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ABSTRACT In the hybrid video coding framework, quantization is the key technique to achieve lossy
compression. The information loss caused by the quantization may be reduced to improve compression
efficiency, by using either encoder-side rate-distortion optimized quantization or decoder-side filtering.
Nonetheless, the existing studies did not extensively use the already encoded information, i.e., context, to
reduce the quantization loss. We address this issue and propose a context-adaptive inverse quantization
method, namely, CAIQ. Specifically, for inter-frame coding, we analyze the correlation between the
prediction signal (generated by motion compensated prediction) and the residual signal, as well as the
correlation within the residual signal itself. We then present linear as well as nonlinear yet lightweight
models to exploit the observed correlations in the frequency domain. Our models provide an optional inverse
quantization mode by referring to the prediction signal, which is available at the decoder side. Next, block-
level mode selection regarding the CAIQ method is used at the encoder side. We integrate the proposed
CAIQ method into the reference software of Versatile Video Coding. We perform an extensive study of
the models and analyze their resulting compression efficiency gain and encoding/decoding complexity.
Experimental results show that our CAIQ method improves compression performance especially for
high-resolution videos and at high bit rates.

INDEX TERMS Context-adaptive, correlation analysis, inter-frame coding, inverse quantization, transform
coefficients.

I. INTRODUCTION

MODERN video coding standards, including H.264 [1],
H.265 [2], and the latest H.266/VVC [3], all adopt

a hybrid coding framework including prediction, transform,
quantization, loop-filter, etc. In this framework, each frame is
first divided into multiple blocks. Predictive coding refers to
intra-frame or inter-frame prediction based on coded blocks
to remove spatiotemporal correlation. Transform coding is
followed closely, where the residual signal is transformed,
quantized, and then coded into the bitstream in order. In
the signal reconstruction process, the quantized level is
scaled by the de-quantizer to achieve the frequency-domain
coefficients, and then the inverse transform is conducted to

reconstruct the residual signal in the spatial domain (with
certain distortion). When all blocks of the current frame
have been processed, in-loop filters will be applied to further
reduce coding distortion.
In lossy coding, quantization is the root cause of coding

distortion. It maps continuous signals into multiple discrete
amplitudes, making the coefficients discrete, sparse, and easy
to code. The remaining few representative coefficients are
used for reconstruction by inverse quantization and inverse
transform. Considering that transform and inverse transform
do not introduce signal distortion, inverse quantization is
the key to estimating coefficients and compensating for
information loss.
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Studies on inverse quantization mainly focus on trans-
mitting the quantization step (or offset) to the decoder,
thereby achieving context-adaptive coefficient reconstruc-
tion. However, these strategies are based on either a
frame-level quantization matrix [4] or a global uniform
quantization matrix [5], [6], making it infeasible to achieve
flexible coefficient-level adaptation. Another strategy [7] is
to design a signal-dependent inverse transform so that coef-
ficient reconstruction takes into account the influence of
quantization to reduce quantization distortion. Under this
strategy, blocks with uniform size still need to share the same
inverse transform kernels. To avoid the cost of transmitting
parameters, some studies [8]–[10] have proposed adaptive
quantization, which indirectly achieves the purpose of reduc-
ing quantization distortion by dynamically adjusting the
quantization level at the encoder, but the decoder still follows
a unified inverse quantization rule without having the abil-
ity of adaptive compensation. The in-loop filters [2] further
reduce the quantization distortion by using the pixel correla-
tions. However, the frame-level filter is not implemented in
the rate-distortion optimization-based block partition, making
it hard to achieve the optimal solution from the perspective
of joint optimization.
In the video coding scheme, the block-based prediction

mode and lossy reference area make it difficult to accu-
rately describe the pixel-level motion of the signal. Hence,
the prediction accuracy is limited, resulting in redundancy
between the prediction signal and the residual signal.
Furthermore, the discrete cosine transform (DCT) [11] is
widely used in residual coding to remove the linear corre-
lation between coefficients. However, DCT cannot ideally
eliminate the linear correlations among pixels. Even worse,
it cannot remove nonlinear correlations. Note that the
prediction signal obtained by the predictive coding module
does not help improve the efficiency of the residual coding
module. Therefore, mining the correlation between signals
still has great potential for improving compression efficiency.
Inspired by the above characteristics, in this paper, we

propose a block-level context-adaptive inverse quantiza-
tion (CAIQ) method and treat it as an optional inverse
quantization mode. The already encoded information and
the correlations among multiple signals are utilized as the
context to improve the coding performance. We design
linear and nonlinear models to establish a coefficient-
level mapping to adaptively compensate for quantization
distortion. Our specific contributions are summarized as
follows.

• First, we identify the linear and nonlinear correlations
between the prediction signal and the residual signal,
especially in the frequency domain, and design linear
and lightweight nonlinear models under the guidance
of the frequency-domain correlations.

• Second, we combine the coefficient-level mapping
model with the de-quantizer, and integrate it into the ref-
erence software of versatile video coding as a TU-level
optional inverse quantization mode.

• Third, we explore the impact of context usage and
model complexity on the performance, and analyze the
impact of coding optimization on CAIQ.

The remainder of this article is organized as follows.
Related work is presented in Section II. We identify the
intercorrelations and intracorrelations in Section III. In
Section IV, we introduce linear and nonlinear context-
adaptive inv-quantization models and the whole framework.
In Section V, we show the experimental settings and results
about BD-rate performance and decoding complexity, fol-
lowed by detailed analyses on the potential of CAIQ.
Section VI concludes the paper.

II. RELATED WORK
In video coding, the information loss caused by quantization
is often difficult to recover. In this section, we introduce
the related work of adaptive quantization and quantization
distortion compensation in detail.

A. ADAPTIVE QUANTIZATION
In mainstream codecs, scalar quantization is widely used
due to its simplicity and ease of use. This is a typical
hard-decision quantization method, that is, the correlation
between coefficients is not considered. To improve the
quantization efficiency, rate-distortion optimization quanti-
zation [2], [12] takes into account the context relationship
among coefficients by jointly optimizing the bit rate and dis-
tortion. Dependent quantization [13], [14] maintains multiple
alternative paths through state machines and dynamic pro-
gramming and achieves more fine-grained quantization by
switching between two quantizers. In addition, it is gen-
erally believed that transform coefficients with the same
amplitude have different perceptual importance [15], [16].
Inspired by that, the quantization matrix [5], [17] can be
utilized to adjust the coefficient-level quantization scaling in
consideration of the sensitivity of the human eye to different
frequency components.
To achieve more flexible content adaptation, in [4],

Wedi and Wittmann encode the quantization offsets to the
bitstream. HoangVan [18] studied the statistical relation-
ship of the quantization parameter (QP) and rate-distortion
performance and designed a fourth-order polynomial func-
tion to adaptively estimate frame-level QP. Yan et al. [19]
utilized spatial and temporal characteristics to establish a
spatiotemporal perception-aware model to adjust the CTU-
level QP offset. In [10], [20]–[22], the information loss
and compression artifacts introduced by quantization can be
effectively reduced by accurately modeling the distribution
of DCT coefficients. In [8], [9], [23], the temporal adaptive
quantization methods were used to reduce the inter-frame
dependency and achieve a significant global optimization by
using a group of neighboring frames.
The adaptive quantization methods proposed above effec-

tively reduce the quantization loss from the perspective of
signal distribution and coefficient dependencies. However,
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FIGURE 1. Illustration of the overall scheme integrated with the proposed context-adaptive inverse quantization method. The P and R represents the prediction signal and
residual signal, respectively. “Inv-” is short for “Inverse.”

once the quantization level is obtained, the inverse quantiza-
tion process follows the fixed reconstruction relationship. In
other words, adaptive reconstruction is not considered during
inverse quantization.

B. QUANTIZATION DISTORTION COMPENSATION
Generally, transforms and inverse transforms are often
designed in pairs without considering quantization distortion.
Wang et al. [7] learn a new inverse transform to reduce the
influence of quantization loss based on linear regression,
where the corresponding inverse transform kernels can be
transmitted offline to the decoder.
Chen et al. [24] pointed out that filtering the transform

coefficients is a more direct way to compensate for the quan-
tization loss, and it is helpful to consider the consistency with
the human visual system. Studies in [25]–[27] show that it
is feasible to use deep neural networks to process DCT-
domain coefficients and may even accelerate convergence.
Sun et al. [28] proposed a DCT-domain convolutional neu-
ral network in JPEG to learn the association between the
reconstructed image and the original image, which effec-
tively compensates for high-frequency information, thereby
protecting the edge of the image.
Kim et al. [29] and Kang et al. [30] proposed that quan-

tization distortion is not random and still has structural
information. In [31], a second-order residual prediction tech-
nology is utilized based on vector quantization adapted to
each intra-prediction mode. Yeh et al. studied the redundancy
among multiple residual frames and proposed an inter-frame
second-order residual prediction method in [32]. The resid-
ual motion vectors are transmitted to reduce the coefficients,
thereby improving the coding efficiency. Besides, the impact
of the prediction signal on residual reconstruction is explored
in [33].

III. CORRELATION ANALYSIS
There is a large amount of spatiotemporally redundant
information in videos. In the block-based video compres-
sion standard, intra-frame and inter-frame predictive coding
are used to establish the relationship between the current
block and the historical coded blocks, thereby effectively
removing the intracorrelation and intercorrelation. As shown
in Fig. 1, the predictive coding module represents the input
signal I as a prediction signal P and a residual signal R.
Note that block-based prediction has difficultly accurately
measuring pixel-level motion. In addition, the quality of
the reference frame further limits the prediction efficiency.
Intuitively, there exists a correlation between the prediction
signal P and the residual signal R.

In the transform coding module, the DCT transform is
applied to R to remove the linear correlations, thereby
improving the efficiency of entropy coding. The DCT-domain
coefficients have removed certain linear correlations, which
may reduce the difficulty of correlation analysis caused by
inter-pixel dependence. Here, we select 40 sequences from
the Consumer Digital Video Library (CDVL)1 and obtain
enormous blocks based on the original and reconstructed
signals.

A. CORRELATION BETWEEN PREDICTION AND
RESIDUAL
We consider two types of inter-signal correlations in the
frequency domain. One is the correlation between the
prediction signal fP and the original prediction residual fR.
Another is the correlation between the reconstructed residual
f̂R and fR.
Recording the number of blocks as N. Each block con-

tains 64 (for 8×8 block) coefficients. Let f (i,j)P represent the

1. Available at https://cdvl.org/.
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FIGURE 2. Visualization of correlations between signals. The three correlation metrics ρplcc , ρsrocc , and ρmic are calculated based on each position. Furthermore, the
correlation coefficients at all positions are fitted together to form a continuous plane. ρ(fP , fR ) describes the correlation between the prediction signal fP and the original
residual fR (indicated by the yellow surface). ρ(f̂R , fR ) describes the correlation between the reconstructed residual f̂R and fR (indicated by the green surface).

prediction coefficient at position (i, j). Based on similar rep-
resentation rules, we can establish two kinds of data pairs,
namely {f (i,j)P , f (i,j)R } and {f̂ (i,j)R , f (i,j)R }.

Three correlation metrics are used to evaluate the cor-
relation between signals. The first is the Pearson linear
correlation coefficient (PLCC). Assume that X represents
f (i,j)P and Y represents f̂ (i,j)R . As shown in (1), where cov(·, ·)
is the covariance function, σX and σY are the standard devia-
tions. ρplcc is widely used in the measurement of correlation,
which reflects the linear relationship between variables and
the direction of correlation. The sign of the coefficient indi-
cates the correlation direction, and its range is [−1, 1]. For
example, a coefficient of 1 indicates a strong positive corre-
lation. When ignoring the direction, ρplcc can be transferred
to [0, 1].

ρplcc = cov(X,Y)

σXσY
= E[(X − μX)(Y − μY)]

σXσY
(1)

In addition, we chose two other metrics for nonlinear
measurement. The Spearman’s rank-order correlation coef-
ficient (SROCC) uses a monotonic equation to measure
the correlation of two statistical variables. Compared with
ρplcc, ρsrocc classifies the variable data, thereby avoiding
the influence of absolute values, while the same calculation
strategy as ρplcc is adopted. The third metric is the maxi-
mum information coefficient (MIC) [34], which is based on
the theory of mutual information and joint probability. ρmic
quantifies the connection between two variables in a two-
dimensional space. As shown in (2), n is the amount of data.

B(n) represents the number of divided grids and is set to n0.6.
IG is denoted as the mutual information of the probability
distribution included on the certain grid. log(min(X,Y)) is
the normalization factor. As a result, MIC achieves a measure
of dependence for two-variable relationships by maximizing
mutual information.

ρmic = max
|X||Y|<B(n)

max{IG}
log(min(X,Y))

(2)

We define the correlation between fR and f̂R as ρ(f̂R, fR),
and define the correlation between fR and fP as ρ(fP, fR).
Fig. 2 shows the correlation coefficient distribution char-
acteristics of each location. The results show that the
reconstructed residual has a strong linear and nonlinear cor-
relation with the prediction residual in the low-frequency
region, but the ρ(f̂R, fR) is extremely low in the high-
frequency region. This phenomenon can be explained from
the perspective of the quantizer; that is, a large number of
high-frequency coefficients are quantized to zero and cannot
be effectively recovered.
The correlation coefficients in ρ(fP, fR) show an oppo-

site trend. On the one hand, the linear correlation between
the two is weak overall and is affected by the coeffi-
cient position and value of the quantization parameter (QP).
As the coefficient position becomes closer to the high-
frequency region or the QP increases, ρ(fP, fR) gradually
increases. On the other hand, from a nonlinear point of
view, as the coefficient position transitions from the low-
frequency region to the high-frequency region, ρ(fP, fR)
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FIGURE 3. Influence of monotonic nonlinear mapping on correlation analysis. The
coefficients of fP and f̂R at each position will be mapped by the function of f (x).

gradually increases and eventually surpasses ρ(f̂R, fR), which
indicates that the prediction signal retains relatively rich
high-frequency information and is suitable for the recov-
ery of high-frequency residual coefficients. Note that the
nonlinear correlation between signals is less affected by the
QP, thus it shows a consistent changing trend under various
bit rates.
To reduce the influence of the linear correlation when cal-

culating the nonlinear metric, we further introduce multiple
nonlinear mapping functions of different orders on fP and f̂R.
Figure 3 shows the changes in ρ(fP, fR) and ρ(f̂R, fR) under
different monotonic nonlinear mapping conditions. With an
increasing nonlinear order, the gap between ρ(fP, fR) and
ρ(f̂R, fR) gradually increases, indicating that nonlinear map-
ping effectively reduces the linear correlation. However, the
monotonic nonlinear mapping does not change the rank of
the data, so the rank-based ρsrocc does not change with the
nonlinear order. Similarly, the impact of nonlinear mapping
on ρmic is that the cells in the grid division process are
scaled, but this scaling cannot affect the data distribution
under different division structures, which can also maintain
the unchanged correlation coefficient. From this perspective,
we argue that this is strong proof of the nonlinear correlation
among multiple signals.

B. CORRELATION WITHIN PREDICTION OR RESIDUAL
The Karhunen-Loeve Transform (KLT) is the theoretically
optimal decorrelation transform, which can completely filter
out the linear correlation of the signal. Considering the limi-
tation of complexity, the DCT transform with a performance
close to KLT is widely used in the mainstream compres-
sion framework. However, the decorrelation performance of
DCT is directly related to the block size [6], meaning that
its decorrelation ability is limited. In addition, it is diffi-
cult for DCT to effectively remove nonlinear correlations.
In this section, we analyze the linear and nonlinear correla-
tions within the signal. The DCT uses a fast algorithm based
on parity decomposition. To avoid the sign difference caused
by the parity position, the correlation analysis is based on
the absolute value of the transform coefficients.

FIGURE 4. Intra-signal correlation with various distances, where k is defined as the
pixel distance in the horizontal or vertical direction.

We define the distance in the horizontal or vertical direc-
tion as k. Therefore, the coefficient pair of fP can be defined
as a combination of {(f (i,j)P , {(f (i+k,j)P } and {(f (i,j)P , {(f (i,j+k)P }.
Similarly, the coefficient pair of fR can be defined according
to the same rules. Here we still take 8x8 blocks as an exam-
ple to analyze intracorrelation, so the value of k is limited
to no greater than 7.
The same three correlation metrics are utilized, and the

results are fitted into a smooth curve, as shown in Fig. 4,
where the solid and dashed lines correspond to the con-
figurations of QP=22 and QP=32, respectively. First, the
correlation of the three indicators within the signal shows
the same changing trend as the distance k increases; that
is, the greater the distance is, the lower the correlation. In
addition, the intracorrelation of the prediction signal fP is
significantly higher than that of the residual signal fR.
The correlation of ρplcc indicates that there is still a certain

linear correlation between the coefficients of the transform
domain, and the correlation decreases with increasing pixel
distance. Under the linear index, the intracorrelation differ-
ence of different signals is small, and the discrimination of
the same type of signals under different bit rates is also
small. In contrast, the discrimination of the nonlinear cor-
relations is improved, indicating that the nonlinearity may
have a stronger potential to describe the correlation within
the signal.

IV. METHOD
In residual coding, the transform concentrates the energy
of the prediction residual to the low-frequency region as
much as possible, which makes a large number of sparse
high-frequency coefficients quantized to zero during quanti-
zation. Quantization defines a many-to-one mapping rule,
while inverse quantization can only achieve one-to-one
inverse mapping based on quantized levels. To overcome
this problem, this paper proposes a context-adaptive inverse
quantization method based on coefficient-level correlations.
Furthermore, we combine CAIQ with the de-quantizer,
thereby constructing a new optional inverse quantization
mode.
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A. METHOD OVERVIEW
Inspired by the analysis in Section III, we propose a
coefficient mapping model �(·) and combine it with the
de-quantizer, and the detailed framework is shown in Fig. 1.
The prediction signal is utilized to compensate for the
reconstructed residual coefficients.
Assume that the de-quantized residual coefficients of the

current transform unit (TU) are f̂R. Then, the distortion of
the current block can be defined as:

Dtu = D(T−1(f̂R) + P,R+ P) (3)

where T−1 corresponds to the inv-transform. P and R repre-
sent the prediction signal and original residual signal in the
pixel domain, respectively. D(·, ·) represents the distortion
caused by quantization. Note that the reconstructed block
has been clipped to integers ranging from 0 to 255.
When the de-quantizer is combined with the coefficient

mapping model, we build a new optional inverse quantiza-
tion mode, that is, context-adaptive inv-quantization. First,
an integer transform integrated with the baseline codec
is utilized to transfer the prediction signal into transform
coefficients. Considering that the integer transform brings a
scaling effect that is bound to the block size, we introduce
a scaling factor s to ensure that the transform coefficients of
various block sizes have a consistent scaling scale. Therefore,
we can achieve the scaled prediction coefficients fP.

Second, as the key operation of the inverse quantization
module, the coefficient mapping model fits the correlation
characteristics among multiple signals, including f̂R, fp, and
fR. For each residual coefficient, instead of being filtered
directly by itself, the corresponding prediction coefficient
can provide richer information. As a result, the compensated
distortion is:

Dctu = D
(
T−1

(
�

(
f̂R, fP

))
+ P,R+ P

)
(4)

Third, considering that the effect of the proposed inverse
quantization method depends on the correlation between
multiple signals, the limited expressive power of the mapping
model and the diversity of the block content may lead to lim-
ited compensation effects and even side effects. Therefore,
we adopt a rate-distortion optimization strategy to select the
optimal mode between the context-adaptive inverse quan-
tization mode and the original inverse quantization mode.
A TU-level enable flag will be written into the bitstream.
We have established a separate entropy coding model for the
flag and designed the initialization parameters by statistically
selecting the probability.

R̂ =
⎧⎨
⎩
T−1

(
�(f̂R, fP)

)
, Dctu < Dtu

T−1
(
f̂R

)
, else

(5)

Furthermore, cosidering that our proposed CAIQ is based
on the correlation between multiple signals, we believe that
the correlation between the prediction signal and the residual
signal is high when the efficiency of the predictive coding
module is low so that the method has a higher potential. In

the video coding framework, skip mode is utilized when the
current block is very close to the reference area, and simulta-
neously the residual coding can be skipped. In addition, the
code block flag (Cbf) is used to indicate whether its encod-
ing result contains nonzero residuals. When skip mode is
selected, or Cbf is equal to 0, the residual coefficients of the
current block do not need to be coded; that is, the coefficients
are all 0. In this case, from the perspective of computational
complexity and the cost of the flag, the CAIQ mode can be
skipped directly.

B. LINEAR REGRESSION MODEL
The linear correlation coefficients ρplcc shown in Fig. 2 indi-
cate that there exists a clear linear relationship between
the prediction signal and the residual signal, especially
in the high-frequency region. Inspired by that, we first
establish a coefficient-level mapping method based on a
simple first-order linear model. Suppose that the frequency-
domain prediction coefficient and reconstructed residual
coefficient of the current block at position (i, j) are fP(i,j) and
f̂R(i,j), respectively, and the compensated residual coefficient
f̂ cR(i,j) is:

f̂ cR(i,j) = φij

(
f̂R(i,j), fP(i,j)

)

= αij · fP(i,j) + βi,j · f̂R(i,j) + γij (6)

where φij is the mapping model for achieving f̂ cR(i,j). Note
that αij and βij represent the weights and γij represents the
bias. Considering that f̂R(i,j) is directly quantized by fR, we
set βij to 1 by default. As a result, the linear regression
model is further simplified to:

f̂ cR(i,j) = αij · fP(i,j) + f̂R(i,j) + γij (7)

Here, we optimize the parameters αij and γij by minimizing
the mean square error loss between f̂ cR(i,j) and fR(i,j).

arg min
αij,γij

ε2
ij = arg min

αij,γij

(
fR(i,j) − f̂ cR(i,j)

)2
(8)

We adopt a strategy of coefficient-level multi-round regres-
sion optimization. Specifically, for each candidate coefficient
position, we first construct the input data pair {f̂R(i,j), fP(i,j)}
and the label data fR(i,j), and then conduct the least-squares
algorithm according to (7). After finishing the first-round
optimization, the dataset can be divided into a positive sample
set and a negative sample set based on the latest linear model.
Note that the positive samples refer to the samples whose
compensation loss is within the threshold range. Furthermore,
the next-round optimization is followed based on the posi-
tive sample set only. The above process was repeated, and the
threshold was continuously adjusted. After the regression pro-
cess is stable, we can achieve an optimal linear model. When
all candidate coefficient positions have been modeled, the
block-level compensated coefficients can be represented as:

f̂ cR = �
(
f̂R, fP

)
= L(fP) + f̂R

= A · fP + G+ f̂R (9)
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where A and G represent the weight matrix and the bias
matrix, respectively, and the dimension is equal to M ×
NM,N∈{4,8,16,32}.

A =

⎡
⎢⎢⎢⎣

α11 · · · α1N
α21 · · · α2N
...

. . .
...

αM1 · · · αMN

⎤
⎥⎥⎥⎦,G =

⎡
⎢⎢⎢⎣

γ11 · · · γ1N
γ21 · · · γ2N
...

. . .
...

γM1 · · · γMN

⎤
⎥⎥⎥⎦. (10)

C. NONLINEAR REGRESSION MODEL
Although the proposed linear model introduces the prediction
signal into the residual inverse quantization process, it is dif-
ficult for the linear model to effectively capture the nonlinear
relationship between the signals. Therefore, on the basis of
the linear model, we make use of the convolutional neural
network to further extend it into a nonlinear solution.

f̂ cR = �(f̂R, fP) = F(fP) + f̂R (11)

As shown in (11), F represents the nonlinear model, and
the specific network structure is shown in Fig. 5(a), where
the structure of residual connection [35] is adopted. Different
from simply using weights and biases to map fP, here, we
conduct multiple stacked convolution layers and rectified
linear units (ReLU) to achieve nonlinear mapping from fP
to FP. In addition, we infer a position-level-based mask
matrix with the same dimension as FP, namely,MaskP, based
on multi-layer feature fusion. When considering the use of
richer nonlinear information, we can further introduce f̂R
into F(·) to add a new branch that is dual to the branch
of processing fP, thereby constructing F(f̂R, fP). The specific
network structure is shown in Fig. 5(b).

f̂ cR = �
(
f̂R, fP

)
= F

(
f̂R, fP

)
+ f̂R (12)

The advantage of frequency-domain mapping lies in the
fact that each frequency coefficient is associated with all the
spatial-domain pixels, meaning that even when the kernel
size is limited to 1 × 1, the receptive field of the network
can still be considered as the entire block. In the network,
the size of the convolution kernel and the number of lay-
ers together affect the complexity of the model. Note that
k can be set as 1, 3, and 5, where the first configura-
tion represents only the intercorrelation between signals is
explored, while the latter two configurations further utilize
the intra-signal correlation. To make full use of the extracted
features and achieve the information interaction between the
branches, all the extracted features are cascaded together,
and the corresponding coefficient-level masks are available.
The compensated coefficients can then be represented as a
sum of masked branches and f̂R.
Different from the operation of optimizing linear models

position by position, for nonlinear models, all coefficients
share the same parameters, so we can update the 
 through
a single-round regression optimization process.

arg min



ε2 = arg min



L
(
fR,F(f̂R, fP|
) + f̂R

)
(13)

where L(·) represents the mean squared error loss.

FIGURE 5. Structure of nonlinear convolutional neural network based on residual
connection. “k × k c16” represents the kernel size and output feature channels of the
current convolution layer. (a) Single-branch network. (b) Dual-branch network.
(a) �(f̂R , fP ) = F(fP ) + f̂R (b) �(f̂R , fP ) = F(f̂R , fP ) + f̂R .

V. EXPERIMENTS AND ANALYSES
A. EXPERIMENTAL SETTINGS
1) TEST CONFIGURATION

We integrate the proposed context-adaptive inverse quanti-
zation mode, including the linear models (implemented by
C++) and nonlinear models (implemented by PyTorch),
into VTM-1.0.2 Compared with the high-efficiency video
coding (HEVC) framework, VTM-1.0 expands the block
division from the quadtree (QT) to the multi-type tree (MTT),
resulting in various block sizes [36]. The proposed CAIQ
mode is an optional mode based on TU blocks, therefore,

2. https://vcgit.hhi.fraunhofer.de/chujoh/VVCSoftware_BMS.

666 VOLUME 2, 2021



a TU-level enable flag needs to be written into the bit-
stream. Furthermore, we integrated the proposed method
into VTM-6.03 and VTM-13.04 for research. Compared with
VTM-1.0, the coding efficiencies of VTM-6.0 and VTM-
13.0 are improved by more than 20% and 24% on average,
respectively.
We set the QPs to {22, 27, 32, 37} as the common test

condition and additionally test high bit rates, that is, we set
the QPs to {17, 22, 27, 32}. Three coding configurations,
including low delay P (LDP), low delay B (LDB), and ran-
dom access (RA), are all tested. All sequences are utilized
to evaluate the performance of our proposed method. The
overall BD-rate performance is calculated based on only five
classes consisting of classes A1, A2, B, C, and E. Note that
all experiments and time complexity analyses are finished
on the CPUs.

2) MODEL TRAINING

We randomly select 40 sequences from the CDVL as the
training sequences. All sequences are first compressed with
various QPs, including {17, 22, 27, 32, 37}, and the result-
ing reconstructed video has multiple frames (65 frames in
total) with different qualities. Next, according to the QP of
each frame, we cluster the frames ranging from (QP− 2) to
(QP+ 2), to produce the training sets under multiple QPs.
Third, we take the TU as the basic unit and obtain blocks
with various sizes based on the block partition results, where
all blocks will be pre-transferred to the frequency domain
by the DCT. Note that the dataset includes the prediction
signal, the reconstructed residual, and the original residual
(as the training label).
For the linear model, the position-level parameter regres-

sion strategy determines that we should train weight matrix
A and bias matrix G for various block sizes. Considering
that the proportion of blocks with sizes exceeding 32×32 is
relatively low, we optimize parameters only for block sizes
ranging from 4 × 4 to 32 × 32. All the training experiments
are finished on the CPUs.
For the nonlinear model, the shareable parameters make it

easy to perform joint optimization on all coefficients without
considering the block sizes. Note that at high bit rates, the
encoder tends to divide the image into smaller TUs, while
at low bit rates, it is exactly relevant. Instead of training
networks for each block size, we set 8×8 and 16×16 blocks
as the training dataset when the QP is equal to {17, 22} and
{27, 32, 37}, respectively. In addition, we train different
models for multiple coding configurations. Considering that
the gap between the input and the labels, under low bit
rates, is large, we first train models under the high bit rates
and then initialize the models under the low bit rates with
pre-trained models. The Adam algorithm [37] is utilized for

3. https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tree/VTM-
6.0.

4. https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tree/VTM-
13.0.

FIGURE 6. Visualization of weight matrices of the linear model for different block
sizes.

stochastic optimization. We set the learning rate (lr) to 0.01.
All the training experiments are finished on the GPUs.

B. EXPERIMENTAL RESULTS
1) PERFORMANCE OF LINEAR MODEL

Based on the function defined in (9), we trained a total
of 16 sets of parameter matrices suitable for various block
sizes (that is, block sizes ranging from 4 × 4 to 32 × 32).
Fig. 6 shows the visualization results of the weight matrices
AQP=22 and AQP=32, where the three-dimensional coordi-
nates represent the width, height, and weight, respectively.
Note that the weight of each coefficient in f̂R is fixed to 1,
so A plays a role in adjusting the weight of fP. An obvious
conclusion is that the weights in A are always limited in
the range of [0, 1], most of which do not exceed 0.5. Since
CAIQ is conducted in the frequency domain, the position
near the coordinate (0, 0) indicates a lower frequency. In
contrast, the coefficients far away from this position corre-
spond to a higher frequency. The weights of fP at the low
frequency are close to 0, and the weights gradually increase
with increasing frequency. This observation is in line with
the intuitive impression and the results shown in Fig. 2, that
is, the f̂R at the low frequency can better reflect the energy
distribution of the original residual, while the corresponding
fP may be useless. As the frequency increases, the correlation
between the predicted signal and the residual signal becomes
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TABLE 1. BD-rate results of proposed linear model (f̂ c
R = L(fP ) + f̂R ) on VTM-1.0.

higher, so that the weight becomes larger to provide more
useful information. The weight matrices corresponding to
different block sizes have a consistent changing trend; that
is, the weight for the high-frequency coefficients is signifi-
cantly larger than that of the low-frequency coefficients. At
the same time, the weight matrices under different bit rates
also have the same distribution characteristics.
Table 1 shows the BD-rate performance. Under the condi-

tion of high bit rates, the proposed linear model-based CAIQ
mode achieves an average of 1.66%, 0.50%, and 0.65%
improvement in the LDP, LDB, and RA configurations,
respectively. Simultaneously, this mode has no significant
impact on the performance of the UV component. Note that
the performance in the LDP mode is the highest. We think
this may be related its poor predictive decorrelation abil-
ity under a single reference frame configuration. The weak

predictive decorrelation ability makes the CAIQ mode, based
on the correlation between the prediction and the residual,
have greater potential.
In addition, the BD-rate performance at low bit rates is

significantly lower than that at high bit rates, indicating that
our proposed method has a larger potential at high bit rates.
We think that the loss of high-frequency information caused
by quantization makes the high-frequency coefficients in the
prediction signal relatively small at low bit rates; there-
fore, the strategy of relying on the frequency correlation
for information compensation may not be effective. Note
that our proposed CAIQ is an RDO-based TU-level inv-
quantization mode, so in the decoding process, only blocks
hitting this mode will utilize CAIQ. Considering that the
optimized first-order linear model is very simple, our method
does not increase the decoding complexity.
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FIGURE 7. Block-level visualization of hitting CAIQ mode. The red and gray block boundaries indicate the TUs that have hit and missed the CAIQ mode, respectively. In (a) and
(c), the utilized linear model is “L(fP ) + f̂R ”. In (b) and (d), the utilized nonlinear model is “F3×3(fP ) + f̂R ”.

In Figs. 7(a) and 7(c), we visualize the hitting blocks of
two frames. Note that in areas with rich textures, object
edges or moving areas are more likely to be selected, while
static or flat areas are less likely to be selected.

2) PERFORMANCE OF NONLINEAR MODEL

Based on the linear model, we further extend the nonlinear
CNN-based mapping model. In this section, we use a single-
branch network structure, that is, replacing A · fP with F(fP).
Since our network structure is a pure convolution operation,
the network model can be applied to all TU blocks of various
sizes.
Table 2 shows the specific results. Compared with the

linear model, the nonlinear model exhibits a more powerful
compensation capability. Note that the nonlinear model has
achieved a performance improvement of 3 times that of the
linear model. In addition, a similar conclusion is that the
nonlinear model-based CAIQ mode shows greater potential
at high bit rates. Taking the RA configuration as an exam-
ple, the average BD-rate performance of the high bit rates
is 2.31%, which is more than twice the performance at the
low bit rates. While the powerful nonlinear modeling ability
brings significant performance gain, it also inevitably brings
an increase in the encoding and decoding complexity. At

the high bit rates of the RA configuration, the CAIQ solu-
tion integrating the nonlinear models increases the decoding
complexity to 426% (in the CPU environment). Here, we
provide a reference GPU decoding time (decoding directly
on the CPU-based bitstream, just for reference). Compared
to CPUs, GPUs can only provide approximately 21% of
time savings. We think this may be caused by frequent and
noncontinuous memory exchange.
In Table 3, we observe that the hitting ratio of the non-

linear model is slightly higher than that of the linear model,
but the overall difference between the two is relatively small.
In Figs. 7(b) and 7(d), we visualize the hitting blocks based
on the nonlinear models. An interesting phenomenon is that
the blocks hit by the linear model and the nonlinear model
are similar. This means that our proposed context-adaptive
inverse quantization is always helpful for blocks with tex-
ture, motion, edges, etc. Note that the nonlinear model can
achieve a finer-grained representation in the inverse quantiza-
tion process through complex nonlinear operations compared
with the linear operation.

C. ANALYSES
1) IMPACT ON PARTITION RESULTS

The proposed CAIQ mode is a TU-level technology. In
VVC, the maximum block size allowed by the transform
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TABLE 2. BD-rate results of proposed nonlinear model (f̂ c
R = F3×3(fP ) + f̂R ) on

VTM-1.0.

TABLE 3. Block size distribution of valid residual blocks.

is 64×64. Taking the nonlinear model as an example, we
analyze the hitting ratio of the CAIQ mode on each TU
size. The mode hitting ratio results are shown in Fig. 8,
where (a) and (b) correspond to the results of using linear
and nonlinear models, respectively. Linear models are only
trained and utilized for blocks that do not exceed 32×32

FIGURE 8. (a) Block-level mode hitting ratio, where the utilized model is
“L(fP ) + f̂R ”. Note that “0” indicates that the ratio is less than 1%. (b) Block-level
mode hitting ratio, where the utilized model is “F3×3(fP ) + f̂R ”. (c) Influence of CAIQ
mode using the same configuration as (b) on block partition.

due to the limitation of the training set (the absolute num-
ber of larger blocks is relatively small). Nonlinear models
can be used for any block size due to the characteristics
of a pure convolutional neural network structure (the max-
imum allowed transformation block size is 64×64). Note
that the hitting ratio of the CAIQ mode is relatively low on
extremely small blocks (e.g., 4 × 4), and the hitting ratio
increases with an increasing block size. This indicates that
the frequency-based mapping scheme is more friendly for
larger blocks. We surmise two causes. One is that the decor-
relation effect of the transform is weak in small blocks [2],
and the independence between the coefficients is weakened,
which limits the performance of CAIQ. Another cause is
that small blocks are more likely to achieve high precision
prediction, thereby weakening the association between the
prediction signals and residual signals, further affecting the
hitting ratio.
As shown in Fig. 8-(c), we analyze the effect of the CAIQ

mode on the distribution of block size, where s = max(h,w).
Note that when the CAIQ mode is disabled, the distribution
of various block sizes is {18%, 45%, 22%, 11%, 4%, 1%}.
When the CAIQ mode is enabled, the block size distribution
changes to {−1%, −8%, 4%, 3%, 0%, 0%}. Therefore, our
proposed CAIQ mode tends to divide the input signal into
larger TUs.

2) EFFECT OF BLOCK SIZE AND BLOCK CONTENT

We analyze the influence of block sizes on CAIQ by adjust-
ing the maximum allowable block size Sbound. When Sbound
is equal to 16, we will directly skip checking the CAIQ mode
for TUs whose width or height exceeds 16. Simultaneously,
there is no need to encode the mode flag for these skipped
TUs. Fig. 10 shows the trend of the BD-rate performance
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FIGURE 9. Cactus_s1∼s4 are low-definition videos (416×240) cropped from the
original sequence, where Cactus_s1 and Cactus_s3 have complex motion (rotation),
Cactus_s2 and Cactus_s4 have complex texture. Note that Cactus_s4 can be
considered approximately stationary. Cactus_s5 is a low-resolution video (416×240)
down-sampled from the original sequence.

TABLE 4. BD-rate of the proposed nonlinear model (f̂ c
R = F3×3(fP ) + f̂R ) on

cropped/downsampled sequences in Fig. 9.

and decoding complexity as Sbound increases. Specifically,
when Sbound changes from 8 to 32, the performance shows
an approximate linear growth trend. However, when it is
further increased to 64, the growth trend decreased signif-
icantly. The difference is that the decoding complexity has
always maintained a relatively stable growth.
An observed phenomenon is that compared to low-

resolution sequences, our approach works better in high-
resolution sequences. First, we divide the standard test
sequence into two groups according to the resolution.
Sequences below 720p are included in ClassC, ClassD, and
ClassF, and sequences higher than 720p are included in
ClassA1, ClassA2, ClassB and ClassE. The statistical results
in Table 3 show that the proportion of small blocks in low-
resolution sequences is higher, which limits the performance
of CAIQ.
Considering that the resolution reflects the complex-

ity of the content in the unit area, we further attempt
to crop/downsample high-resolution sequences into low-
resolution sequences. We use Cactus as an example to
analyze the impact of content on CAIQ performance.
Specifically, we crop/down-sample the original “Cactus”
(1920×1080) into multiple sub-sequences (416×240) with
various content characteristics. Table 4 shows the BD-rate
performance of different sequences. Taking the LDP con-
figuration as an example, we can observe a significant
performance difference among the cropped subsequences
(Cactus_s1∼s4). The average performances of Cactus_s1
and Cactus_s3 with large motion is the highest. However,
Cactus_s4 basically does not have any motion, so its overall

FIGURE 10. Relationship between the maximum allowable block size and
performance and decoding complexity.

performance is the lowest. This indicates that our proposed
CAIQ is more suitable for processing content with com-
plex motion and texture. In particular, Cactus_s5 is achieved
based on the original sequence, so its content is similar to
the original sequence, but the content complexity in the unit
area is higher. Since CAIQ has almost no performance gain
on this sequence, we can conclude that content, instead of
resolution, plays a more important role in the performance
of CAIQ.

3) EFFECT OF MODEL COMPLEXITY

We compared a variety of inverse quantization models and
analyzed the impact of model complexity on the CAIQ mode.
First, we designed a first-order linear model �1 based on
the assumption of coefficient independence and optimized
the weights and biases, position by position. Second, the
CNN-based nonlinear model �2 is utilized to achieve multi-
position parameter sharing and joint optimization, where the
convolution kernel size is set to 1×1, and only a single input
fP is modeled. Third, we expanded �2 to �3 by increasing
the convolution kernel size to 3×3 while, at the same time,
keeping the input unchanged. Fourth, we used a dual-channel
input, namely, {fP, f̂R}, and constructed the model �4 based
on a 3 × 3 convolution. Fifth, we used a 5 × 5 convolution
kernel to replace the corresponding kernels in �4 to construct
model �5. For each model, we used the same training data
and configuration parameters and started training from the
initial state.
The overall BD-rate performance and decoding complexity

are shown in Table 5. We can conclude that based on a sim-
ple linear model, a certain performance gain can be achieved
without increasing the complexity of the decoder, which
confirms the effectiveness and potential of our proposed
CAIQ mode. In addition, the introduction of the nonlinear
model greatly improves the performance. Simultaneously, the
decoding complexity also increases rapidly. Note that we did
not execute any speed optimizations for the neural network
inference. The performance of CAIQ (e.g., in RA config-
uration) based on the linear model �1 is only −0.11%.
Replacing it with a nonlinear model �2 can increase the
performance by more than 4 times under the condition
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TABLE 5. BD-rate (and decoding time in parentheses) of different CAIQ models.

of a limited increase in complexity. In �2, only using a
1 × 1 convolution makes the receptive field of the neural
network always focus on the current position, it is difficult
to effectively utilize the intracorrelations, and the network’s
nonlinear modeling ability is relatively weak. As a result,
when the convolution kernel size is expanded to 3 × 3, we
can again observe a significant performance improvement.
Although �2 and �3 consider the influence of f̂R in the

inverse quantization process by using a residual connection
structure, we believe that adding f̂R to the network may bring
additional performance improvements. In �4 and �5, we
constructed a dual-branch network structure based on 3 × 3
and 5×5 convolution kernels, respectively. The results show
that compared to �3, dual-branch networks can bring certain
performance improvements. However, on the one hand, the
average gain is approximately −0.3%, while the decoding
complexity is doubled. On the other hand, a larger convolu-
tion kernel size does not mean higher performance, which
may increase the difficulty of model training. Therefore, the
performance of the model �5 is slightly lower than that
of �4.

4) EFFECT OF COMBINING WITH RECURSIVE
PARTITIONING PROCESS

Our proposed CAIQ is integrated with the inverse quan-
tizer, thereby serving as a TU-level optional mode. As a
result, the CAIQ mode decision is bound to the recursive
block partition decision process, namely as TU-Loop. We
want to claim that CAIQ has greater performance potential
when combined with block partition decisions. Therefore, we
apply the CAIQ mode at the frame level, that is, check the
CAIQ mode TU-by-TU before the in-loop de-blocking fil-
ters, namely, Frame-Loop. Table 6 shows the BD-rate results.
The TU-Loop-based strategy is significantly better than that
of Frame-Loop, indicating that dynamically considering con-
textual information in the recursive partition process is more
efficient.

5) EXTEND TO BETTER BASELINE CODECS

We test the BD-rate performance of the nonlinear models on
VTM-6.0 and VTM-13.0 under the same configuration. Note
that we reacquire the training set based on the corresponding
reference software version and execute model training. The
results are shown in Table 7. Overall, we can observe obvi-
ous performance drops or even performance loss. However,
for partial high-resolution sequences, the proposed CAIQ
method can still obtain a certain performance gain. We

TABLE 6. BD-rate of different integrated strategies (�3 = F3×3(fP ) + f̂R ).

attribute the reasons for the performance degradation to
the following three points. First, our method relies on the
correlation between the prediction signal and the original
residual, and it has better hitting results for regions with
low prediction accuracy (such as complex motion, texture,
edge regions, etc., see Fig. 7). Therefore, the improvement of
inter-frame prediction efficiency may reduce the correlation
between signals, thereby compressing the performance space
of our method. Second, our proposed CAIQ utilizes more
encoded information to achieve context-adaptive loss com-
pensation, which may overlap with other context-adaptive
technologies, such as adaptive loop filtering (ALF). When the
ALF is turned off, we can observe a significant performance
improvement of the proposed method. Third, the introduction
of a large number of new technologies makes the block-level
mode more complicated, and we still follow the strategy of
using the same model for various contents. Therefore, we
think that adding more context information may be useful
to further enhance the performance of CAIQ when using a
better baseline codec.

VI. CONCLUSION
In this paper, we propose a TU-level context-adaptive inverse
quantization method based on already coded information
and frequency-domain correlations. Unlike the video cod-
ing standard that separates the predictive coding module
and residual coding module at the block level, we propose
that the prediction signal helps assist residual reconstruction.
Based on correlation analyses, we design linear and nonlin-
ear coefficient-level mapping models and apply them to the
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TABLE 7. BD-rate of proposed nonlinear model (f̂ c
R = F3×3(fP ) + f̂R ) and linear model on better baseline codecs.

de-quantizer to construct a new optional inverse quantization
mode, namely, CAIQ. The experimental results show that a
simple linear model can bring a certain BD-rate performance
gain, and the introduction of a nonlinear operation can further
improve the performance.
In the future, more block-level mode information can be

introduced as context to further enhance the performance
of CAIQ. The processing strategy based on the frequency
domain will also facilitate coefficient-level independent map-
ping. Furthermore, the method can be further extended to
intra-frame coding.
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