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ABSTRACT In real video coding systems, there might be pre-processing before the encoding and
post-processing after the decoding. Those pre- and post-processing should be jointly optimized considering
the existing of distortions introduced by lossy coding in between. This paper proposes a differentiable
network to simulate the non-differentiable traditional coding to make the joint optimization of pre- and
post-processing possible. The proposed codec-simulation network can achieve up to 49.4dB simulation
accuracy for HEVC codec in intra mode. When we use down-sampling and up-sampling as examples
of pre- and post-processing of a video codec, the joint optimization of these two processing modules in
a video coding system can result in 46.88% and 55.15% BD-rate reduction based on PSNR and SSIM
compared with that without joint optimization.

INDEX TERMS codec-simulation, pre- /post-processing, down-sampling, super-resolution, HEVC.

I. INTRODUCTION

WITH the development of technology, the demand
for video transmission continues to increase, which

urgently requires us to improve the coding efficiency of
video compression algorithms. For now, the mainstream
video compression standard in the market is HEVC/H.265,
whose algorithm is complicated. Therefore, there are specific
hardware to accelerate the calculation process.
In order to adapt to the existing hardware, there are

many methods [1]–[6] proposed to improve the overall
coding efficiency through pre- and post-processing. For
example, to mitigate blocking artifacts caused by transform
and quantization in video compression, [1], [2], [3] add
simple time-domain pre- and post-processing modules to
DCT (Discrete Cosine Transform)-based infrastructures to
improve coding efficiency. The pre-filter acts as a flatten-
ing operator, trying to make the input data of each DCT
block as homogeneous as possible, while the post-filter
acts as a smooth interpolation, reducing blocking artifacts.
Reference [4] proposed a pre-/post-filtering method based
on global motion estimation (GME) and global motion
compensation (GMC) to improve video coding efficiency.

The pre-processing module estimates the global motion
information between the coded frame and the key frame,
which is transmitted to the decoder through supplemental
enhancement information (SEI). Then in the post-processing
module, the frame is reconstructed by using the global
motion information. In order to make the codec better com-
press the depth images, which have richer changes in the
edge area compared with color images, [5] proposes to
modify the edge block in the depth image into a plane
block in the pre-processing, so that it can be better com-
pressed by the encoder, while in the post-processing, the
decoded depth image will be enhanced by edge information
to reconstruct the final output. To reuse existing low res-
olution codec design and keep high coding efficiency in
the meantime for high resolution content, LCEVC [6] intro-
duces down-sampling as pre-processing and up-sampling
as post-processing for the existing codec working in low
resolution. These methods all improve the overall coding
efficiency through pre- and post-processing without changing
the core codec.
However, the above pre- and post-processing methods are

all traditional methods designed and optimized based on
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FIGURE 1. System frameworks.

experience. With the emergence of neural networks, data-
driven machine learning methods can have better performance
than traditional methods in various fields. Taking up-sampling
as an example, super-resolution technology aims to recover
high-resolution objects from the observed low-resolution
objects (including videos and images). Different from the
traditional method that uses bicubic interpolation to achieve
super-resolution, the idea of using neural networks to solve
the super-resolution problem was first proposed by He’s team
in 2014 named as SRCNN [7]. When the scale of up-sampling
is 4 times, the PSNR of the network reconstructed image com-
pared to the original image can be 2 dB higher than the PSNR
of the bicubic interpolation reconstructed image compared
to the original image. Later, the ResNet structure proposed
in [22] has also been applied in the field of super-resolution
as EDSR [8] and SRResNet [9]. They both have realized
the further improvement of super-resolution performance.
Similarly, RDDB [11] and RCAN [10] achieved better
performance by using DenseNet [23] and attention
method [24] for reference. Then the objective quality of the
super-resolution image has almost reached into a bottleneck
period when it is difficult to make a huge breakthrough.
It is pointed out that bicubic down-sampling is usually
used to generate lower resolution image which introduces
visual artifacts, such as blur and aliasing. This may largely
limit the performance of the super-resolution reconstruction
result [12], [13], [14]. So researchers treat the down-sampling
image and up-sampling image as a two-way problem, i.e.,
reducing resolution may cause information loss and increas-
ing resolution try to recover the lost information. Therefore,
considering these two issues together by jointly optimiz-
ing down-sampling network and up-sampling network, the
information lost in the resolution reduction process might be
rebuildable by the super-resolution network. Experimental
results in [12] show that the joint optimization can not
only improve the objective quality of the final reconstructed
image, but also greatly improve the subjective quality of the
reconstructed image to a certain extent. Therefore, using
jointly optimized neural networks as the pre- and post-
processing of video codec may have some performance
improvement space.

Since the traditional video coding process is non-
differentiable, it is worth noting that joint optimization of
the pre- and post-processing networks will meet a serious
problem. The non-differentiable coding process prevents the
backward propagation of gradient from the post-processing
neural network to the pre-processing one. Therefore, this
paper proposes to design a neural network to simulate the
traditional video coding between the pre- and post-processing
so that the joint optimization of the whole system can be
realized.
The remainder of the paper is organized as follows.

Section II will analyze how to solve the joint optimization
problem. Section III will explain the detailed design of a
codec-simulation network to make the codec differentiable
and the predicted distortion approximated by the simula-
tor close to ground truth. Section IV provides experimental
results to prove the effectiveness of the whole design. And
finally, we will summarize the solution in Section V.

II. PROBLEM ANALYSIS
A diagram of a video coding system is shown in Fig. 1(a).
Firstly, the video sequence is pre-processed with a pre-
processing network. Then the processed video is fed into a
codec and the decoded video sequence with lossy is pro-
cessed by a post-processing network which provides the
final reconstructed video. In most cases, the pre-processing
network and the post-processing network should match with
each other, so joint training is indispensable. The joint
optimization of networks is based on backward propaga-
tion of gradient through the whole pipeline of the coding
system. Suppose

L = PRE(X) (1)

M = Codec(L) (2)

Y = POST(M) (3)

where X represents for the input. PRE(), Codec() and
POST() represent for pre-processing network, codec and
post-processing network respectively. L, M and Y rep-
resent for the outputs from the corresponding modules.
The optimization of the pre-processing network, consider-
ing the existence of the codec and post-processing, needs
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FIGURE 2. Basic framework of hybrid video coding.

the following gradient propagation process in joint training,

∂Loss

∂PREθ

= ∂Loss

∂Y
∗∂POST(M)

∂M
∗∂Codec(L)

∂L
∗∂PRE(X)

∂PREθ

(4)

where, Loss represents the loss function of training, and
PREθ represents parameters of the pre-processing network.
This means the codec in the pipeline must be differentiable.
Next, we will first analyze the differentiability of popular

video codec, clarify the necessity and target of codec-
simulation and then present two possible ways of codec
simulation: simulating coding procedures and simulating
coding results.

A. ANALYSIS OF DIFFERENTIABILITY OF VIDEO CODEC
A hybrid video coding framework is shown in Fig. 2. The
most popular video codecs, such as AVC, HEVC, VVC,
AVS1/2/3 etc. all follow this framework. The major coding
modules include mode decision, inter/intra prediction, trans-
formation, quantization and in-loop filter. An input picture
will first be divided into fixed-sized coding units. For each
coding unit, the encoder will select one optimal coding mode
from multiple block partition modes and prediction modes
considering better coding performance. Then the encoder
derives residuals between the original coding unit and the
predicted ones from the selected prediction mode, and per-
forms transform and quantization on the residuals to generate
syntax elements for lossless entropy encoding. At the decod-
ing side, the inverse procedure, including dequantization,
inverse transform, prediction compensation with signaled
coding mode and in-loop filter, will be conducted to generate
the reconstructed picture.
Each intra prediction mode can be regarded as a finite

impulse responses extrapolation filter, while inter prediction
mode as a translational shift with finite impulse responses
interpolation filter (one hypothesis prediction) or a com-
bination of such filters (two hypotheses prediction). And a
given block-sized transform used in video coding can also be
regarded as linear combination of pixel values in that block.
So it is obvious that all these modules are differentiable.

The two major issues of differentiability in the codec are
caused by quantization and mode decision.
The quantization is performed on transformed coefficients

and results in discrete quantized values. A generic quanti-
zation equation is

Q(coeff ) =
⎧
⎨

⎩

value1, coeff in range a
value2, coeff in range b

. . .

, (5)

in which Q(coeff ) represents for the quantized value of coef-
ficient coeff with discrete value. The mode selection can also
be described by a generic equation as

modeselected =

⎧
⎪⎪⎨

⎪⎪⎩

mode A, condition a
mode B, condition b

. . .

mode N, condition n

, (6)

in which modeselected represents for selected mode. No mat-
ter how many candidate modes there are, what kind of mode
decision strategy and what kind of criteria the encoder uses
for the mode selection, the selected mode is a discrete value
representing for discrete coding unit partition mode and
prediction mode. The discrete results of quantization and
mode selection caused the non-derivability of the codec.
According to above analysis, it is obvious that a tradi-

tional hybrid video codec is non-differentiable. That means
∂Codec(L)

∂L in equation (4) does not exist and the optimization
of pre-processing considering the existence of lossy coding
and post-processing is impossible.

B. TARGET OF CODECSSIMULATION AND POSSIBLE
SOLUTIONS
To overcome the difficulty which prevents the gradient
backward propagation for joint training of pre- and post-
processing networks before and after the codec, a training
framework (Fig. 1(b) and Fig. 3) replacing the inference one
is proposed in this paper. The novelty of this training frame-
work is introduction of a codec simulator which is expected
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FIGURE 3. Joint optimization framework for pre- and post- processing networks.

to be differentiable and able to estimate similar output as
that of the codec. Now, the gradient propagation process
for the optimization of the pre-processing network, consid-
ering the existence of the codec and post-processing can be
modified to,

∂Loss

∂PREθ

= ∂Loss

∂Y
∗∂POST(M)

∂M
∗∂SIMU(L)

∂L
∗∂PRE(X)

∂PREθ

(7)

where SIMU() represents for the codec-simulation. The goal
of the simulator design is to make SIMU(L) be differentiable
and approach to Codec(L). The introduction of the codec-
simulation makes the joint optimization possible.
Therefore, we set the major target of codec-simulation

as that the mismatch between the simulator model and the
real codec should be much smaller than typical coding dis-
tortion. Additionally, since the simulator will be used in
the joint optimization of a pre- and post-processing network
for a specific codec design, the simulation network should
be general enough to adapt to different codec designs and
simple enough to avoid being too time-consuming for joint
optimization.
There are two possible ways to design a simulator of

codec. One is a straightforward approach which simulates
the whole coding procedures by assembling coding modules
with differentiable networks. And the other one is directly
simulating the coding results which may not follow the cod-
ing procedures. Part C and D will check if these two ways
can meet the above-mentioned criteria of codec-simulation.

C. SIMULATION OF CODING PROCEDURES
As we analyzed in part A of this section, the major challenges
of the traditional hybrid video codecs are the quantization
and mode selection modules.
The differentiable approximation of quantization of jpeg

compression [15] and in the training of end-to-end image
compress network [16], [17], [18] have been raised and
solved. There are three main methods for the approximation.
1. Distribution approximation [17], [18] by adding a uni-

formly distributed random noise to the input: the data
distribution after adding the noise could be equal to the
data distribution after quantizing, thereby the simulation of
quantization could be realized.
2. Function approximation by replacing the quantiza-

tion function with a similar differentiable function. For
example, [14] proposes

�x� = �x� + (x − �x�)3 (8)

to achieve the approximation of the quantization function,
where �� means quantization. Similarly, [19] proposes to

replace the non-differentiable step function with differen-
tiable sigmoid function thus replace the entire quantization
function.
3. Gradient approximation: Reference [16] proposes to

keep the quantization function unchanged during the forward
inference, and set the gradient of the quantization function
to be 1 during the gradient back propagation, so as to solve
the non-differentiation problem.
The differentiable approximation of mode selection has

not been touched except that [25], [26], [27] try to realize
block partition by using neural networks. Those networks
predict probabilities of division of all possible block parti-
tion boundaries. In order to make a soft switching among
different block partitions, we try to use a weighted combina-
tion of all possible partition results by taking the probability
of each partition mode as the weighting factor. Similarly, we
need to design a prediction mode estimation network to pro-
vide probability distribution among all prediction modes and
describe each prediction mode by a neural network model.
Then we can weighted combine all prediction modes by
using probability distribution of prediction modes.
We tried to assemble the above-mentioned networks

together with other differentiable coding tools as a simu-
lator of HEVC intra codec and trained such a simulator. It
was found that the reconstructed image from the simulator
is far from the actual decoded image. The reason leading to
the failure of the simulator might be that there are too many
sub-networks and it is hard to control the performance of
each sub-network.
It can be seen that design of such a coding procedure simu-

lation network is seriously dependent on the knowledge about
all quantization methods, prediction modes and potential
partition modes and thus it’s an extremely high manpower
demand and time-consuming way. That will seriously limit
the flexibility and usability of the simulator.

D. SIMULATION OF CODING RESULTS
Direct simulation of results of codec is a substituted way
to generate a differentiable network approximating video
codec. Different from the simulation of coding procedures, the
simulation of coding results does not need to separate compress
and decompress of the input, and does not output the coded
bitstream. It only needs to make the distribution of distortion
from the simulator similar with that from the real codec. Deep
neural networks borrowed from low-level image processing
could be powerful to learn the characteristics of decoded image
by sufficient training data. In fact, there are some data-driven
methods to replace a certain module of the hybrid coding
framework through simulating the results directly in previous
study. For example, [28] proposed to do intra prediction
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FIGURE 4. Codec-simulation network.

through using a single-layer filter to simulate the results,
and [29] aims at inter prediction. Refereence [30], [31], [32]
use network to simulate the result in the loop filter module
so as to improve the coding efficiency. These methods are
all based on data-driven approaches, and it is proved that
the network can fit the results well according to the data.
Compared to simulating only one part of the coding process,
we simulates the results of the entire coding process, but their
essence is the same.
Therefore, the generation of a simulation network can

be easy.
In real application, the same encoder working in different

conditions or different encoders working in the same con-
dition will produce different distortions. Correspondingly,
by establishing different databases for different coding dis-
tortions, we can train simulation networks to adapt to those
encoders in different situations. Considering the optimization
of pre-processing coupled with the specific design of codec
and post-processing, information about the pre-processing
or post-processing might be necessary to be communicated
from encoder side to decoder side. Existing video coding
standards have the way to implement such communica-
tion via SEI messages in bitstream. Therefore, the design
of a differentiable network simulating coding results has
practical value.
The detailed design of the coding results simulation

network will be described in Section III.

III. CODEC-SIMULATION NETWORK
In the previous section, we analyzed that it is too complicated
to simulate the coding procedures and obtain a differentiable
simulator. Therefore, we try the other way which directly
simulate the coding results instead of coding procedures
in this section. The final holistic framework of the codec-
simulation network is shown in Fig. 4. The inputs to the
simulation network include not only the original image for
compression but also supplementary side information. The
network structure is a ResNet, which is very popular in low-
level image processing area. Further discussions on network

structure and inputs are in the following part A and B. Part
C will introduce how to use the simulated coding model
to realize joint optimization of the pre- and post-processing
networks.

A. CODEC-SIMULATION NETWORK STRUCTURE
To simulate diversity of coding distortions which may happen
for different video contents, the codec-simulation network
should be deep enough to learn the characteristics from a
dataset which includes samples with input and output of a
real codec.
Since such a simulation network accepting original image

as input and estimating reconstructed image of a codec deals
with input image as a low-level pixel-to-pixel processing
problem, network structures of image denoising and super-
resolution can be borrowed. ResNet is a relatively mature
network structure when dealing with such low-level image
problems. Its variations, SRResNet [9] and DnCNN [20]
have achieved stable performance at least in super-resolution
and denoising. ResNet structure has a strong generaliza-
tion ability and is easy to converge. Its structure is a stack
of residual blocks each of which uses a residual struc-
ture. Feature before convolution operations is added to that
after convolution operations so that the backbone of the
network only processes sparse residuals, which improving
convergence and stability of the network. Therefore, we
decide to use the backbone of SRResNet as structure of the
codec-simulation network, shown in Fig. 4 in the red box.
We have also tried many different network structures,

such as DenseNet, channel attention structure, and the com-
bination of ResNet and a differentiable approximation of
quantization operation using method in [15], etc. Preliminary
experiments training these potential network structures sim-
ulating HEVC intra coding are conducted. Inference results
shown in Table 1 indicate that different network structures
and scale of the models do not make significant differences of
simulation performance. Here we use Peak-Signal-to-Noise
Ratio (PSNR) of simulated output over the real codec output
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FIGURE 5. An example of subjective quality of the simulation results.

TABLE 1. Performance of different network structure.

as the measurement of simulation accuracy. The DenseNet
structure can bring slight gain of simulation accuracy compare
to other structures. This may stem from about 3-times larger
scale of DenseNet. Of course there is almost no difference in
their subjective quality. Considering that the codec-simulation
network will be used for the subsequent joint optimization
of other modules in the video coding system, network com-
plex should be concerned. As a tradeoff between simulation
accuracy and network complexity, ResNet is selected as the
structure of the codec-simulation network.

B. SUPPLIMENTARY WITH SIDE INFORMATION
You may notice that the simulation accuracy in PSNR illus-
trated in Table 1 is about 36.x dB, which might not be high
enough. An example of subjective quality of the simulation
is shown in Fig. 5. It is obvious that the estimated output
from the simulation ResNet is much smooth and lacking of
angular texture details (Fig. 5(d)) than the actual decoded
image from an HEVC intra codec (Fig. 5(b)). These angular
texture details may reflect typical features of coding dis-
tortion, especially when coding bit rate is lower. Therefore,
we need to find the way to enhance the codec-simulation
network to better approximate coding results.
Since the codec-simulation network plays its role only in

the joint optimization of pre- and post- processing networks
in Fig. 3, apparently, it can use side information avail-
able from the real codec other than the original image.
So that we can extend the codec-simulation network with
side information and the gradient propagation procedure of
equation (7) converts to

∂Loss

∂PREθ

= ∂Loss

∂Y
∗∂POST(M)

∂M
∗∂SIMU(L, SIDE)

∂L
∗∂PRE(X)

∂PREθ

(9)

accordingly, where SIDE is the side information fed into the
codec-simulation network.
Our goal is to make SIMU(L, SIDE) approach Codec(L)

by introducing side information REF. In the meantime, it
should be noticed that:

1) If the side information cannot bring sufficient sup-
plementary information which means the simulator
SIMU(L, SIDE) cannot reflect the result of coding
Codec(L), and then the pre-processing cannot be ide-
ally optimized with the existence of coding distortion
and post-processing.

2) On the other hand, if the side information is too strong,
e.g., using the expected output of the simulator, the
decoded image, as side information, then the codec-
simulation network can be degenerated to a function
SIMU(L, SIDE) = SIDE where the partial gradient
∂SIMU(L,SIDE)

∂L is always 0. The pre-processing network
also cannot be optimized anymore.

Therefore, we need to find a reasonable balance in this
contradiction.
In terms of using convolutional network to simulate video

coding distortion, the difficulty is that video coding distor-
tion is position-dependent, which means the distortion varies
depending on its position in the picture. For example, the
distortion at the border or in the center of a block could
be different. What’s more, blocks with different prediction
modes also present different distortion even in the same
relative position of the block. However, the convolutional
network structure is translation invariant. For every pixel in
the picture, when they are processed by codec-simulation
network, the parameters of the network are fixed, resulting
in the simulated distortion position-independent. As we can
see from Fig. 5(d), it seems that every position pixel has
been blurred to the same degree. In order to overcome this
problem for the convolutional network, partition information
and mode information are indispensable to send to the
network as side information. By combining two information
as one, prediction image is chosen as the side information
of the codec-simulation network.
After deciding to use the prediction image as the side

information of the network, we use the cascade method to
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send the prediction image to the codec-simulation network.
Cascade is a very common way to send side information
into the network. As long as the network is well trained, the
convolution kernels of different channel can adaptively per-
form different calculations on the inputs of different channel
layers, so that the network can use input information and
reference information reasonably and separately. The final
structure of codec-simulation network is shown in Fig. 4 and
the simulation results with prediction image as supplemen-
tary side information will be showed in Section IV-A.

C. JOINT OPTIMIZATION OF PRE- AND
POSTPPROCESSING
Let’s introduce in detail how to use the codec-simulation
network to jointly optimize the pre- and post-processing
networks in the coding system.
Firstly, pre- and post-processing are trained without the

codec. A post-processing network is trained with a loss func-
tion of L2 norm between the output of the network and the
ground truth. Then a pre-processing network followed by the
post-processing network is trained with the following loss
function[12],

losspre = αl2
(
post(pre(x)), x′

) + l2(pre(x), y), (10)

where x and y represent for the input and ground truth output
to and from the pre-processing networks, pre(·) and post(·)
represent for pre- and post-processing, and x′ represents for
the ground truth output of post-processing network. α is a
hyperparameter. For a coding system with pre- and post-
processing before and after a codec, the ground truth output
of the post-processing network x′ is usually set to be the
same as the input x of the coding system. The first part of
the loss function is the reconstruction loss of pre- and post-
processing, which is the l2 norm between the predicted result
and the ground truth after pre- and post-processing. The
second part of the loss function is measuring spatial structure
maintenance of pre-processing, which is the l2 norm between
the predicted output from the pre-processing network and the
ground truth output of that network. The second part of the
loss function is important for keeping major information in
the input and avoiding serious information loss from the
pre-processing.
It should be noticed that there are quantization operations

after the pre- and post-processing to match with ability of
traditional video coding of 8 bits or 10 bits fixed-point input
and output. So, a differentiable approximation function of
quantization is introduced in the training stage. Methods
described in Section II-C can be used.
Secondly, we insert the codec-simulation network

developed in part B of this Section between the pre-
processing network and the post-processing network and
retrain the pre-processing network again in the full pipeline
of the coding system. The same loss function as equation (10)
is used with the only exception that the pipeline of pre- and
post-processing will be replaced by the full pipeline of the

coding system,

losspre = αl2
(
post(sim(pre(x))), x′

) + l2(pre(x), y), (11)

where sim(·) represents for the codec-simulation network.
It is worth noting that the input to the codec-simulation

network includes the prediction image generated by encoding
process. Theoretically, when the pre-processing network is
continuously optimizing, the pre-processed image, i.e., the
input fed into the codec is also changing. Therefore, the
pre-processing network should be optimized iteratively by
continuously updating the dataset of training.
As the matter of fact, a simplified procedure with

fixed prediction image set generated from a pre-defined
pre-processing method is used in our case. We take down-
sampling and up-sampling as example of pre- and post-
processing. And a bicubic down-sampling filter is used
to generate pre-processed low-resolution images as input
into codec and corresponding prediction images can be
obtained accordingly as side information of the codec-
simulation network. Such a set of original video and cor-
responding prediction images compose the training dataset
for joint optimization of pre- and post-processing for a
specific codec.

IV. EXPERIMENTS AND RESULTS
In this section, we will first show the accuracy of the
codec-simulation network. Then using the down-sampling
and up-sampling networks as the pre- and post-processing
networks of the coding system, we compare the coding
efficiency of the jointly optimized coding system and the
non-jointly optimized coding system, thereby demonstrating
the effectiveness of our codec-simulation network. Finally,
we compared our scheme with anchor which is the codec
without pre- and post- processing.

A. ACCURACY OF THE CODEC-SIMULATION NETWORK
In this experiment, we use x265 as the real codec. With
all intra mode at very-slow level, we make four datasets
at 4 CRF (Constant Rate Factor) points (CRF12, 17,
23, 28 respectively) and traine four corresponding codec-
simulation networks. The training datasets is based on div2k,
and the test dataset is composed of several video sequences
on the https://media.xiph.org/video/derf/.
To evaluate the accuracy of the codec-simulation network,

We calculate the PSNR of simulated output with output of
the true codec and the results are shown in Table 2. PSNR
is calculated as shown in formula (12).

PSNR = 10 ∗ log
2552

∑
k∈Y,U,V

∑wk
i=0

∑hk
j=0

(
xi,j,k − yi,j,k

)2
(12)

where k represents for one of the YUV channel, wk and hk
represent for the width and height of the image in chan-
nel k, and xi,j,k, yi,j,k are corresponding pixel values of two
compared images.
It can be seen from the Table 2 that as the CRF value

increases, the objective quality becomes worse. However,
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TABLE 2. The simulation results of the codec-simulation network.

despite the worst case, the average PSNR can reach more
than 43dB, greatly higher than 36dB in the preliminary
experiments in Section III-A. The subjective quality of the
codec-simulation network is shown in Fig. 6. It can be found
that the simulated coded image is highly similar to the actual
coded image, which means the codec-simulation network is
accurate.

B. EFFECTIVENESS OF THE CODECSIMULATION
NETWORK
To further verify the effectiveness of the codec-simulation
network, we take down-sampling and up-sampling as exam-
ples of the pre- and post-processing of the coding system.
We designed down-sampling network ResNet-CR and up-

sampling network ResNet-SR based on ResNet. ResNet-CR
is composed of 5 residual blocks and a down-sampling mod-
ule, and the up-sampling network ResNet-SR is composed
of 16 residual blocks and an up-sampling module. Then we
trained them on div2k dataset.
Image reconstruction performance of the combination

of ResNet-CR and ResNet-SR are provided first. It is
compared with bicubic+bicubic, bicubic+RCAN[10] and
CNN-CR+CNN-SR methods. The performance of different
down- and up- sampling methods are shown in Table 3.
ResNet-CR and ResNet-SR obviously outperform the com-
pared down- and up-sampling solutions.
Next, let us provide the coding performance of the

combination of ResNet-CR and ResNet-SR with x265 as

TABLE 3. Performance of different down- and up-sampling method.

the codec in between. X265 is set as an all intra codec
with very slow mode working at 4 CRF points, 12, 17, 23
and 28. We name the coding system with jointly-optimized
down- and up-sampling network as CSWJ and the coding
system with non-jointly-optimized down- and up-sampling
network as CSWNJ. The coding efficiency of CSWJ and
CSWNJ is shown in Fig. 7. We present the RD perfor-
mances of 10 specific video sequences. The blue curves
are the performance of CSWJ while the yellow curves are
that of CSWNJ. The average PSNR BD-rate gain of all
10 sequences is 46.88% and the average SSIM BD-rate gain
is 55.15%.
Fig. 8 shows the subjective quality of output frames from

CSWJ and CSWNJ. Results of the minimum CRF point 12
and the maximum CRF point 28 in our test are demonstrated.
The bit rates of these two coding systems are similar at the
same CRF points.
It can be observed that the reconstructed frames of CSWJ

have more high frequency details than the ones of CSWNJ. In
the case of high bit rates, the frames reconstructed by
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FIGURE 6. Simulation result (upper row: reconstructed image by codec at different rate points, lower row: output from codec-simulation network at different rate points.).

CSWNJ have faked texture, which can be seen in Fig. 8 (b).
After joint optimization, on the one hand, the down-sampling
network can suppress the possible faked texture in the
low-resolution image as much as possible. On the other hand,
the up-sampling network can further remove the remaining
faked texture. In the case of low bit rates, coding distortion
causes excessive blurring of low-resolution image, result-
ing in that the up-sampling network cannot add details
based on it. With the joint optimization, the down-sampling

network can enhance the information, which is beneficial
to up-sampling, in the low-resolution image as much as
possible. Then the up-sampling network to restore more
details for the reconstructed image based on the enhanced
information. These effects cannot be achieved without joint
optimization. Therefore, the reconstructed image of jointly
optimized network has better subjective quality. It further
proves that our codec-simulation network can fully improve
the coding efficiency of the coding system.
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FIGURE 7. Coding efficiency of CSWJ and CSWNJ.

TABLE 4. Objective quality of CSWJ and anchor.

C. COMPARE WITH THE ACTUAL CODEC
In this part, we will check whether CSWJ can outperform
full resolution coding. For CSWJ, setting CRF points to 12,
17, 23, 28, we obtain the reconstructed videos. To ensure the
bit rate alignment, we adjust the CRF point to encode and
decode the video with original resolution to obtain the corre-
sponding reconstructed video as the anchor. The fluctuation
of the bit rate is controlled within 3%. The objective quality
of CSWJ and anchor are presented in Table 4.
The PSNR of our scheme will be reduced by 1 to 2 dB on

average compared to that of the anchor, which is reasonable.
Down-sampling causes a lot of high frequency information

to be lost. Though the up-sampling adds some detailed
information, which may result in sufficient visual similarity,
there is still huge differences at the signal level. As we can
see in Table 3, even though no coding noise is introduced
in, the upper bound of the down- and up-sampling can only
achieve 40dB, while the reconstructed image and the origi-
nal image can be hardly distinguished by people in fact. In
order to further demonstrate the visual performance of our
scheme, we did the following subjective experiments.
When testing subjective quality, the video reconstructed

by CSWJ and anchor are played side by side in a blind test
according to the standard in [33]. The manual score of each
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FIGURE 8. Subjective quality of output from coding system.

video sample is 1, 0 or −1, which respectively represent
that the reconstructed video of CSWJ has better subjective
quality, similar subjective quality, or worse subjective quality
compared with anchor. We record the mean of the scores and
the final experimental results are shown in the Table 5. It can
be seen that our scheme can achieve significant subjective
quality improvement in large bitrate range for most of tested
sequences.

V. CONCLUSION
Joint optimization of pre- and post-processing networks
across the non-differentiable hybrid video codec is studied
in this paper. The idea of developing a differentiable neural
network to simulate coding results is novel. A ResNet-based
convolutional neural network with input of side information
is developed as a simulator of traditional hybrid video codec.
Up to 47.6 dB objective simulation accuracy and sufficient

TABLE 5. Subjective quality of CSWJ and anchor.

good subjective simulation quality are reported for HEVC
intra coding. Additionally, joint optimization of pre- and
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post-processing across the differentiable codec-simulation is
discussed. 46.88% and 55.15% BD-rate gain based on PSNR
and SSIM have been demonstrated when we use down- and
up-sampling as the pre- and post-processing in an HEVC
coding system and jointly optimized. Compared with codecs
without pre- and post-processing, our scheme achieves higher
subjective quality under most condition.
Future work may include: simulation of the state-of-the-

art video codec, such as VVC and AVS3 including inter
coding, with similar network structure and more proper side
information, optimization of pre- and post-processing meth-
ods other than down-sampling and up-sampling to improve
efficiency of coding system, etc.
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