices are used to access the
latch and perform a read/write operation. The bitlines
BL and BLB are initially precharged to Vdd (logic 1),
followed by enabling the word-line, i.e., charging it to
logic 1. Then, depending on the data-bit stored in the
bitcell at BLTI and BLFI nodes, one of the bit lines

834 VOLUME 2, 2021

FIGURE 2. Read operation waveform of the 6T bitcell.

FIGURE 3. Write operation waveform of the 6T bitcell.

(BL or BLB) gets discharged through access and pull-
down transistors path M4-M2 or M3-M1, respectively.
This generates a differential voltage drop between the
bit-lines, which is then detected using a sense amplifier
(SA).
Similarly, to write a data-bit, either of the bitlines is
precharged to gnd, and the other is precharged to Vdd.
Then, on enabling the word-line, logic 0 and logic 1 are
stored in the complementary nodes (BLTI and BLFI)
depending on the discharge path formed.
It is observed that the discharge pattern (hence power
consumption) of the bitlines as a pair is identical in
the read-0&1 and write-0&1 as shown in Fig. 2 and
Fig. 3, respectively. Hence, it can be safely concluded
that power consumed in read and write operation in a
memory array is independent of data being read from
or written to the array.
Additionally, leakage current of other non-activated
bitcells in the memory array helps to further obfuscate
the relation between the data being processed and the
power consumption patterns.

2) Single cycle operation: In-memory architecture does
not require the data to be loaded in temporary registers
from memory for computing. Here, the data is read
from memory, computed by IMC elements on the fly,
and the modified data is written back to the memory
in the same clock cycle. This cuts back on the extra
cycles required for load and store instructions, thereby
reducing the number of clock cycles per instruction as
explained in [18] and illustrated in Fig. 4.

3) Overcomes von-Neumann Bottleneck: In von-Neumann
architecture, limited data bus width acts as a bottleneck
to wide bandwidth computations, hitting a “Memory

FIGURE 4. Addition operation can be done in 1 cycle with the updated OPCODE in
IMC instead of 4 cycles in a regular processor.

Wall” for processing speed. This significantly affects the
throughput, and a large fraction of energy is consumed
in moving data back and forth between memory and
the processor. The proposed architecture completely
bypasses the need for data transfers in SIMD operations
by taking compute units to memory, thereby increasing
throughput and reducing power consumption.

4) Parallel processing: The input/output port width of a
memory array is limited to standard data bus width, but
the in-memory implementation allows us to work on
custom bit widths. This enables us to exploit bit-level
parallelism for better performance and constant-time
execution, preventing timing-based SCA.

IV. CHACHA20
ChaCha20 is a stream cipher that is used to generate pseudo-
random bits of data called keystream. The given plain-text
data is combined with the generated keystream by XOR
operation to generate the cipher-text. Similarly, the cipher-
text can be decrypted by doing an XOR operation on the
cipher-text and the keystream.
The ChaCha20 algorithm starts with an initial state of

16 words, 32-bits each. It comprises a 128-bit constant, a
256-bit private key, a 32-bit block counter which is incre-
mented from zero, and a 96-bit nonce which is unique for
a keystream. The initial state is arranged in the form of a
4 × 4 matrix as shown in Fig. 6(a). A series of 20 rounds,
alternating between even and odd rounds are applied to the
initial state-matrix, generating a 512-bit keystream. The flow
of the ChaCha20 algorithm is shown in Fig. 5. Each round
contains four quarter-round (QR) functions. The even and
odd rounds differ by their inputs, as shown in Fig. 6(b). Each
QR takes 4 words, 32-bits each, as input. It uses additions,
XORs, and rotations to update the words, as shown in the
flow diagram in Fig. 7.

V. CHACHA20 IN-MEMORY ARCHITECTURE
The top-level architecture of the in-memory-ChaCha20 is
presented in Fig. 8. It uses IMC operations to implement
the ChaCha20 algorithm inside the memory array without
requiring any external processing unit. The 512-bit input data
is stored in the memory array as a matrix of dimensions
4 × 128, as shown in Fig. 6(a), such that the words required
in a single QR operation are aligned in the same column
of the memory array. Since each column has a dedicated
IMC unit, storing data in the above form allows four QRs to

VOLUME 2, 2021 835

AAMIR et al.: ChaCha20-IN-MEMORY FOR SIDE-CHANNEL RESISTANCE IN IoT EDGE-NODE DEVICES

FIGURE 5. ChaCha20 algorithm flow.

FIGURE 6. Initial State Matrix and Even/Odd Rounds.

be executed in parallel. The row-decoders of the array are
designed to enable multiple read-word lines simultaneously,
allowing in-memory compute operations. I/O circuitry of
each column of the memory array contains a separate single-
ended SA for RBL and RBLB read-bitlines, write-drivers for
write-bitlines, Adder/XOR unit, and rotation unit.

A. IMC OPERATION
In the proposed SRAM-based IMC array, NOR and AND
logic functions are executed during the read operation on
the data of selected rows, explained later in Section V-B.
These results can be passed either to an XOR unit or the
rotation circuit or the adder unit based on the requirement.
The computed data is then written back to the memory
bitcells in the same cycle. The in-memory-ChaCha20 archi-
tecture does the operations mentioned above in two parts.
It uses bitlines for in-memory NOR and AND logic func-
tions and custom-designed in-memory elements to execute

FIGURE 7. ChaCha20: Quarter-Round.

the remaining operations. In a single round execution Fig. 7,
all the required operands are aligned in the same column of
the memory array to exploit parallel execution of QRs. The
steps in a single QR are given below.
1) Firstly, the two rows which contain the operands for

an addition/XOR operation, say A and B (aligned in
the same column) are activated simultaneously. The
RBL and RBLB of the respective column output the
bitwise AND and NOR values of A and B.

2) Next, the output from the above step is passed to
“Adder/XOR Unit”.

3) The output is then passed to the “Rotation Unit”,
which rotates the input data by a specified number
of bits according to the algorithm and writes back to
the memory array.

4) Each row of the memory array contains four words
(128-bits), all of which are operated upon in parallel.

5) The memory array now contains the updated data.
These steps (starting from 1) are now repeated for dif-
ferent operands to complete the execution of a single
round.

Here it is to be noted that when switching between even
and odd rounds, the rows of the state matrix Fig. 16 are
shifted using rotation block, such that the elements required
in a single QRs are aligned in the same column.

B. IN-MEMORY COMPUTING USING READ BITLINES
The concept of IMC is based on the idea that simple boolean
functions can be executed equivalently to a read operation.
The only difference between a normal read operation and
an IMC operation is that multiple rows are activated simul-
taneously in the latter, and all the activated bitcells in the
same column are allowed to control the read-bitlines simul-
taneously. For the ChaCha20 algorithm, the addition and

836 VOLUME 2, 2021

FIGURE 8. Proposed In-memory-ChaCha20 Architecture.

FIGURE 9. 10T SRAM Bitcell.

XOR operations on A and B (stored in the same column)
are implemented as in-memory from A.B (AND) and A+ B
(NOR) values. These AND and NOR boolean operations are
executed efficiently by exploiting the read mechanism in the
memory bitcell.

1) 10-TRANSISTOR SRAM BITCELL

The memory array used for in-memory compute in this paper
is made using 10T SRAM bitcells. The bitcell is repre-
sented in Fig. 9. The bitcell consists of a conventional 6T
SRAM cell used exclusively for a write operation and two

single-ended read-ports, used for in-memory boolean logic
execution and read operation. The read ports are added to
the bitcell by using a pair of two series-connected NMOS
transistors viz. (M2 and M1) and (M4 and M3). The gate ter-
minals of these transistor pairs are connected to BLTI, RWL,
BLFI ,and RWL, respectively. The read bitlines (RBL and
RBLB) contact the bitcell at the drain end of the read transis-
tors (M1 and M3), such that the internal nodes (BLTI/BLFI)
of the bitcell are isolated from any direct contact with the
read bitlines.
In the standard 6T memory array, read and write bitlines

are shared. Short-circuit between multiple bitcells in a col-
umn storing complementary data could result in corruption
of the data stored. For example, if one of the many bitcells
stores a logic-0 and discharges the bitlines, this could cause a
bit-flip at the internal nodes of the other participating cells of
the same column. For this reason, 10T cell is selected for the
IMC array in which decoupling of the read and write ports
allows independent sizing of the transistors on the read and
write path. It gives flexibility for implementing in-memory
compute operations without corrupting the data. They allow
having better readability and comparatively larger voltage
swings at the read-bitlines without the risk of degrading the
write-ability. Given below are the modes of operation of the
bitcell.

• Read-Mode: In read mode, the read-bitlines RBL and
RBLB are initially precharged to Vdd. RWL of the row
of required bitcell is activated, providing the discharge
path for bitlines. Based on the charge stored at BLTI

VOLUME 2, 2021 837

AAMIR et al.: ChaCha20-IN-MEMORY FOR SIDE-CHANNEL RESISTANCE IN IoT EDGE-NODE DEVICES

FIGURE 10. 10T Bitcell: Read Mode.

FIGURE 11. 10T Bitcell: Write Mode.

and BLFI nodes, either RBL or RBLB either discharges
(logic 0) or both remain at a precharged voltage (logic 1)
as shown in Fig. 10. The value read by the bitlines is
then detected by an inverter-based SA at the I/O.

• Write-mode: In write-mode, WWL of the desired bitcell
is activated, and data to be written is loaded on the
write-bit line pair by the write drivers, as shown in
Fig. 11.

• IMC mode: In IMC mode, both the read-bitlines RBL
and RBLB are precharged initially to Vdd. The RWLs
corresponding to the rows containing the two operands
are activated simultaneously in the same read-cycle. The
precharged bitlines will either discharge or remain con-
stant based on the short-circuit between the two values
sensed by the bitlines.
– NOR and AND operation: The voltage level at the

read-bitlines provides the output of the boolean
operation. The read bitline, RBL, will discharge
when any of the two activated bitcell stores a
“0,” equivalent to an “AND” boolean operation.
On the contrary, the RBLB senses the comple-
mentary value stored in the bitcells, and it will
be discharged only when both the bitcells stores a
logic “1,” equivalent to a logical NOR operation.
The above functionality is shown in the Fig. 12.

C. CUSTOM-DESIGNED IN-MEMORY-COMPUTE
ELEMENTS
Additional circuitry required for adder, XOR, and rotation
operations is added near the SA to benefit from unbound
bandwidth inside the memory, thereby allowing operations
on 128-bits in parallel.

FIGURE 12. 10T Bitcell: IMC Mode.

FIGURE 13. Proposed Adder.

TABLE 1. Area and latency comparison of RCA, CLA and IMC adders.

• XOR Circuit: Outputs of in-memory boolean operations
AND and NOR are passed to the NOR gate at the IO,
resulting in XOR operation as demonstrated in [16].

• Adder Circuit: For a single-cycle 32-bit addition, a low
latency adder is required while maintaining low area
constraints. Ripple carry adders utilize the least area, but
rippling carry at every stage leads to very low through-
put. While on the other hand, carry look-ahead adders
provide the lowest latency but at the cost of huge area
overhead.
Hence, an adder mid-way between ripple carry and carry
look-ahead adder is proposed, as shown in Fig. 13. The
latency and area of all the three adders area compared
in the Table 1. This Adder takes the IMC-NOR and
IMC-AND output of the input bits from the bitlines.
The carry output for every bit is generated parallelly
for both cases when input carry would be 1 or 0. The
final output carry is selected using a MUX, with the
carry-in signal (output carry from previous bit) as select-
line. This reduces the carry propagation delay per stage.
The sum, on the other hand, is generated in two parts.
Firstly, the carry independent part, i.e., A+B generated

838 VOLUME 2, 2021

FIGURE 14. Rotator Circuit: Array output to write driver mapping.

parallelly for all the bits, and then the actual carry signal
is used to calculate the final sum for each stage. The
delay of the N-bit proposed adder can be calculated by
the expression 1.

τdelay = τIMC−XOR + τOR + N(τMUX) + τXOR. (1)

• Rotation Circuit: The circuit for rotation is shown in
Fig. 14. There are two types of rotations required to
implement the algorithm. First is the bit-level rotation,
i.e., within a single word required in a QR Fig. 7.
Second is the word-level rotation needed to align the
words (required in the next QR) in the same column
when the algorithm switches between even and odd
rounds, as shown in Fig. 16. Rotation is executed by
first reading a single row from the array, then latching
the data at the output of SA, and then finally redirecting
to different write drivers (based on rotation requirement)
of the same row via IMC-XOR unit. The redirection is
done using an 8×1 MUX, one for each column, having
inputs from other columns and the output of the MUX
connected to the write driver of its column. The select
line for rotation MUX, MUX Select, is controlled by
the memory array’s control block. The rotation MUX,
one for each column, is placed at the output of the
XOR/Adder unit. The implementation for rotation using
MUX for each column is shown in Fig. 14.
The mapping between XOR units to write driver using
MUX for the two different types of rotation is discussed
below.
– Bit-level Rotation (Quarter Round): In QR, each

of the 32-bits words is bit-rotated by a fixed

FIGURE 15. Bit-level Rotation in single word.

FIGURE 16. Word-level Rotation.

amount after the XOR operation Fig. 7. The rota-
tion is executed by passing the XOR output of
required columns at the input of rotation MUX.
The inputs to the MUX of 0th column is shown in
Fig. 15.

– Word-level Rotation (Column Alignment): The data
processed in the ChaCha20 algorithm is stored
in the form of 4 × 128 state matrix (Fig. 16)
in the memory array. It is done so that all the
elements required in a single QR function can
be placed in the same column (for IMC opera-
tions). This allows for all the four QR functions
of an even/odd round to be executed parallelly.
In order to align the words of the matrix in the
same column, word-level rotation is performed.
Here, when a row is read from the array, the
words as a whole are redirected to specified write
drivers. The output of the SA is redirected to write
driver after passing through XOR/Adder unit. The
mapping for this word-level rotation is shown in
Fig. 16.

VI. VERIFICATION SETUP
The complete IMC circuit for the algorithm is designed
in the 65 nm LSTP technology of STMicroelectronics
by using Cadence Virtuoso and simulated for functional-
ity verification and power analysis using the Eldo Circuit
Simulator.

VOLUME 2, 2021 839

AAMIR et al.: ChaCha20-IN-MEMORY FOR SIDE-CHANNEL RESISTANCE IN IoT EDGE-NODE DEVICES

A. POWER SIDE CHANNEL LEAKAGE ASSESSMENT
METHODOLOGY
The power consumption of a circuit is the sum of its dynamic
and static power consumption. It is measured by probing
the total current drawn from the power supply directly dur-
ing the circuit simulations. The power-consumption data
for the complete memory array is extracted using the Eldo
Simulator.
Power-based SCA exploits the vulnerability that different

inputs to a cryptographic system will produce different power
consumption patterns. The Test Vector Leakage Assessment
(TVLA) methodology, demonstrated in [22], [25], is used to
verify whether this vulnerability exists in the IMC imple-
mentation also or not by analyzing side-channel leakage
statistics. So, if different inputs to the system always result
in a similar power consumption pattern on average, there is
nothing for an attacker to exploit. Here, specific test vectors
are used, and corresponding power consumption patterns are
sampled. Further, statistical tools like t-tests are used to ana-
lyze the vulnerability of the device based on the sampled
power consumption patterns.

1) TEST VECTOR GENERATION

We have generated 200 random input test vectors and
categorized them into two sets. Each generated vec-
tor has a bit-width of 512 bits, i.e., a total of 16
32-bits words. The structure of each vector looks like
{c0, c1, c2, c3, k0, k1, k2, k3, k4, k5, k6, k7, bc0, n0, n1}, where
each element is a 32-bit word, k0-k7 represents the 256-bit
key, where kthi represent the 32-bit ith sub-key, (bc0) rep-
resent the block counter, (n0, n1) represent the nonce and
(c0, c1) represent constants.

2) WELCH’S T-TEST

In this paper, Welch’s t-test is the statistical tool that is
used for comparing the two sets of power consumption pat-
terns [22]. It is used to compare the mean values of two
groups of samples when the variances are different. Welch’s
t-statistic score is calculated as follow:

t = μA − μB√
σ 2
A

ηA
+ σ 2

B
ηB

(2)

where μA and μB are the means, σA and σB are the standard
deviations, and ηA and ηB are the sample sizes of the two
groups A and B, respectively. Higher values of the t-statistic
score indicate a significant difference between the two sam-
ple sets, whereas a smaller t-statistic score suggests that the
two sample sets are very similar.
The TVLA framework specifies a threshold t-statistic

value of |4.5| for deciding that the implementation is leaking
information at any particular point in the power trace [22].
The t-statistic value of the design less than |4.5| represents
that the power consumption patterns of the two different data
sets are nearly identical even if the input differs in terms of
key [22]. So, the circuit is classified as resistant to power-
based SCA. While if the score exceeds the threshold of |4.5|,

FIGURE 17. Welch’s t-statistic score (5GHz Sampling).

FIGURE 18. Histogram: Power consumption at a time-instant.

the power consumption pattern differs significantly for the
two sets of input vectors. Hence, an adversary can extract
information regarding the key via the power consumption
patterns.

3) SIDE CHANNEL LEAKAGE ASSESSMENT
METHODOLOGY

For each input vector, the circuit is simulated, and the power
consumption is recorded throughout the execution of the
algorithm in the hardware. The hence generated power traces
are sampled at the rate of 5.4 GHz. To carry out the Welch’s
t-test, the power-traces are categorized into two groups cor-
responding to their input test vector set. We receive two sets
of power consumption values belonging to two different sets
of test vectors at each sampling point. These values are then
used to create a probability density function (PDF) for the
Welch’s test. The statistical difference between the distri-
butions of these two sets directly indicates the amount of
side-channel leakage at that particular instant. This differ-
ence is quantified with the help of Welch’s t-statistic scores.
Here, the Welch’s score is evaluated at each of the sampling
points when the and presented in Fig. 17. The given example
in Fig. 18 shows the captured histogram at one such specific
time instant for power consumption corresponding to input
vectors of the two sets.

B. PERFORMANCE ANALYSIS
The performance of the proposed hardware implementa-
tion is compared with a software implementation of the
algorithm in terms of execution time and the number of
clock cycles. We took a standard software implementation
of the ChaCha20 algorithm from GitHub’s repository of the
OpenSSL cryptography toolkit library. The code is executed

840 VOLUME 2, 2021

FIGURE 19. Welch’s t-test scores at 25◦C for single round (50Ghz power sampling).

FIGURE 20. Welch’s t-test scores at 125◦C for single round (50Ghz power sampling).

on the Cortex A9 processor, and the number of clock cycles
and execution time are sampled.

VII. RESULTS
We begin with simulating the proposed circuit to generate the
power traces for multiple input vectors. These traces are then
analyzed by the tools mentioned above to check for any side-
channel leakage. Then, for performance analysis, the circuit
is implemented on the ARM Cortex A9 processor, and its
latency is noted and compared with that of the proposed
implementation.

A. POWER BASED SIDE-CHANNEL ATTACK
ASSESSMENT
Each of the captured power traces for complete execution
was sampled at a frequency of around 50Ghz (1600 samples
in 32ns). The circuit was simulated for a single ChaCha20
round at 25◦C and 125◦C temperature values along with
Monte-Carlo analysis to model the effects of fabrication and
temperature variations. The Welch’s t-test scores for these
cases are represented in Fig. 19 and Fig. 20 respectively for
different sampling frequencies. It was observed that the t-
statistic score for comparison between the provided two sets
of input data in all the above experiments was well within
the bounded value of |4.5|.

B. PERFORMANCE ASSESSMENT
We used Zedboard (Xilinx Zynq-7000 APSoC) as the target
platform for the software implementation, which includes
the required processor core. The SDSoC software is used
to generate the boot image file from the C++ specification
of the algorithm. It contains the instruction set (assembly
generated from the C++ program) required to execute the
algorithm on the processor. Finally, Tera Term, a terminal

FIGURE 21. Steps to implement the ChaCha20 algorithm on the ARM Processor
(Zedboard).

TABLE 2. Performance comparison of ARM cortex A9 and proposed IMC
implementation.

emulator, was used to display the results from the Zedboard.
The process is shown in the Fig. 21. A speedup of approxi-
mately 7× in terms of the execution time was observed with
the proposed in-memory implementation.

VIII. CONCLUSION
In this paper, we have presented a memory array-based
implementation of the ChaCha20 algorithm to ensure its
safety against power-based SCA. The proposed in-memory-
ChaCha20 architecture is designed in ST Microelectronics
65nm LSTP technology and simulated. The Welch’s t-test
is employed to demonstrate the effectiveness of the circuit
against power-based side-channel attacks. The results show
that power consumption of the circuit is independent of the
input vector or the data being processed, thereby warding off
power-based SCA. Furthermore, the IMC technique offers
a low area and low power solution for securing IoT edge
devices since it bypasses the need for a separate co-processor.
Additionally, the proposed design overcomes the von-

Neumann bottleneck as the memory array is now dually
used as a storage and computing unit. We also show that
by utilizing in-built parallelism during memory accesses
and enabling high-bitwidth encryption, significant improve-
ment in performance can be achieved. We demonstrate a 7X
performance gain for the execution of the ChaCha20 algo-
rithm on the proposed in-memory architecture as compared
to the ARM Cortex A9 processor.

REFERENCES
[1] S. Rizvi, A. Kurtz, J. Pfeffer, and M. Rizvi, “Securing the Internet

of Things (IoT): A security taxonomy for IoT,” in Proc. 17th IEEE
Int. Conf. Trust Security Privacy Comput. Commun. 12th IEEE Int.
Conf. Big Data Sci. Eng. (TrustCom/BigDataSE), New York, NY,
USA, Aug. 2018, pp. 163–168.

[2] A. Safi, “Improving the security of Internet of Things using encryption
algorithms,” Int. J. Comput. Inf. Eng., vol. 11, no. 5, pp. 558–561,
Apr. 2017.

[3] “From the Internet of Things to the Internet of Trust.” NXP. Jan. 2019.
[Online]. Available: https://www.nxp.com/docs/en/white-paper/NXP-
FROM-IOT-TO-IOTRUST-WP.pdf

[4] Y. Zhou and D. Feng, “Side-channel attacks: Ten years after its pub-
lication and the impacts on cryptographic module security Testing,”
IACR Cryptol. ePrint Arch., Lyon, France, Rep. 2005/388, Sep. 2005.

VOLUME 2, 2021 841

AAMIR et al.: ChaCha20-IN-MEMORY FOR SIDE-CHANNEL RESISTANCE IN IoT EDGE-NODE DEVICES

[5] M. S. E. Quadir and J. A. Chandy, “Embedded systems authentica-
tion and encryption using strong PUF modeling,” in Proc. IEEE Int.
Conf. Consum. Electron. (ICCE), Las Vegas, NV, USA, 2020, pp. 1–6,
doi: 10.1109/ICCE46568.2020.9043104.

[6] M. Bhargava and K. Mai, “An efficient reliable PUF-based
cryptographic key generator in 65nm CMOS,” in Proc.
Design Autom. Test Eur. Conf. Exhibit. (DATE), 2014, pp. 1–6,
doi: 10.7873/DATE.2014.083.

[7] O. Lo, W. J. Buchanan, and D. Carson, “Power analysis attacks on the
AES-128 S-box using differential power analysis (DPA) and correla-
tion power analysis (CPA),” J. Cyber Security Technol., vol. 1, no. 2
pp. 88–107, Apr. 2017, doi: 10.1080/23742917.2016.1231523.

[8] J. Bonneau and I. Mironov, “Cache-collision timing attacks against
AES.” in International Workshop on Cryptographic Hardware
and Embedded Systems. Berlin, Germany: Springer, Oct. 2006,
pp. 201–215.

[9] A. Akram, M. Mushtaq, M. K. Bhatti, V. Lapotre, and G. Gogniat,
“Meet the Sherlock Holmes’ of side channel leakage: A sur-
vey of cache SCA detection techniques,” IEEE Access, vol. 8,
pp. 70836–70860, 2020, doi: 10.1109/ACCESS.2020.2980522.

[10] M. Randolph and W. Diehl, “Power side-channel attack analysis: A
review of 20 years of study for the layman,” Cryptography, vol. 4,
no. 2, p. 15, Jun. 2020.

[11] T. Popp, S. Mangard, and E. Oswald, “Power analysis attacks
and countermeasures,” IEEE Design Test Comput., vol. 24, no. 6,
pp. 535–543, Nov./Dec. 2007, doi: 10.1109/MDT.2007.200.

[12] Z. Najm, D. Jap, B. Jungk, S. Picek, and S. Bhasin, “On comparing
side-channel properties of AES and ChaCha20 on microcontrollers,”
in Proc. IEEE Asia–Pac. Conf. Circuits Syst. (APCCAS), Chengdu,
China, 2018, pp. 552–555, doi: 10.1109/APCCAS.2018.8605653.

[13] J. W. Lee, S. C. Chung, H. C. Chang, and C. Y. Lee, “Processor
with side-channel attack resistance,” in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2013,
pp. 50–51.

[14] M. Hutter, M. Feldhofer, and J. Wolkerstorfer, “A cryptographic pro-
cessor for low-resource devices: Canning ECDSA and AES like
sardines,” in IFIP International Workshop on Information Security
Theory and Practices. Berlin, Germany: Springer-Verlag, 2011,
pp. 144–159.

[15] G. Sayilar and D. Chiou, “Cryptoraptor: High throughput recon-
figurable cryptographic processor,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), San Jose, CA, USA, Nov. 2014,
pp. 155–161.

[16] Y. Zhang, L. Xu, Q. Dong, J. Wang, D. Blaauw, and D. Sylvester,
“Recryptor: A reconfigurable cryptographic cortex-M0 processor with
in-memory and near-memory computing for IoT security,” IEEE
J. Solid-State Circuits, vol. 53, no. 4, pp. 995–1005, Apr. 2018,
doi: 10.1109/JSSC.2017.2776302.

[17] M. Xie, S. Li, A. O. Glova, J. Hu, Y. Wang, and Y. Xie, “AIM: Fast and
energy-efficient AES in-memory implementation for emerging non-
volatile main memory,” in Proc. Design Autom. Test Eur. Conf. Exhibit.
(DATE), 2018, pp. 625–628, doi: 10.23919/DATE.2018.8342085.

[18] A. Agrawal, A. Jaiswal, C. Lee, and K. Roy, “X-SRAM: Enabling
in-memory Boolean computations in CMOS static random access
memories,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 12,
pp. 4219–4232, Dec. 2018, doi: 10.1109/TCSI.2018.2848999.

[19] I. Beavers and E. MacLean, Intelligence at the Edge Part 4: Edge Node
Security, Analog Devices, Inc., Norwood, MA, USA. Accessed: Jan. 1,
2021. [Online]. Available: https://www.analog.com/en/technical-
articles/intelligence-at-the-edge-part-4-edge-node-security.html

[20] L. E. Kane, J. J. Chen, R. Thomas, V. Liu, and M. McKague,
“Security and performance in IoT: A balancing act,” IEEE Access,
vol. 8, pp. 121969–121986, 2020.

[21] D. J. Bernstein, “ChaCha, a variant of salsa20,” in Proc. Workshop
Rec. SASC vol. 8, Jan. 2008, pp. 3–5.

[22] B. J. G. Goodwill, J. Jaffe, and P. Rohatgi, “A testing
methodology for side-channel resistance validation,” in Proc.
NIST Non-Invasive Attack Test. Workshop, vol. 7, Sep. 2011,
pp. 115–136.

[23] SDSoC Environment User Guide, document UG1027 (v2019.1),
Xilinx, San Jose, CA, USA, May 2019. [Online]. Available: https://
www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/
ug1027-sdsoc-user-guide.pdf

[24] K. C. Akyel et al., “DRC2: Dynamically reconfigurable com-
puting circuit based on memory architecture,” in Proc. IEEE
Int. Conf. Rebooting Comput. (ICRC), Oct. 2016, pp. 1–8,
doi: 10.1109/ICRC.2016.7738698.

[25] M. He, J. Park, A. Nahiyan, A. Vassilev, Y. Jin, and M. Tehranipoor,
“RTL-PSC: Automated power side-channel leakage assessment at
register-transfer level,” in Proc. IEEE 37th VLSI Test Symp. (VTS),
2019, pp. 1–6, doi: 10.1109/VTS.2019.8758600.

[26] P. Slpsk, P. K. Vairam, C. Rebeiro, and V. Kamakoti, “Karna:
A gate-sizing based security aware EDA flow for improved
power side-channel attack protection,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), 2019, pp. 1–8,
doi: 10.1109/ICCAD45719.2019.8942173.

[27] I. Beavers, Intelligence at the Edge Part 1: The Edge Node, Analog
Devices, Inc., Norwood, MA, USA. Accessed: Jun. 1, 2021. [Online]
Available: https://www.analog.com/en/technical-articles/intelligence-
at-the-edge-part-1-the-edge-node.html

[28] P. Sethi and S. R. Sarangi, “Internet of Things: Architectures, proto-
cols, and applications,” J. Elect. Comput. Eng., vol. 2017, pp. 1–25,
Jan. 2017, doi: 10.1155/2017/9324035.

[29] J. Pfau, M. Reuter, T. Harbaum, K. Hofmann, and J. Becker, “A
hardware perspective on the ChaCha ciphers: Scalable Chacha8/12/20
implementations ranging from 476 slices to bitrates of 175 Gbit/s,”
in Proc. 32nd IEEE Int. Syst. Chip Conf. (SOCC), Singapore, 2019,
pp. 294–299, doi: 10.1109/SOCC46988.2019.1570548289.

M. AAMIR is currently pursuing the undergraduate
degree in electronics and communication engineer-
ing with the Indraprastha Institute of Information
Technology Delhi, New Delhi, India. His cur-
rent research interests include memory design and
in-memory compute for security applications.

SOMYA SHARMA is currently pursuing the under-
graduate degree in electronics and communica-
tion engineering with the Indraprastha Institute
of Information Technology Delhi, New Delhi,
India. Her current research interests include in-
memory designing, and implementing efficient and
reconfigurable architectures for signal processing
algorithms on FPGA.

ANUJ GROVER received the B.Tech. degree in
electrical engineering from IIT Delhi, the M.S.
degree in electronic circuits and systems from the
University of California at San Diego, San Diego,
USA, and the Ph.D. degree in electrical engineer-
ing from IIT Delhi.

He currently teaches with IIIT Delhi as an
Associate Professor. Before joining IIIT Delhi, he
worked with STMicroelectronics for over 18 years
and has led large teams on multimillion dollar
projects. His research interests include memory

design, in-memory compute, digital circuits and system design, safety and
security in hardware, and inventive problem-solving methods.

842 VOLUME 2, 2021

http://dx.doi.org/10.1109/ICCE46568.2020.9043104
http://dx.doi.org/10.7873/DATE.2014.083
https://doi.org/10.1080/23742917.2016.1231523
http://dx.doi.org/10.1109/ACCESS.2020.2980522
http://dx.doi.org/10.1109/MDT.2007.200
http://dx.doi.org/10.1109/APCCAS.2018.8605653
http://dx.doi.org/10.1109/JSSC.2017.2776302
http://dx.doi.org/10.23919/DATE.2018.8342085
http://dx.doi.org/10.1109/TCSI.2018.2848999
http://dx.doi.org/10.1109/ICRC.2016.7738698
http://dx.doi.org/10.1109/VTS.2019.8758600
http://dx.doi.org/10.1109/ICCAD45719.2019.8942173
http://dx.doi.org/10.1155/2017/9324035
http://dx.doi.org/10.1109/SOCC46988.2019.1570548289

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

