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ABSTRACT The possibility of using the increasing computing power available in cloud infrastructures
requires the development of new approaches for application software development and optimization.
Emerging edge computing paradigms offer the possibility of reducing bandwidth needs and of optimizing
latency, features particularly relevant for Big Data applications, by bringing computation closer to the user
and to the data generation processes. However, edge computing approaches pose several challenges in terms
of how to be able to efficiently take advantage of a distributed network of heterogeneous processing nodes.
This paper deals with this problem by extending a dynamic dataflow software development framework and
related design flow tools to support heterogeneous platforms. The paper describes the methodology steps
for the synthesis of application software executing on heterogeneous CPU/GPU co-processing nodes. The
steps do include the optimization of the communication between heterogeneous processing elements, a
technique for the efficient mapping and parallelization of computation on independent GPU partitions, and
the introduction of dynamic programming approach for leveraging the SIMD nature of GPU computing.
To complete the methodology of seamless porting of dataflow software and partition on CPU or GPU
computing nodes, an automated methodology for exploring the configuration space and to identify high
performance working points is developed.

INDEX TERMS Edge computing, dynamic dataflow programs, RVC-CAL, parallel computing, SIMD,
source-to-source compiler, GPU programming, heterogeneous systems profiling, performance estimation.

. INTRODUCTION

HE SUCCESS of the Internet of Things (IoT), and the

growing trend of implementing decentralized process-
ing applications close to the data generation devices, has
created the needs for efficient edge computing approaches,
in which data processing occurs partially (or completely)
already at the network edge, rather than (completely) in the
cloud [1]-[4]. The proliferation of diverse IoT devices and
applications, and the growing diffusion of 4G/5G commu-
nication technologies, are gradually changing users’ habits
of accessing and processing all types of data. These trends
challenge the linear growth capacity of cloud computing
infrastructures. Edge computing can be considered as a new
computing paradigm in which the data is processed at the
edge of the network, where the usage of cloud resources can

be reduced (or even completely eliminated) [1]. The prob-
lems that such new paradigm intends to solve covers several
aspects: data access latency, limited battery life of mobile
devices, limited amount and cost of bandwidth, security and
privacy of interchanged or stored data are just some of the
examples [2], [5], [6]. The solutions to these problems or
resource limitations make it clear why there is a rapid growth
in demand and a wide interest in this area, and why edge
computing systems and tools are flourishing.

The purpose of this paper is first to briefly analyze from a
high-level technical perspective what are the challenges and
opportunities in this area and show how some of these can be
addressed and solved using dataflow application development
approaches. Then the paper shows how, by using high-level
dataflow computation modeling, it is possible to efficiently
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exploit the computing power available at network nodes and
enable automatic and dynamic reconfiguration of both the
processing network geometry and the software application
itself. To complete the approach with a design exploration
and optimization stage, a methodology that allows to find
close-to-optimal working points of the software applica-
tion according to desired specifications and constraints is
also described as well as the complete framework of tools
supporting the integrated design flow [7], [8]. To the best
of the authors’ knowledge, this work is the first to pro-
pose a methodology entirely based on a dataflow paradigm,
from design to implementation and final optimization, that
fully exploits heterogeneous systems composed of GPUs and
multicore CPUs.

The paper is structured as follows: Section II defines
what is meant by edge computing, summarizes the state
of the art, and analyzes which challenges and which oppor-
tunities this paper intends to address. Section III illustrates
the principles of dataflows high-level computing models and
shows how dataflow application software can be systemati-
cally analyzed, optimized and automatically synthesized for
edge computing platforms. Section IV describes how the exe-
cutable code of an application specified with an high-level
dataflow computation model can be automatically generated
by a low-level code generation framework implemented by
the authors of this paper. Section V illustrates, with some
examples, how edge computing applications could benefit
from the methodology not only for the phase of development
and synthesis of executable application code, but also for the
phase of optimization and configuration of edge processing
by exploring the design space with automatic profiling and
estimation of the performance of the dataflow program exe-
cution. Section VI concludes the article and summarizes
some open problems and future direction of research.

Il. EDGE COMPUTING

Edge computing refers to technologies that allow com-
putation to be performed at the edge of the network
so that computation occurs close to data sources while
reducing bandwidth usage between geo-locally distant
devices [1], [3]-[5]. Edge computing can be applied on both
downstream data on behalf of cloud services and upstream
data on behalf of IoT services. An edge device is any com-
puting or network resource that resides near the sources
that generate the data and/or need the computing results.
For example, an edge device could be a smartphone located
between body sensors and the cloud [6].

A. CHALLENGES

Deployment strategies, i.e., where to map workloads, how
to interconnect devices placed at the edge of the network
while ensuring latency and power consumption specifications
and how to deal with node heterogeneity are all issues that
need to be considered for deploying applications at the edge.
There are many challenges posed by this new computing
and architectural paradigm. The following section provides
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a summary of the main challenges structured into five items
as suggested in [5], [6].

1) GENERAL PURPOSE COMPUTING ON EDGE NODES

In theory, edge computing can be facilitated on various nodes
that lie between the edge device and the cloud, including for
example access points, base stations, gateways, traffic aggre-
gation points, routers, and switches [1], [5]. Edge node can
incorporate, for instance, digital signal processors (DSPs)
that are sized and chosen based on the workloads they
handle. In practice, base stations may not be suitable for
handling analytical workloads simply because the DSPs are
not designed for general computation or the required task.
Furthermore, it is not immediately known whether these
nodes can perform computations on top of their existing
workloads. Therefore, it is necessary to be able to dynami-
cally leverage all the computational and data storage power
present in the vicinity of a node by allowing full recon-
figurability and dynamic mapping of workloads. This is
possible only if functions and tasks are defined with a
high level language that is not specific to a given specific
architecture [6].

2) PARTITIONING AND OFFLOADING TASKS

In edge computing, as highlighted by several research studies
(e.g., see [5], [9]), programmers have to manually parti-
tion their application functions between various devices on
the edge and the cloud. These early manual efforts are not
scalable nor extensible. Thus, computation models and anal-
ysis methodologies (supported by easy-to-use programming
frameworks and tools) are needed to enable automation of
this phase where cost functions on compute and bandwidth
resource utilization, and constraints on latencies and channel
widths, can be automatically considered without necessarily
requiring to explicitly define the capabilities or location of
edge nodes [10].

3) DISCOVERING EDGE NODES

Discovering the resources and the services available in a
distributed computing environment is a well studied and
explored topic. Techniques such as benchmarking form the
basis of decision making for mapping tasks to the most
appropriate resources to improve performance [11]. However,
exploiting the network edge requires discovery mecha-
nisms to find appropriate nodes that can be leveraged in a
decentralized cloud configuration and also requires dynamic
reconfigurability of applications and devices [6], [9]. Thus,
mechanisms are required that cannot simply be manual due
to the huge volume of devices that must be available at this
level. Furthermore, these mechanisms must allow for the
integration (and removal) of nodes into the computational
workflow at different hierarchical levels without increas-
ing latencies or compromising the user experience, in a
completely dynamic and secure manner [2].
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4) QUALITY-OF-SERVICE AND EXPERIENCE

The quality provided by edge nodes can be defined by both
the QoS and the QoE provided to each user [12]. An increas-
ingly complex principle to follow is to not overload nodes
with computationally intensive workloads. Thus, the chal-
lenge is to ensure that nodes achieve high throughput and
are reliable. Regardless of whether an edge node is lever-
aged, the user of an edge device or data center expects a
minimum level of service [9]. Thus, a thorough understand-
ing of the geometry and utilization of nodes in the network is
required, but at the same time raises issues related to mon-
itoring, dynamic reprogramming at the infrastructure and
application levels.

5) PRIVACY, SECURITY AND DATA INTEGRITY

If every edge device can potentially be used to store data
and be accessible to the public, a number of security and
reliability challenges need to be addressed. For example, a
router that handles Internet traffic cannot be compromised
when it is used as an edge computing node. A minimum level
of service will need to be defined and guaranteed to each
user of the edge node for decentralized computing to become
possible and affordable [13], [14]. To this end, workloads,
computation, location, and energy consumption will need
to be considered to develop appropriate architectural and
pricing models to make edge nodes affordable.

B. OPPORTUNITIES

In cloud computing, it’s increasingly popular to use high-
level languages to define and deploy workloads. For example,
in the scientific domain (e.g., see bioinformatics and astron-
omy domains) it is increasingly common to define various
work pipelines with dataflow languages [15], [16]. These
pipelines require access to external databases, inputs and
outputs are typically of substantial sizes, and the com-
putational load is substantial. The dataflow approach has
proven to be very useful in handling this amount of data
being analyzed and produced by heterogeneous sets of
tools [17], [18]. However, this approach typically involves
running on well-specified hardware platforms, where issues
such as optimizing computational loads, bandwidth reduc-
tion, dynamic application reconfigurability, and network
geometry are points not considered. By developing method-
ologies, frameworks, and toolkits, it is then possible to
accelerate and systematize how these data and computation
streams can support general purpose computing with the
addition of dynamically reconfigurable, variable geometry
edge nodes [19].

The work presented in this paper aims to address the
problem of how to schedule, configure and use the resources
available in an edge computing network in an efficient and
productive way starting from the application modeling up
to its dynamically configurable implementation. The prob-
lems to be solved are to find a computation model that is
expressive, but at the same time analyzable and portable, not
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specific to a particular hardware platform [17]. In addition,
the programming language must be usable without having
any information about the architecture in which the pro-
gram will be implemented to ensure that the application is
portable. Alongside the programming language, it is neces-
sary to provide a methodology for analysis and automatic
generation of low-level code that is able to support dynamic
reconfigurations of the network geometry. The source code
implemented on a particular platform must be automatically
generated by the framework following directives obtained
from a performance monitoring and analysis system capable
of optimizing the final implementation and meeting design
requirements such as computation speed, bandwidth and
energy consumption [6]. With this in mind, this work illus-
trates how it is possible to efficiently generate low-level code
optimized, in the specific example, for both multi-core and
GPU systems and heterogeneous CPU/GPU systems.

1) COMPUTATIONAL MODEL

In order to support dynamic application reconfigurability on
a variable heterogeneous architecture, it is essential that the
application layer be defined with some level of abstraction
that allows for analysis and monitoring. One model that
allows this, is the dataflow computation model. With it, it is
possible to define applications using a high level of abstrac-
tions that are architecture independent. Typically, a dataflow
application consists of computational blocks interconnected
with buffers where data exchange takes place. There are
several different models of computation described in the lit-
erature [10], [17], [20]. For the aim of this work, a dynamic
dataflow model, supported by a standard language [21]-[23],
will be briefly introduced. The dataflow approach has shown
that it support the development of highly complex real-
world applications [24]-[26], the portability on any network
of heterogeneous processing nodes including CPUs and
reconfigurable HW and the exploration of close-to-optimal
configurations without the need of manual rewriting of the
application.

2) SPACE EXPLORATION AND OPTIMIZATION

A network of edge computing nodes has many design points
in terms of selecting and configuring software components
and hardware architectures for implementation. These point
choices create a large space of possible design solutions
referred to as design space. The design process requires
exploration through this design space to find design solutions
before actual implementations [7], [27], [28]. The purpose
of design space exploration (DSE) is to find design solu-
tions that satisfy functional and performance constraints and
enable optimization of all or certain portions of the system.
These requirements have led to the notion of system-level
design, in which key roles are played by aspects such as
high-level modeling and simulation.

lll. DATAFLOW MODEL
One of the most important properties of dataflow pro-
grams is their high-level modular structure, which increases
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the portability of programs across heterogeneous platforms.
Dataflow programs are considered to be highly analyzable
and platform independent [29]-[31]. In fact, dataflow com-
putation models explicitly expose the potential parallelism
of an application and provide the basis for developing
extensive and systematic implementation analysis method-
ologies [30], [31]. For these interesting features, they are
often considered as an alternative to the classical sequential
programming methods particularly when targeting many-
multicore processing systems. The features of dataflow
computation models have been recently an objective of
several research works [7], [30]-[35].

A. RVC-CAL PROGRAMMING LANGUAGE

In principle many different programming languages can
be used to model the semantic or model of computations
expressed by dataflow programs [35]-[37]. Imperative lan-
guages (e.g., C/C++, Java, Python) have been extended
with specific parallel constructs and/or data communica-
tion functions, or specific dataflow languages (e.g., Ptolemy,
Esterel) have been developed and formalized with native
dataflow based operators. In this variegated ecosystem, the
RVC-CAL [22], [38] dataflow is currently the sole dataflow
programming language standardized by ISO that fully cap-
tures, natively in its operators the behavioral features of
a dynamic (dataflow) process network (DPN) model of
computation (MoC). An RVC-CAL program is composed
by a network of actors (which contain the algorithmic
part of the program) interconnected by means of order
preserving lossless communication channels (that usually
are implemented by FIFO buffers). Each actor contains a
set of atomic firing functions, called actions, and a set
of internal state variables which cannot be shared among
other actors. During execution, actors can fire only one
action at a time: for each action a set of firing rules
defines when the action can be executed and each firing
rule can be defined as a function of the actor’s internal
variables and on the availability and values of the input
tokens.

As an example, Figure 1 shows an RVC-CAL dataflow
program. Figure 1(a) is the graphical representation of the
Top-level network of the program. It is composed of five
actors instances. Figure 1(b) depicts the RVC-CAL imple-
mentation of the Producer actor. It consists of a single action
that produces one token per firing that increment each time.
A guard prevents the action to fire more than four times.
In the source code specifying the PingPong actor processing
in Figure 1(d) a schedule statement acts as a Finite-state
machine (FSM) where the transition from one state to the
other is done by the firing of an action. In this work the
Open RVC-CAL Compiler (Orcc) [39]-[41] has been used
as development tool and compiler framework for the RVC-
CAL programs illustrated in the following sections, but
also other open source compilers can be used for the same
purposes [28], [37], [42].
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(a) An example with five actors (i.e. Prod, CopyTokenA, CopyTo-
kenB, PingPong and Merger).

1 actor Producer () ==> int O:

2 uint counter := 0;

3

4 p: action ==> O:[counter]

5 guard counter < 6

6 do counter := counter + 1; end

7 end

(b) Producer.cal

1 actor CopyTokens (String name) int I ==> int O:
2 @CUDA (block="1", thread="2")

3 c: action I:[val] ==> 0O:[val] end

4 | end

(c) CopyTokens.cal

1 actor PingPong () int I ==> int O:

2

3 ppl: action 1I:[val] ==> O:[val

4 do println("PingPong[ppl]:" + val); end
5

6 pp2: action I:[val] ==> 0:[-val]

7 do println("PingPong[pp2]:" + val); end
8

9 schedule fsm a_ppl:

10 a_ppl (ppl) --> a_pp2;

11 a_pp2 (pp2) -—> a_ppl;
12 end
13 end

(d) PingPong.cal

1 actor Merger () int Il, int I2 ==> :

2 uint counter := 0;

3

4 m: action Il:[ vl ], I2:[ v2 ] ==>

5 do

6 println("Merger ("+counter+") :"+ vl +";"+ v2);
7 counter := counter + 1;

8 end

9 | end

(e) Merger.cal

FIGURE 1. RVC-CAL program example: dataflow network topology and actors
source code.

B. DESIGN SPACE EXPLORATION

The quality of an application implementation is undoubtedly
subject to finding an appropriate combination of differ-
ent permissible configurations in the implementation space.
These configuration points can generally involve: the assign-
ment of data flow modules to processing units (partitioning),
the ordering within each processing unit (scheduling), and
the sizing of the communication channels and bandwidth
used by the modules (buffer sizing). However, due to the
large number of allowable configuration points, the problem
of finding a configuration that satisfies the design constraints
is generally considered to be NP-complete [8]. As objective,
only close-to-optimal solutions are desired. These can only
be derived using an appropriate design space exploration
heuristic supported by an easily analysable execution model.
An effective approach that has been shown to be able to effi-
ciently explore the design space is based on the analysis of
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the execution trace graph (ETG) of a dataflow program [43].
The ETG is modeled as a directed acyclic graph (DAG)
in which each node represents a single action firing and
each directed arc represents either a data or a logical depen-
dency between two different action firings [43]. Based on this
methodology, a design space exploration framework called
TURNUS has been developed [44], [45]. This framework
can be used to explore and optimize the design space of an
RVC-CAL application: its main components and its design
flow are extensively discussed in [7]. The inputs to this
graph are the RVC-CAL program, the target architecture in
which the project will be implemented, and the constraints
imposed by the architecture (e.g., available resources) and/or
the designer (e.g., performance requirement). The output of
the design flow is the implementation of the dataflow pro-
gram, which may consist of a circuit synthesised in hardware
and/or a binary executable via software. By executing or
interpreting the code, it is possible to achieve a profiled,
high-level, platform-independent execution of the program
in which the ETG is evaluated.

C. PERFORMANCE ESTIMATION

The ETG is then analysed by adding measurements obtained
from application profiling. Using this information, it is possi-
ble to calculate and identify the longest computational path,
called the critical path (CP), which occurs when a set of input
vectors is processed. Based on the CP information, it is pos-
sible to effectively guide the heuristics required to evaluate a
mapping configuration that minimises an objective function
(e.g., buffer size) based on certain constraints (e.g., through-
put) provided by the designer. TURNUS also provides a fast
performance estimation engine based on ETG analysis. This
is used to quickly and efficiently explore different design
alternatives (i.e., mapping configurations) of the design while
minimising the number of low-level implementations [7].

IV. EXECUTING A SW APPLICATION ON
HETEROGENEOUS EDGES NODES

As outlined in [6], one of the challenges in the implementa-
tion of edge computing systems is to develop solutions that
are portable to different and possibly heterogeneous comput-
ing nodes or networks of nodes. It is clear that exploiting the
opportunity offered by the edge computing paradigm neces-
sitates encompassing a variety of different heterogeneous
hardware architectures and configurations in a distributed
manner. Thus, the need for a systematic and automated
way of generating efficient configurations of computational
tasks running on the heterogeneous hardware resources
available at the edge, is a necessary feature to achieve
the necessary portability, flexibility and ease of develop-
ment needed to deploy loT/edge applications. This section
presents a methodology, capable of automatically gener-
ate C++/CUDA code for the execution of DPN dataflow
SW on heterogeneous CPU/GPU co-processing platforms.
Here the emphasis is on the CPU/GPU partitioning of pro-
cessing tasks, whereas the partitioning on homogeneous
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many/multi core processing platforms is extensively dis-
cussed in [7], [8], [43]. Examples and experimental results
are also provided and discussed.

A. CODE GENERATION

In this work, the CUDA (Compute Unified Device
Architecture) [46] application programming interface is used
to execute networks of DPN actors on NVIDIA GPUs, but
the methodology and approach is general and can in prin-
ciple be extended to other GPU interfaces and platforms.
However, by using CUDA, the fine-grained control over the
NVIDIA hardware range of different GPU generations and
families can be fully leveraged. The CUDA notation for
multiple computing context is extensively used, including
dynamic parallelism, and the concurrency between memory
transfers and computation.

A typical CUDA application program consists of an host
(CPU) and a device (GPU) code in a single-source pro-
gram using pre-processor directives to differentiate where
the computation occurs. The device code is written in a
collection of kernels that are special functions that can be
called from the host code and are executed on the device.
So as to take advantage of the massive GPU parallelism, the
launch of kernels has to be parameterized by a number of
SIMD threads that can exploit the full potential of the given
GPU platform. Such threads are decomposed in groups of
32, called warps, in such a way that they all execute the
same instructions. Sets of warps can be organized in thread
blocks where all threads of the same block can have access
to fast shared-memory and synchronization primitives.

The approach taken in this work is, for selected dataflow
actor in a dataflow network that can benefit from GPU exe-
cution, to execute both the action selection and the actions
themselves on the GPU. By doing so, the necessary data
to fire an action is already available on the device memory.
Thus, a minimization of the data transfers between the host
memory and the device memory is fully achieved. Such
approach of fully porting an actor execution on a GPU,
instead of the classical SIMD approach using GPUs as co-
processing units, also avoids the need of allocating a CPU
core for each actor to schedule and launch kernels for GPU
co-processing.

Actors can thus be either fully mapped to execute on the
host (CPU) or on the device (GPU). The implementation of
this porting of the dataflow network nodes, requires three dif-
ferent FIFO communication mechanisms: one to implement
the communication between actors mapped on CPUs, one
for communications between actors mapped on the GPU and
one for communication between an actor mapped on a CPU
and one on a GPU. For each type of communication mech-
anism, a different implementation is required. These three
FIFO communication implementations fully enable the inde-
pendent and parallel computation between the host and the
co-processing device, but also the full parallel execution of
actors on the co-processing device (more details are reported
in Section IV-C).
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So as to maximize the GPU resource utilization, multiple
independent compute context are used to concurrently
run different dataflow actors on separate CUDA streams.
Multiple actions can be fired in parallel depending on the
available GPU device resources in terms of CUDA cores,
memory, and registers. Multiple CPU/GPU memory transfer
might conjointly occur by using the copy engines of the
GPU platform. The specific number of copy engines may
depend on the hardware generation and model. This number
may impact the concurrency between the memory transfer
and compute time of task executions, and as a consequence
the overall dataflow program performance may be affected.

As mentioned in Section III-A, by construction the
RVC-CAL programming language models an actor as an
atomic kernel of execution that consumes tokens from the
input buffer and produces tokens in the output buffers.
Thus, actors are not directly ready for internal paralleliza-
tion. Nonetheless, the performance of an actor execution
can indeed be improved by parallelizing its computation.
Performance improvements can be achieved by launching
several instances of the same action in parallel on different
data, as long as the order of the tokens within the communi-
cation channels between actors is preserved and the internal
state dependencies of each actors respected.

B. PARTITION AND MAPPING
A partitioning configuration of the dataflow network nodes
(actors) and the mapping on CPU or GPU for execution, has to
be provided for the generation of the execution code for both
CPU and GPU. This stage consists of assigning to each actor
or sub-network sets whether they are mapped on the CPU side
and in which sub-partition (for multi-core systems) or they
are mapped on the GPU side. Such assignment allows the
synthesizer and compiler to distinguish and correctly assemble
by using the appropriate communication instantiation (CPU-
CPU, GPU-GPU or CPU-GPU) the generation of the code
intended to be executed on the CPU and the code for the GPU
platforms. For doing so a new backend for the generation of
CUDA code has been developed by the authors and added to
the open source synthesis and compiling infrastructure called
Exelixi [47]. The tool flow is presented in Figure 2. The
high-level representation of the application program written
in RVC-CAL, together with configuration files providing
partitioning and buffer sizes information, are fed to the ORCC
compiler, which uses the Exelixi CUDA backend [48], [49] to
generate the C++/CUDA code that is then compiled with the
Nvidia CUDA Compiler (NVCC) to obtain an executable of the
heterogeneous program. Using a platform-specific compiler
as the last layer of the tool-chain allows the methodology
to be compatible with all Nvidia supported platforms (i.e.,
X86(_64), ARM, POWERSY, and all Nvidia GPUs). To fully
exploit actions parallelization, user defined compiler directives
are used to identify suitable actions and associated number
of blocks and threads necessary to fully specify the SIMD
execution of parallel actions.

In other words, the generated code is capable of

instantiating actors, creating partitions for the CPU to be
774
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FIGURE 2. Tool flow of the heterogeneous code generation.

1 | _global__ void CopyTokenNS::action_selection (

2 CopyToken* copyToken, EStatus* status,

3 size_t actorIdx, size_t actorSize) {

4 uint64_t _start = clock64();

5 bool stop = false;

6 do {

7 status[actorIdx] = None;

8 bool resl = true;

9 while (resl) {

10 resl = false;

11 copyToken->status_I = copyToken->port_I->count (0);
12 copyToken->status_O = copyToken->port_O->rooms () ;
13 bool res2 = true;

14 while (res2) {

15 res2 = false;

16 if (copyToken->status_I >= 2 &&

17 copyToken->isSchedulable_c()) {

18 if (copyToken->status_0O >= 2) {

19 Ports ports;

20 ports.I=copyToken->port_I->read_address (0, 2)
21 ports.O=copyToken->port_O->write_address () ;
22 CopyTokenNS: :c<<<1,2>>>(copyToken, ports);
23 resl = true;

24 res2 = true;

25 status[actorIdx] = hasExecuted;

26 }

27 }

28 }

29 }

30 if (checkStatus (status, actorSize) == None) {

31 stop = (clock64() - _start) > wait_period;

32 } else { _start = clock64(); }

33 } while(!stop);

34 |}

FIGURE 3. Stripped-down example of the CUDA implementation of the action
selection of the CopyTokens actor.

executed using POSIX threads, instantiating CUDA actors
and launching in separated streams their corresponding prin-
cipal kernels (action_selection), and instantiating and con-
necting the appropriate FIFOs implementations connecting
the inputs and outputs actors ports (see Section IV-C).

In the listing reported in Figure 3 an example of the
source code generated by the backend for the CopyTokens
actor meant to run on the GPU is reported. The __Global__
directive designates kernel function. The action_selection is
the principal kernel that is launched from the main function,
it is responsible of testing which action has to be executed

next by looking for available data, available FIFO output
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space and for constraints expressed by guard and repre-
sented by the isSchedulable_c function in line 19. As can
be observed in line 24, the actions c is also a kernel, launched
from the action_selection, and this is possible thanks to the
added dynamic programming functionality provided by the
CUDA API. The main benefit of such functionality is that
it allows to select the number of SIMD threads available
for the execution of each action depending on the executed
code. In this example a “<<< 1,2 >>>" configuration is
used, which means that one block of two threads is used.
It is important to remark that the management of the read
and write addresses in the FIFOs must be handled in the
action_selection instead of in the action itself, since they
must be called only once and in the correct sequence. In
addition, it can also be noticed, at line 22, that the read
address is obtained by providing to the FIFOs the number
of tokens that will be accessed (here one token multiplied
by the number of thread, two in this case). This information
is particularly relevant to ensure memory alignment so that
a specific quantity of data can be accessed in consecutive
addresses.

Within an action, both the read and the write addresses
are indexed with the roken id and the thread id, so that each
thread works on its own portion of memory. Maintaining
sequential semantics in FIFOs allows to easily connect par-
allelized actors with sequential actors in a transparent way.
Each actor runs autonomously on the GPU without the need
to be launched periodically by the CPU. In terms of the
data flow model, the result is to have each CUDA actor
mapped to a separate partition. Each actor is responsible for
terminating itself by detecting when the application program
reaches the end. In other words, the CUDA partition can be
considered completely autonomous as long as the application
program is executing.

With this aim, the action_selection is made as a long-
running kernel with a loop that run until the application
reach the end. In the listing reported in Figure 3, at line
27 it is defined how when an action is triggered the status
array is put at hasExecuted. This array is shared by all other
CUDA actors and is used to ping other actors and assert that
a new computation has just been completed. The checkStatus
function in line 32 is responsible for checking other actors’
status. If no actor has produced any work after some fixed
amount of time (wait_period) then the actors return. The
application programs can terminate once all CUDA actors
and all CPU actors are running.

To visualize how a typical program generated by this
methodology is executed, Figure 4 depicts a possible execu-
tion of the dataflow program example reported in Figure 1
when executed with the partition configuration reported in
Figure 5, where each GPU actor runs on its own separated
CUDA stream. In Figure 4 it can be observed that in slot 1
(in red) the first firing of the action p of the prod actor is
performed. The produced token of p is successively avail-
able in slot 2 to the PingPong actor. As depicted in Figure 5,
the same token needs to be transmitted to CopyTokenA that
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FIGURE 5. Program partitioning over CPU and GPU. Three types of FIFOs are used
(1-CPU FIFO, 2-Legacy-HostFifo/HostFifo, 3-Device FIFO).

process it in slot 3 at the same time as the second token
through the firing of the action c¢. As it can be observed in
Figure 1(c), the action ¢ has been flagged with the @ CUDA
annotation to make it an SIMD action with 1 block of 2
CUDA threads, meaning that the action will always execute
twice in parallel. Finally, it can also be observed that simul-
taneous CPU and GPU computation as well as GPU to CPU
memory transfer are fully achieved.

C. COMMUNICATION
Three types of FIFOs, respectively called Fifo, CudaFifo, and
HostFifo, are needed in order to provide the correct support
of a CPU/GPU co-processing execution. All of them are
illustrated in Figure 5. The first type, inherited from the
original Exelixi C4++ backend, and represented in red is
used for CPU to CPU communication. The second one, rep-
resented in purple, is used for GPU to GPU communication.
Its implementation is very similar to the CPU FIFO except
from the fact that it uses device memory instead of CPU
memory. The last one, represented in blue in the figure, is
used for any FIFO for which at least one of the writer or
the readers is on the CPU side and one on the GPU side.
A HostFifo is a cross-platform FIFO that has been
developed by exploiting the features of recent CUDA APIs
and associated hardware capabilities. With this aim, on the
CPU side the pinned memory is allocated. This means that
the operating system does not need to swap this alloca-
tion nor to move it in a different physical address space.
These addresses are successively registered in the virtual
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address space of the GPU and then the translated point-
ers are obtained. In this way, different pointers are used
if memory is accessed from the CPU side or the GPU
side. The advantage of such implementation is that there
is no need for any synchronisation or software API calls:
memory accesses are done automatically in hardware. This
efficient implementation does not change the rest of the
dataflow computation model or how the FIFOs are used.
This third type of FIFO implementation is only compatible
with hardware equipped with computing capability 6.x or
higher (available hardware features), which are able to per-
form on-demand fine-grained memory pinning. Less efficient
implementations that fully support the dataflow computa-
tion model are obviously also possible for platforms not
supporting recent CUDA APIs. For hardware with compute
capabilities under 6.x a Legacy-HostFifo is provided. It is
composed of two identical CudaFifo that are allocated one
on the CPU side, one on the GPU side and of additional
functions hostFifoSyncWrite hostFifoSyncRead that have to
be called from the CPU to synchronize them. Since these
FIFOs accept one writer, but multiple readers, it is nec-
essary to keep track of which readers/writer is on which
sides so that the most up-to-date data can be identified and
the direction to which explicit memory transfers should be
issued can be inferred. However, The fact of continuously
using CUDA software API to synchronize the two FIFO,
introduces a significant runtime overhead compared to the
hardware optimized HostFifo implementation.

D. EXPERIMENTAL EXAMPLE

In this section, two programs have been used to evalu-
ate the methodology describe in this paper. The objective
is to demonstrate the correctness and completeness of the
code generation and to assess the achieved performance
improvements.

For the experimental evaluation, the hardware used is a
GeForce GTX 1660 SUPER NVIDIA GPU with 6GB of
memory and an Intel Skylake i5-6600 CPU with 16 GB of
DDR4 RAM. As for the software, the CUDA library version
11.3.1 has been used.

1) RVC-CAL IDCT SYNTHETIC APPLICATION

This section presents the results obtained from the paral-
lelization of a computationally intensive actor. Here, this
application is made with an actor implementing the idct
algorithm connected to a Source and Sink actor responsible
to feed the it with data (See Figure 6). For this exam-
ple, two different configurations have been used. The first
one is CPU only with three CPU threads and one actor
per thread. The second one is GPU only and the CUDA
kernel of the action of the idct actor is running on a grid
of 2 blocks 512 threads per block. Both configurations were
implemented with identical buffer sizes. The result is that
the GPU configuration is more than two times faster than
the CPU implementation. This demonstrates that if enough
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FIGURE 7. Network for the RVC-CAL implementation of a JPEG decoder.

TABLE 1. Results for the JPEG decoder.

Seq GPU | Parallel GPU
Frame rate [image/sec] 0.24 2.32
Speedup 1 9.67

data is provided to the GPU-generated actors, this method-
ology provides significant performance improvements over
the CPU-only multicore implementations.

2) RVC-CAL JPEG DECODER

Figure 7 shows the top-level network of a RVC-CAL JPEG
decoder composed of 6 actors. This is well-known appli-
cation and its source code is available in the orc-apps
repository [50].

In this application, only the idct2d previously analysed
can be parallelized, as it does not contain any internal data
dependency. This real-case application is used to validate the
correctness of the code generated for a generic application
that has not been written specifically to explore GPU par-
allelisation, showing the generality and functionality of the
methodology described in this work. Regarding performance,
Table 1 summarizes two different sets of results. The first
one is when the idct2d actor runs on the GPU sequentially
(this corresponds to the methodology presented in [48]), all
other actors are running on the CPU. The second one corre-
sponds to the improved methodology where the idct2d actor
runs in parallel on the GPU. It can be noticed that the par-
allel GPU implementation is almost 10 times faster than the
previous sequential implementation.

V. PARTITIONING AND OFFLOADING TASK
Making use of edge nodes for offloading computations poses
the challenge of not only partitioning computational tasks
efficiently, but doing so in an automated and dynamic way,
without requiring to a priori and statically define the config-
uration, network geometry, and capabilities of each node [6].
This is because the Edge computing paradigm requires a reli-
able way to automatically discover good configuration points
in terms of mapping and partitioning against available nodes.
Figure 8 illustrates how the dataflow methodology is
used for the distribution of computational tasks both locally
to each heterogeneous system and globally to the entire
edge computing system. Indeed, communication between
processing elements using FIFO buffer allows the model
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FIGURE 8. lllustration of how a dataflow application can program edge computing
systems by mapping actors across the cloud, edge device and end device seamlessly
when all communications are abstracted by FIFO buffers.

l

to encapsulate both the local communications via memory
transfer and the global communications over the network
in a way that is transparent to the processing element. In
addition, performance evaluation and design space explo-
ration are also unaffected, as the only difference would be
in the higher communication cost that is measured in the
profiling weights. In this example, we can see a four-actors
dataflow application program description that is mapped on
an Edge computing system where the chosen configuration
allows for one actor to run in the cloud, two actors on an
intermediate edge node, and one on the end-user device. We
can also notice that all communications (local or remote)
are performed through FIFO buffer (in purple).

This section presents how the Exelixi CUDA back-
end [47] has been extended to synthesize instrumented code
to perform accurate clock profiling and generate execution
weights. It shows how this can be used in the TURNUS
post-processor to quickly and accurately estimate the overall
performance of the application and then automatically pro-
pose performance configurations to the backend which can
then generate code adapted for the available computational
nodes.

A. CLOCK-ACCURATE PROFILING

For the purpose of this work, an extension of the compiler
in the Exelixi CUDA backend was developed to automati-
cally achieve accurate profiling capabilities at the clock of an
application. It is necessary to specify that this way of code
generation is only used during the profiling phase of the
application and not for the final execution phase. In order
to increase the accuracy of the profiling, it was necessary
to modify the behavior of the CUDA parallel partition and
the behavior of the GPU actor scheduler. In fact, to avoid
interferences (e.g., memory transfer, hardware resource con-
tention) all actors are executed only in sequential mode and
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asm volatile("

s on=lv(__cycles_0) :i: "memory");

asm volatile("mov.u64_%0, %%clock64;" : "=1"(__cycles_1) ::
actor_a—>profilingData—>addFiringDevice (ACTOR_ID:: actor_a ,
ACTION_ID : : compute ,
(__cycles_1 — __cycles_0)):

"memory");

0N AL —

FIGURE 9. Striped down example of the SASS assembly code used for accessing
the GPU clock counter.

a sequential partition is created that schedules at most one
CPU and one GPU actor at a time. The type of actor schedul-
ing is then changed from fully parallel to non-preemptive:
in other words, an activated actor is executed until it has
completed its execution or entered a waiting state.

In addition to the execution mode, for an accurate mea-
surement of the clock-cycle it is necessary to have access to
a hardware counter with increment at a stable frequency. For
CPU-mapped actors, the same Intel RDTSC counter proposed
in [51] is used. For GPU-mapped actors, however, some-
thing dedicated and equally precise is needed. The NVIDIA
platform used for this work offers something similar in their
streaming multiprocessors, Figure 9 shows the SASS assem-
bly code used to access a stable and precise performance
counter to the clock. Access points can be placed around
the section that is to be profiled. For SIMD actions where
multiple CUDA cores are used to run multiple instances
of the action simultaneously, the measured time is divided
by the number of threads used to execute the action. This
results in a virtual average time for the execution of a sin-
gle action, since this is the number needed to execute the
TURNUS ETG postprocessor.

Compared to the software implementation for homoge-
neous platform methodology previously developed, it is not
possible to assume that the communication cost of a specific
action do not vary regardless of the mapping of the actor it is
communicating with. Indeed off-board communication (i.e.,
CPU to GPU) is much more costly, and the communication
and execution phases during the firing of an action must be
considered as independent.

B. HETEROGENEOUS ESTIMATION

In this section, it is shown how the profiling weights gener-
ated by the methodology presented in the previous section are
used. An important aspect to consider is how to estimate and
treat the difference in CPU and GPU clock frequency. This is
important information that must be provided to TURNUS in
order for performance estimates to be made consistently. To
obtain the CPU frequency, the RDTSC counter is measured
for a known time: the result will provide the frequency value
used for the RDTSC. For the GPU clock, NVIDIA exposes
this value through the CUDA API. The last thing to think
about is clock volatility. Indeed, whether it is called boost,
turbo boost, step speed or dynamic clocking different tech-
nology for clock frequency variation exist on both sides.
To optimize the performance estimation accuracy all these
options are temporarily disabled.
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FIGURE 10. Four FIFOs configurations needed during profiling.

In order to provide the TURNUS design space explo-
ration framework with a detailed view of the architecture,
it is important to profile the application in various sce-
narios. Those that manage to provide detailed and reliable
information are the four scenarios described in Figure 10.
The first and the second scenario are those in which all actors
are mapped on the CPU partition for the first and GPU for
the second. They both allow to have the scheduling and
action execution body cost on each platform. Unfortunately,
they are not sufficient as they do not allow to profile the
communication cost across platform (HostFifo @ in blue)
but only the CPU to CPU communication (Fifo (D in red)
or GPU to GPU communication (CudaFifo @ in purple).
To solve this problem two extra profiling with a special
Backend option (HostFifo only) activated which artificially
generates HostFifo (FIFO for cross-platform communication)
between every actor allowing to get the cost for any possible
configurations are performed.

C. EXPERIMENTAL EXAMPLE

In this section, two programs have been used to validate if the
theoretical model used in TURNUS and the implementation
code and profiling result generated by the CUDA backend
presented in this work are matching. These application pro-
grams are well-known and the source code is available in
the orc-apps repository [50]. For the experimental evaluation,
the hardware used is the same as in Section IV-D and as
explained in Section V-B CPU frequency has been stabilized
to 2.9GHz and the GPU frequency to 1.8GHz.

1) RVC-CAL JPEG DECODER

In this section the JPEG decoder application program is also
used and its Top-level network is shown in Figure 7. It is
composed of 6 actors. Besides the Src and Display actors that
are handling input/output, reading/writing, all other actors
can either be assigned to the CPU partition or the GPU
partition.

The first set of results focuses on a single partition with
varying buffer sizes, input image resolutions, and quality
factors. The reference configuration is composed of the Src
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FIGURE 11. JPEG: Normalized values with different inputs.
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FIGURE 12. JPEG: Normalized values with different partitions.

and Display actors in a single sequential partition mapped on
a CPU core and the other actors mapped to the fully paral-
lel GPU partition. For every configuration, a corresponding
ETG has been generated using TURNUS. The profiled exe-
cutable generated by the CUDA backend has been executed
as many times as the set of different input sequence stimuli
to generate the weights. The TURNUS ETG post-processor
has been used to generate the total estimated execution time
of the application program and compared it with the actual
measured total time. Figure 11 shows the results, where the
design has been simulated with 8 different images and two
different buffer sizes (512 and 1024 tokens). The values are
normalized to the first image and it can be seen that the
maximal estimation error is around 6%. This shows that
regardless of the inputs and buffer sizes the performance
could be estimated just the same.

The second set of results focuses on the same comparison
between the total time measured and estimated but this time
with the same input stimuli and varying mapping config-
urations. Contrary to the first set of results and since the
same input image is used a single ETG has been generated.
Regarding the weights and as explained in Section V-B only
four sets of weights files are needed and each simulation
is run with the appropriate combination of these weights.
Figure 12 show the results, where five random mapping par-
tition as been used. Each mapping (m1-m5) corresponds to a
random assignment of each actor to either the CPU sequen-
tial partition or to the fully parallel GPU partition. The values
are normalized to the first partition and it can be seen that
the maximal estimation error is around 16.9%. More impor-
tantly, it can be seen that the performance improvement or
deterioration trend has been respected and this without the
need to generate new weights or ETG for each partition.

2) RVC-CAL SMITH-WATERMAN ALIGNER

Figure 13 shows the Top-level network of the Smith-
Waterman (S-W) aligner application program presented
in [52]. The S-W aligner performs a local alighment of
two sequences of RNA, DNA, or protein. The first sequence
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FIGURE 13. RVC-CAL implementation of a S-W aligner.
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FIGURE 14. S-W: normalized values with different inputs.

A ={ay,ay,...,a,}is generally referred to as the reference,
and the second one B = {by, by, ..., b,} as the read (or
query). The S-W is composed by two computational stages:
a first step where a cost matrix is evaluated and a second
step where this matrix is backtracked starting from the high-
est matrix value. The backtrack path defines the alignment
(in terms of matches, mismatches, insertion, and deletions)
between the reference and the query input sequences. The
dataflow program used in the context of this work is com-
posed of 11 actors and in Figure 13. The main components
are the four PE elements that are the core elements in charge
of evaluating the matrix scores and the Aligner module that is
in charge of evaluating the backtracking path on the matrix.
Besides the Source actor that is handling inputs readings, all
other actors can either be assigned to the CPU partition or
the GPU partition.

Similar to the JPEG Decoder application program two sets
of result are presented. The first set of results focuses on
a single partition with varying buffer sizes, and inputs sets.
Each input set is named [,,_[,, with [, being the length of the
reads (query) and [, the length of the reference sequences.
The reference configuration is composed of the Source actors
in a single sequential partition mapped on a CPU core and
the other actors mapped to the fully parallel GPU partition.
The same methodology is then applied to generate the result
presented in Figure 14, where are provided 4 different inputs
(100_200, 100_250, 150_200, and 150_250) and 2 different
buffer sizes configurations (256 and 1024 token places). The
values are normalized to the first input and it can be seen that
the maximal estimation error is around 15.6%. This shows
that regardless of the inputs and buffer sizes the performance
could be estimated just the same.

The second set of results also focuses on varying the map-
ping configurations and the same methodology is applied.
Figure 15 shows the results, where five random mapping par-
titions as been used. Each mapping (m1-m5) corresponds to
a random assignment of each actor to either the CPU sequen-
tial partition or to the fully parallel GPU partition. The values
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FIGURE 16. IDCT: Normalized values with different SIMD threads numbers.

are normalized to the first partition and it can be seen that the
maximal estimation error is around 14.9%. More importantly,
it can be seen once again that the performance improvement
or deterioration trend has been respected.

3) RVC-CAL IDCT

In this section, the IDCT application program from
Section IV-D1 is used and its Top-level network is shown in
Figure 6. It is composed of 3 actors, that are all mapped to
the GPU side. The results focus on a single partition with
varying numbers of parallelization for the actions’ execution.
Each point is using a different number of thread blocks and
thread per block. It goes from 1 block of 32 threads to 16
blocks of 256 threads each. A single ETG has been gener-
ated using TURNUS. For every configuration, the profiled
executable generated by the CUDA backend has been ran
with each time a different kernel launch configuration. The
TURNUS ETG post-processor has been used to generate the
total estimated execution time of the application program and
compared it with the actual measured total time. Figure 16
shows the results, where the design has been simulated with
8 different SIMD sizes. The values are normalized to the
first configuration and it can be seen that the maximal esti-
mation error is around 16%. More importantly, it can be seen
that the performance improvement or deterioration trend has
been respected.

VI. CONCLUSION AND FUTURE WORK

A new methodology based on dataflow programming for
the porting on heterogeneous CPU/GPU processing nodes
is described in this paper. It intends to address two chal-
lenges of edge computing, namely: the software generation
for heterogeneous and distributed nodes, and the problem
of partitioning and distributing tasks to networks of pro-
cessing nodes and dynamically modify their geometry and
partitioning. The results have been achieved by extending
the formalism already developed by the authors, based on
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the modelling, analysis and automatic generation of appli-
cation source code from a high-level representation based
on a dynamic dataflow computation model to include port-
ing and partitioning on CPU/GPU nodes. In particular, the
methodologies and results are obtained for parallel soft-
ware implementations of CPU/GPU co-processing for CUDA
platforms using RVC-CAL as high-level dataflow language.
The experimental results showed a twofold performance
improvement of the new GPU code generation over the CPU
implementation using the IDCT application and a tenfold
faster implementation when comparing the previous GPU
code generation with the one containing the optimization
presented in this paper when using the JPEG decoder appli-
cation. To complete the methodology including a design
exploration stage for the systematic search of close-to-
optimal configurations in terms of execution performance, a
method to estimate the executions of programs on heteroge-
neous CPU/GPU co-processing platforms is also presented.
The methodology is applied independently of the chosen
configuration (i.e., defined by partitioning, mapping, buffer
sizing, and SIMD flag) without the need to run the applica-
tion in any possible configuration on the hardware platform,
thus allowing efficient exploration and optimization heuris-
tics to explore very large design spaces in short times without
reducing the accuracy of the results found. The experi-
mental evaluation compared the measured and estimated
performance in three different result sets. The first is where
fixing the RVC-CAL network mapping configuration but
varying the inputs and buffer size, the maximum estimated
error is 6% to 15.6% for the JPEG decoder or Smith-
Waterman alignment program respectively. The second set
is where, fixing the input file but varying the mapping con-
figuration, the maximum estimated error is 16.9% to 14.9%
respectively for the same programs. The last experimental
result shows that when varying the number of parallel CUDA
threads for action parallelization in the IDCT program, the
maximum estimated error is 16% More importantly, in all
experiments, the trend of performance improvement or dete-
rioration between the estimated and measured results is
respected, allowing for proper exploration of the design
space. Future extensions of the work presented in this paper,
include the development of a runtime system that triggers
source code generation, compilation and automatic code
distribution depending on the nodes in the network. Such
implementation should also provide monitoring metrics that
can be used by analysis and partitioning frameworks to be
able to change at runtime the partitioning and configuration
of the network itself.
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